⑴ 排污水,设计明渠,应该怎么考虑,怎么做
排污水尽量不用明渠,首先就是影响环境,其次从技术上讲:1、用明渠主要是为了降低管内道埋深,但污水管道容埋深通常都比较大,所以很少用明渠的形式来表达;2、一般明渠坡度较小,用于排除污水的话容易淤积堵塞;3、盖板涵由涵到管的衔接处理需要做单独的结构设计,增加了不必要的麻烦。综上,如果不是非常必要,原则上不建议用明渠排放污水
⑵ 您觉得污水处理厂该怎样设计建造最靠谱
不同的污水处理厂,差别很大吧。化工,生活污水,石材污水。。。。。还是要根据具体的污水的类别来确定。
⑶ 如何进行污水处理厂的高程计算及平面、高程布置
污水处理厂
平面布置及高程布置
一、污水处理厂的平面布置
污水处理厂的平面布置应包括:
处理构筑物的布置污水处理厂的主体是各种处理构筑物。作平面布置时,要根据各构筑物(及其附属辅助建筑物,如泵房、鼓风机房等)的功能要求和流程的水力要求,结合厂址地形、地质条件,确定它们在平面图上的位置。在这一工作中,应使:联系各构筑物的管、渠简单而便捷,避免迁回曲折,运行时工人的巡回路线简短和方便;在作高程布置时土方量能基本平衡;并使构筑物避开劣质土壤。布置应尽量紧凑,缩短管线,以节约用地,但也必须有一定间距,这一间距主要考虑管、渠敷设的要求,施工时地基的相互影响,以及远期发展的可能性。构筑物之间如需布置管道时,其间距一般可取5-8m,某些有特殊要求的构筑物(如消化池、消化气罐等)的间距则按有关规定确定。
厂内管线的布置污水处理厂中有各种管线,最主要的是联系各处理构筑物的污水、污泥管、渠。管、渠的布置应使各处理构筑物或各处理单元能独立运行,当某一处理构筑物或某处理单元因故停止运行时,也不致影响其他构筑物的正常运行,若构筑物分期施工,则管、渠在布置上也应满足分期施工的要求;必须敷设接连人厂污水管和出流尾渠的超越管,在不得已情况下可通过此超越管将污水直接排人水体,但有毒废水不得任意排放。厂内尚有给水管、输电线、空气管、消化气管和蒸气管等。所有管线的安排,既要有一定的施工位置,又要紧凑,并应尽可能平行布置和不穿越空地,以节约用地。这些管线都要易于检查和维修。
污水处理厂内应有完善的雨水管道系统,以免积水而影响处理厂的运行。
辅助建筑物的布置辅助建筑物包括泵房、鼓风机房、办公室、集中控制室、化验室、变电所、机修、仓库、食堂等。它们是污水处理厂设计不可缺少的组成部分。其建筑面积大小应按具体情况与条件而定。有可能时,可设立试验车间,以不断研究与改进污水处理方法。辅助建筑物的位置应根据方便、安全等原则确定。如鼓风机房应设于曝气池附近以节省管道与动力;变电所宜设于耗电量大的构筑物附近等。化验室应远离机器间和污泥干化场,以保证良好的工作条件。办公室、化验室等均应与处理构筑物保持适当距离,并应位于处理构筑物的夏季主风向的上风向处。操作工人的值班室应尽量布置在使工人能够便于观察各处理构筑物运行情况的位置。
此外,处理厂内的道路应合理布置以方便运输;并应大力植树绿化以改善卫生条件。
应当指出:在工艺设计计算时,就应考虑它和平面布置的关系,而在进行平面布置时,也可根据情况调整构筑物的数目,修改工艺设计。
总平面布置图可根据污水厂的规模采用1∶200~1∶1000比例尺的地形图绘制,常用的比例尺为l:500。
图1为某甲市污水处理厂总平面布置图、主要处理构筑物有:机械除污物格栅井、曝气沉砂池、初次沉淀池与二次沉淀池(均设斜板)、鼓风式深水中层曝气池、消化池等及若干辅助建筑物。
该厂平面布置特点为:流线清楚,布置紧凑。鼓风机房和回流污泥泵房位于暖气池和二次沉淀池一侧,节约了管道与动力费用,便于操作管理。污泥消化系统构筑物靠近四氯化碳制造厂(即在处理厂西侧),使消化气、蒸气输送管较短。节约了基建投资。办公室。生活住房与处理构筑物、鼓风机房、泵房、消化池等保持一定距离,卫生条件与工作条件均较好。在管线布置上,尽量一管多用,如超越管、处理水出厂管都借道雨水管泄入附近水体,而剩余污泥、污泥水、各构筑物放空管等,又都与厂内污水管合并流人泵房集水井。但因受用地限制(厂东西两恻均为河浜),远期发展余地尚感不足。
图2为乙市污水厂的平面布置图,泵站设于厂外。主要构筑物有:格栅、曝气沉砂池、初次沉淀池、曝气池、二次沉淀池及回流污泥泵房等一些辅助建筑物。湿污泥池设于厂外便于农民运输之处。
该厂平面布置的特点是:布置整齐、紧凑。两期工程各自成系统,对设计与运行相互干扰较少。办公室等建筑物均位于常年主风向的上风向,且与处理构筑物有一定距离,卫生、工作条件较好。在污水流人初次沉淀池、曝气池与二次沉淀池时,先后经三次计量,为分析构筑物的运行情况创造了条件。利用构筑物本身的管渠设立超越管线,既节省了管道,运行又较灵活。
第二期工程预留地设在一期工程与厂前区之间,若二期工程改用别的工艺流程或另选池型时,在平面布置上将受一定限制。泵站与湿污泥池均设于厂外,管理不甚方便。此外,三次计量增加了水头损失。
二、污水处理厂的高程布置
污水处理厂高程布置的任务是:确定各处理构筑物和泵房等的标高,选定各连接管渠的尺寸并决定其标高。计算决定各部分的水面标高,以使污水能按处理流程在处理构筑物之间通畅地流动,保证污水处理厂的正常运行。
污水处理厂的水流常依靠重力流动,以减少运行费用。为此,必须精确计算其水头损失(初步设计或扩初设计时,精度要求可较低)。水头损失包括:
(1)水流流过各处理构筑物的水头损失,包括从进池到出池的所有水头损失在内;在作初步设计时可按表1估算。
表1 处理构筑物的水头水损失
构筑物名称 水头损失(cm) 构筑物名称 水头损失(cm)
格栅 10~25 生物滤池(工作高度为2m时):
沉砂池 10~25
沉淀池: 平流
竖流
辐流 20~40 1)装有旋转式布水器 270~280
40~50 2)装有固定喷洒布水器 450~475
50~60 混合池或接触池 10~30
双层沉淀池 10~20 污泥干化场 200~350
曝气池:污水潜流入池 25~50
污水跌水入池 50~150
(2)水流流过连接前后两构筑物的管道(包括配水设备)的水头损失,包括沿程与局部水头损失。
(3)水流流过量水设备的水头损失。
水力计算时,应选择一条距离最长、水头损失最大的流程进行计算,并应适当留有余地;以使实际运行时能有一定的灵活性。
计算水头损失时,一般应以近期最大流量(或泵的最大出水量)作为构筑物和管渠的设计流量,计算涉及远期流量的管渠和设备时,应以远期最大流量为设计流量,并酌加扩建时的备用水头。
设置终点泵站的污水处理厂,水力计算常以接受处理后污水水体的最高水位作为起点,逆污水处理流程向上倒推计算,以使处理后污水在洪水季节也能自流排出,而水泵需要的扬程则较小,运行费用也较低。但同时应考虑到构筑物的挖土深度不宜过大,以免土建投资过大和增加施工上的困难。还应考虑到因维修等原因需将池水放空而在高程上提出的要求。
在作高程布置时还应注意污水流程与污泥流程的配合,尽量减少需抽升的污泥量。污泥干化场、污泥浓缩池(湿污泥池),消化池等构筑物高程的决定,应注意它们的污泥水能自动排人污水人流干管或其他构筑物的可能性。
在绘制总平面图的同时,应绘制污水与污泥的纵断面图或工艺流程图。绘制纵断面图时采用的比例尺:横向与总平面图同,纵向为1∶50-1∶100。
现以图2所示的乙市污水处理厂为例说明高程计算过程。该厂初次沉淀池和二次沉淀池均为方形,周边均匀出水,曝气池为四座方形池,表面机械曝气器充氧,完全混合型,也可按推流式吸附再生法运行。污水在入初沉池、曝气池和二沉池之前;分别设立了薄壁计量堰(、为矩形堰,堰宽0.7m,为梯形堰,底宽0.5m)。该厂设计流量如下:
近期 =174L/s 远期 =348L/s
=300L/s =600L/s
回流污泥量以污水量的100%计算。
各构筑物间连接管渠的水力计算见表2。
处理后的污水排人农田灌溉渠道以供农田灌溉,农田不需水时排人某江。由于某江水位远低于渠道水位,故构筑物高程受灌溉渠水位控制,计算时,以灌溉渠水位作为起点,逆流程向上推算各水面标高。考虑到二次沉淀池挖土太深时不利于施工,故排水总管的管底标高与灌溉渠中的设计水位平接(跌水0.8m)。
污水处理厂的设计地面高程为50.00m。
高程计算中,沟管的沿程水头损失按表2所定的坡度计算,局部水头损失按流速水头的倍数计算。堰上水头按有关堰流公式计算,沉淀池、曝气池集水槽系底,且为均匀集水,自由跌水出流,故按下列公式计算:
B= (1)
=1.25B (2)
式中Q--集水槽设计流量,为确保安全,常对设计流量再乘以1.2~1.5的安全系数();
B--集水槽宽(m);
h0--集水槽起端水深(m)。
高程计算:
高程(m)
灌溉渠道(点8)水位 49.25
排水总管(点7)水位
跌水0.8m 50.05
窨井6后水位
沿程损失=0.001×390 50.44
窨井6前水位
管顶平接,两端水位差0.05m 50.49
二次沉淀池出水井水位
沿程损失=0.0035×100=0.35m 50.84
二次沉淀池出水总渠起端水位
沿程损失=0.35-0.25=0.10m 50.94
二次沉淀池中水位
集水槽起端水深 =0.38m
自由跌落=0.10m
堰上水头(计算或查表)=0.02m
合计 0.50m 51.44
堰F3后水位
沿程损失=0.002810=0.03m
局部损失==0.28m
合计 0.31m 51.75
堰F3前水位
堰上水头=0.26m
自由跌落=0.15m
合计 0.41m 52.16
曝气池出水总渠起端水位
沿程损失=0.64-0.42=0.22m 52.38
曝气池中水位
集水槽中水位=0.26m 52.64
堰F2前水位
堰上水头=0.38m
自由跌落=0.20m
合计 0.58m 53.22
点3水位
沿程损失=0.62-0.54=0.08m
局部损失=5.85×=0.14m
合计 0.22m 53.44
初次沉淀池出水井(点2)水位
沿程损失=0.0024×27=0.07m
局部损失=2.46×=0.15m
合计 0.22m 53.66
初次沉淀池中水位
出水总渠沿程损失=0.35-0.25=0.10m
集水槽起端水深 =0.44m
自由跌落 =0.10m
堰上水头=0.03m
合计 0.67m 54.33
堰F1后水位
沿程损失=0.0028×11=0.04m
局部损失==0.28m
合计 0.32m 54.65
堰F1前水位
堰上水头=0.30m
自由跌落=0.15m
合计 0.45m 55.10
沉砂池起端水位
沿程损失=0.48-0.46=0.02m
沉砂池出口局部损失=0.05m
沉砂池中水头损失=0.20m
合计 0.27m 55.37
格栅前(A点)水位
过栅水头损失0.15m 55.52m
总水头损失 6.27m
上述计算中,沉淀池集水槽中的水头损失由堰上水头、自由跌落和槽起端水深三部分组成,见图3。计算结果表明:终点泵站应将污水提升至标高55.52m处才能满足流程的水力要求。根据计算结果绘制了流程图,见图4。
图3 集水槽水头损失计算示意
-堰上水头;-自由跌落;-集水槽起端水深;-总渠起端水深
图4 污水处理流程
污泥流程的高程计算以图1所示的甲市污水处理厂为例。该厂污泥处理流程为:
二次沉淀池--污水泵站--初次沉淀池--污泥投配(预热)池--污泥泵站--消化池--贮泥池--运泥船外运
高程计算顺序与污水流程同,即从控制性标高点开始计算。
甲市处理厂设计地面标高为4.2m,初次沉淀池水面标高为6.7m。二次沉淀池剩余活性污泥系利用厂内下水道排至污水泵站,计算从略。从初次沉淀池排出污泥的含水率为97%,污泥消化后经静澄、撤去上清液,其含水率为96%。初次沉淀池至污泥投配池的管道用铸铁管,长150m,管径300mm。设管内流速为15m/s,按式(3)
式中—输泥管道沿程压力损失(m)
L—输泥管道长度(m)
D—输泥管管径(m)
v—污泥流速(m/s)
—海森-威廉(Haren-Williams)系数,其值决定于污泥浓度,见下表:
污泥浓度(%) 值
0.0 100
2.0 81
4.0 61
6.0 45
8.5 32
10.1 25
可求得其水头损失为:
m
自由水头1.5m,则管道中心标高为:
6.7-(1.20+1.50)=4.0m
流入污泥投配池的管底标高为:
4.0-0.15=3.85m
图5 投配池及标高
污泥投配池的标高可据此确定,投配池及标高见图5。
消化池至贮泥池的各点标高受河水位的影响(即受河中运泥船高程的影响),故以此向上推算。设要求贮泥池排泥管管中心标高至少应为3.0m才能向运泥船排尽池中污泥,贮泥池有效深2.0m。已知消化池至贮泥池的铸铁管管径为200mm,管长70m,并设管内流速为1.5m/s,则根据式(1)可求得水头损失为1.20m,自由水头设为1.5m。又,消化池采用间歇式排泥运行方式,根据排泥量计算,一次排泥后池内泥面下降0.5m。则排泥结束时消化池内泥面标高至少应为:
3.0+2.0+0.1+1.2+1.5=7.8m
开始排泥时的泥面标高:
7.8+0.5=8.3m
式中0.1为管道半径,即贮泥池中泥面与入流管管底平。
应当注意的是:当采用在消化池内撇去上清液的运行方式时,此标高是撇去上清液后的泥面标高,而不是消化池正常运行时的池内泥面标高。
当需排除消化池中下面的污泥时,需用排泥泵排除。
据此绘制的污泥高程图见图8-5。
⑷ 市政管网在设计中应注意哪些事项
市政排水管渠施工中管线交叉问题的处理O前言在城市排水管渠的新建及改建过程中,往往不可避免地会碰到排水管渠与先行建成的各类专业管线(道)相互交叉,并在高程上发生冲突的情况。按照现行的设计、施工规范与技术水平,目前我国的排水管渠基本是按重力流设计,完全依靠上下游的水头差来排除雨、污水,同时实现沟道自清。当排水管渠的设计高程与埋深一经确定后,如果在实际施工中遇到与其它专业管线交叉发生高程冲突,受工程投资与起止点标高所限,试图通过调整排水管渠的设计埋深来消除高程冲突的可能性十分有限。因此,如何合理、规范、可行地处理此类问题,确保排水管渠的水力条件,保护地下管线不受损坏,是排水管渠工程施工中必须面对的一个较为棘手的问题。笔者通过多年的排水施工实践,特别是近几年开展整治城区“水浸街”工程和城区道路综合改造工程以来,结合相关设计、施工规范,归纳梳理了排水管渠施工中与其它管道(线)交叉时存在的问题及可行的处理措施,谨供工程技术同行参考。1早期城市建设中管线交叉存在的问题以及原因剖析在我区2000~2002年实施整治城区“水浸街”工程期间,为探寻城区一直存在的“水浸街”问题的成因,通过对花都新华旧城区排水管网的全面清疏,我们对城区排水管网当时的现状进行了一次较为详细的调查。调查发现,旧城区的排水管渠与其它各类管线交叉点共有146处,其中有高程冲突且未经处理直接穿越排水管渠的有110处,占75%。以城区主干排水渠秀全路方渠为例,该渠长820m,就有33处被供水、电信、供电电缆等直接横穿。最严重的是在秀全路与花城路的路口,排水方渠内由上至下分别排列了电信、供电、联通、有线电视四类管线,而且该四类管线本身也是相互交错,挤占了80%的过水断面。在对该处的管线迁移时,耗费了大量的人力、物力和时间,改造的难度相当大。排水管渠与其它管线经常产生交叉冲突,有其历史与现实的原因,主要是由于两者建设的不同步,并且缺乏统一的规划和有力的监督管理所造成。在旧城区,市政排水管渠与城市道路基本上是同时建设。市政排水管渠建设在前,而当时的地下管线较少,城区除供水管以外,其它如供电、电信、有线电视等线路或为架空,或当时暂未开始全面建设。随着社会经济的不断发展,通信、有线电视、燃气等公用事业管道的建设需求也迅速增涨,供电、电信线路也按要求人地埋设。由于管线的规划相对滞后,且在施工过程中各管线单位各自为政,带有较大的随意性,当管线在埋设过程中受排水管渠阻碍时,不是按规范要求避让或采取适当的措施,未经许可就直接凿穿排水管渠通过。在新城区,受建设资金不足的制约,城市道路建设往往不能一步到位,一般是先考虑满足机动车通行的需要,暂时建好主车道路面,人行道、排水管渠等则要根据道路周边土地开发的实际情况再逐步配套。另一方面,水、电、气、通信、电视等专业部门出于未来的市场需要,在建设资金相对比较充裕的优势下,有条件在道路主车道两侧先行埋设管线。个别管线单位为了节约成本和施工方便,随意调整其在道路横断面上的平面位置与竖向高程,不是严格地按照规划布线埋设,因此在新城区经常可以发现,仅需占地1m宽的管线却呈“之”字形走向,将有限的5m人行道范围几乎全部占用,造成很大的地下空间浪费,并且给后续实施的排水管渠建设带来极大的不便。2管线随意交叉的不利影响管线直接穿越排水管渠是规范所不允许的,同时由于该现象的存在,对城市排水管网功能的正常发挥和管线本身的不利影响是十分明显的。(1)管线直接穿排水渠,破坏了排水管渠的整体性与密闭性,影响管渠的使用寿命,造成污水、雨水泄漏,污染地下水,影响路基的稳定性。(2)由于大管径供水管,多层多孔的弱、强电管束侵占了排水净空,使排水管渠的过水能力大为降低。位于管渠底部的管线造成上游雍水,加大了水头损失,使水流速度缓慢,增加了管渠淤积堵塞的几率;与污水平时充满度相平和位于管渠上部的管线,在平时或下雨满流时拦挂了大量塑料袋、树枝、废纸等飘浮垃圾与油污,使有限的过水断面进一步缩窄。从整治“水浸街”工程时清疏管网所掌握的资料来看,凡发生“水浸”的地段,其下游排水管渠均不同程度存在管线直接穿越的情况。(3)不利于排水管渠的日常疏浚养护。受管线阻隔,高压清洗车的喷头无法在管渠内顺利前进,上游冲洗下来的杂物、淤泥亦被管线拦截而无法全部流人检查井清捞。传统的竹片、摇车通沟方法也无法得到实际应用。另一方面,由于管渠淤塞的可能性增加,必须加大清疏的力度才能保证管渠的基本过水能力,增加了养护成本。(4)大多数管线在穿越排水管渠时未采取相应的保护措施,存在较大的安全隐患,一旦受损,将会给公共安全和人民生活工作带来十分不利的影响。3排水管渠与其它管线交叉冲突时的处理措施在对管道交叉进行必要的处理时,要充分考虑相互交叉管道的用途、管材、管道结构,覆土及最小净距要求,工作面大小,回填土情况以及水文地质等情况,同时要考虑工期进度与施工成本控制的要求,施工质量方面既要保证下面的管道安全,且便于检修,上面的管道不能下沉破坏,在排水管渠与其它管道交叉并发生高程冲突时,要尽量保证或改善排水管渠的水力条件。处理的基本原则是:(1)首先应遵循设计,按设计图纸及有关规范进行施工;(2)管道交叉处理要尽量满足其最小净距;(3)有压管道让无压管;(4)支管避让干线管;(5)小口径管避让大口径管;(6)可弯曲管道让不可弯曲管道;(7)临时管道让永久管道(8)尽可能减少开挖工作面和填挖土方量,降低造价,保证工期。(9)无论采用何种处理措施,均应联系有关管道(线)主管部门,取得同意和协助。以下是排水管渠施工常见的几种交叉情况及其处理参考法。3.1新建排水圆管与其它管道【线)交叉,高程未发生冲突(1)新建排水圆管在下,其它管线在上。通常采用槽底砌砖墩的方法对上面管线进行保护。在开挖露出上面管线后,设置跨越管槽的吊架,将管线用铁丝吊挂牢固后再继续开挖并施工下面的排水圆管。在下管时要特别注意安全,防止管节碰撞及压断管线。验槽合格后,在槽底原状土上浇筑10em厚ClO混凝土基础,基础每边尺寸较砖墩大125mm,砖的强度《MU7.5,水泥砂浆标号《M7.5,砖墩间距≯2?3m,且不能少于两个,在圆管两侧对称砌筑。砖墩宽度应大于圆管外径(或管束总宽)30em以上。当砖墩高度在2m以内时,采用一砖墙(240mm),高度>3m时,采用一砖半墙(365mm)。砖墩达足够强度后,回填沟槽,拆除吊架,建议采用石屑按30em分层冲水振实回填。当上面管线较多,且管径较大(如大管径的供水管、排水管),采用开槽施工填挖土方过大,且对已建管道保护有困难时,宜采用顶管法施工排水圆管。(2)新建排水圆管在上,其它管线在下时(这种情况较为少见,但实际施工中仍有碰到)。若上下管道间距满足规范的最小净距要求,且交叉处的槽底地基承载力达到设计要求,可直接进行上面排水管基和管道的施工,否则应选择以下方法之一以加固上面管道的基础,保护下面管道(线)不受破坏。一是换填法,将上下管道(线)之间原状土全部挖除,换填中砂振实后再施工上面管道基础;二是在上层排水管道的管基下面增设钢筋混凝土保护垫层。需要特别说明的是,根据规范要求,供水管、燃气管、原则上不宜在排水管下面交叉,因此,在条件许可时,应尽可能对供水、燃气管进行迁移,在排水管道上方经过(参见上一条处理方法),当从上方经过时其覆土厚度不能满足规范要求时,应对供水、燃气管采用取加套管和路面加钢筋网保护等措施;当受客观条件所限确不能迁移的,应对上面的排水管予以加固,加固长度不小于供水管外径加4m,同时排水管接口与交叉点不应重叠。3.2新建排水圆管与其它管道(线)交叉,高程发生冲突在新建排水圆管与其它管道(线)交叉并有高程冲突时,首先应按照规范要求,在投资、工期、管顶覆土厚度、工作面大小(市政工程施工必须要考虑对城市交通的影响,开挖面往往有限)允许的情况下,尽可能对其它管道(线)进行迁移,在排水管的上(下)方经过,消除高程冲突。迁移存在困难的,参考处理以下几种方法:(1)检查井法:即将排水圆管在有其它管线穿越的位置断开,以检查井相连,井内砌导流槽或沉泥槽以保证其水力条件,同时防止淤积,便于管道清疏养护,其它管线则加套管保护后按原高程从井内穿过。检查井应视管线的宽度、收口高度的不同砌成圆形或矩形。(2)双孔或多孔替代法:采用两孔或多孔较小管径的圆管替代原设计圆管,可维持原设计高程不变,通过降低管顶标高,保证管线从上面通过。使用多孔管替代时,孔数不宜大于四孔,管径不应1/5D,如图2,宜采用暗方渠法,双、多孔管法结合管材替代法予以处理。(3)当管线从排水管道的中、下部穿越,且高度1/3D≥h>1/5D时,如图3,可采用检查井法处理。但是要注意:一是将检查井加宽,二是检查井底应做h+0.5m的沉泥槽。该处理方法有一定的水力损失,但因扩大了过水断面,能基本满足过,水要求,并能有效防止该处的淤塞。(4)当管线从排水管道中、下部穿越,且高度h>1/3D时,如图4,应采用倒虹管法处理。3.3新建排水渠箱与其上方管线交叉且高程未发生冲突时如果渠箱顶板及管线底部之间深度≥70mm,可在渠箱侧墙上砌筑砖墩支撑管线;如果顶板与管线底部的深度<70mm,可直在顶板与管道之间用El0混凝土填实,支承角《900,并且其荷载不超过顶板的允许承载力。3.4新建排水渠箱与已有管线有高程冲突,且管线迁移较困难若高程冲突较小,可适当压低渠箱顶板,或通过结构计算,减薄顶板,使管线能从顶板上面通过。若高程冲突较大,管线不得不从渠箱内穿越时,应将该段渠箱加宽(加宽段不宜超过10m),同时在穿越处渠箱底设沉泥槽和检查井口,便于维护管理。3.5新建管线与已建排水渠箱交叉新建管线在埋设时经常会碰到一种情况:已建渠箱的盖板同时也是路面,从渠箱上面经过已没有任何可能。此时一是可采用顶管法、水平定向钻进法等从渠箱底经过;二是将原多排管线改为单排管线,以尽可能小的横截面从渠箱盖板底部加套管后通过。4结语以上几种处理措施,可根据施工现场的客观条件灵活加以组合使用,在条件许可的情况下,应按照管线交叉处理的原则优先考虑管线的迁移。实践证明,在最不利的情况下,对交叉点采取适当的处理措施,能够有效地改善管内的水力条件,保证排水管渠的过水能力。在我区整治“水浸街”工程中,对以往存在的管线高程冲突点进行处理,是成功解决城区“水浸街”问题的一项主要措施。为了在今后的建设中尽可能地避免管线高程冲突的情况,我个人认为:(1)从前期设计人手,充分调查勘测排水管渠施工现场的现状和走访有关管线单位,详尽掌握各类管线的分布、走向和埋深情况,通过技术经济比较,合理确定排水管渠的高程与埋深,最大限度减少施工中的高程冲突点。(2)切实加强城市综合管线的规划工作,合理规划与分配地下空间,并严格按规划实施。在城市道路交叉口等管线集中的地方,建议规划地下综合管沟共同管廊。(3)从体制人手,尽快改变各类管线建设条块分割,各自为政的现状。可以尝试建立统一的管线建设投资主体,实行地下管线的统一规划,统一设计,统一施工,统一建设和统一维护管理。(4)由于旧城区已经存在成熟的合流制管网,如果按分流制再新建独立的污水管道,必然会与现有合流管道发生较大的交叉碰撞,因此,在旧城区进行污水管网的规划与建设时,宜采用截流制。(5)提前介人,做好施工前的协调工作。开工前通过周详的现场调查,掌握充分的管线资料,及时协调有关管线部门提前对所涉及的管线进行迁移,争取时间,减少排水管施工全面后因处理管线交叉对工期和质量带来的不利影响。
⑸ 建筑给水排水知识:排水管网的布置应遵循哪些原则
(1)按照城市总体规划,结合当地实际情况布置排水管,进行多方案技术经济比较;
(内2)先确定排水区域和排容水体制,然后从干管到支管的顺序进行布置排水管;
(3)充分利用地形,采用重力流排除污水和雨水,使管线最短、深埋最小。
(4)协调好与其他管道、电缆和道路等工程的关系,考虑好企业内部管的衔接;
(5)规划时要考虑到是管渠的施工、运行和维护的方便;
(6)远近期规划相结合,考虑发展,尽可能安排分期实施。
⑹ 小城镇适合什么样的污水处理方式
污水处理系统设置虽然改革开放以来我国的城镇化水平有了较大幅度的提高,但城镇的集约化程度总体上不高。小城镇集聚规模小、空间布局分散,而且乡镇企业的布局也相当分散,没有向小城镇区集中。如果将小城镇的污水集中处理,一方面将不同来源地污水混合,污水成分将复杂,处理的工艺流程会较复杂,处理成本也会较高。另一方面,需建设较大范围的污水收集管网,污水需进行长距离转输或中途提升,导致排水系统布局不合理,既加大了建设投资,也提高了运行成本。因此,小城镇污水处理系统设置不宜强调大集中的处理方式,应根据当地的自然地理条件、城镇总体规划、污水收集系统的实际情况,以及出水排放的趋向合理确定污水收集系统的划分。污水管渠系统的设计应以重力流为主,尽量不设中途提升泵站。对城镇布局分散、被自然河道或山体分割成几部分的地区,应按照经济合理的原则,选择适度分散的处理方式。有废水需要处理的单位,也可以到污水宝项目服务平台咨询具备类似污水处理经验的企业。5、处理工艺方案选择原则:针对性强,技术成熟,投资合理,运行安全可靠,维护管理简单,运行费用省。工艺选择应满足以下具体情况1)水量的不均匀性,昼夜变化大,可能夜间多数时间没水。2)排放要求,根据受纳水体要求或回用要求确定出出水水质,从而确定处理目标。3)管理者素质 污水处理是技术含量较高的行业,小城镇上劳动力素质较低,信息、交通运输、分析化验能力都不能与大城市相比,所选处理工艺尽量简单,易维护,可靠程底高。4)尽量降低投资和运行费用小城镇自身的财力较低,建设资金和运行资金低是确保能建得起和运行得起的关键。5)占地、环保要求低小城镇污水厂用地地价便宜,臭味对周围环境影响小,可以减少这方面投资。6、适合小城镇污水处理技术1)、活性污泥法国外小城镇污水处理基本都是采用活性污泥法,特点是工艺成熟可靠,处理效率高,受环境影响小。我国小城镇污水处理的主流工艺也是活性污泥法,变化也是在些基础上的创新与提高。•氧化沟工艺氧化沟工艺采用环形水流设计,具有稀释倍数高,抗冲击负荷能力强,出水水质稳定,曝气设备采用立轴曝气机或转碟曝气机,管理运行简单,适合小城镇水量变化大,管理水平低的特点。氧化沟主要类型有卡鲁塞尔、奥贝尔、二沟交潜式等。为降低工程造价氧化沟可设计成有防渗能力的土池结构。•百乐卡工艺百乐卡工艺用土池作为生化池,用浮动链曝气,并配有专用的沉淀刮泥设备。曝气设备、刮泥设备的维修可在水面上进行,池子基本不需放空检修,管理简单。可利用原有的坑塘洼地经必要整修作为生化池,投资费用低。实践证明该方法处理小城镇污水效果稳定,出水水质好。•SBR工艺小城镇污水主要集中在白天,晚上水很少,白天用SBR作为调蓄池,晚上电价便宜作为处理池,这样可减少构筑物数量。在SBR池中采用潜水或漂浮式机械曝气具有设备数量少,控制过程简单的优点。SBR对水量的适应性强,尤其是小规模更具优势。•4S-MBR江西金达莱环保研发中心有限公司组织科研技术团队,成功开发了一种运行能耗低、可实现污水污泥同步处理的村镇污水处理新技术—4S-MBR。该技术以金达莱公司原创的特性菌膜生物反应器工艺为核心,通过引入自主培养和筛选的特性菌群,污泥产量少,基本不排有机污泥;同时强化系统厌氧氨氧化、反硝化除磷生化降解效果,实现了一体式连续脱氮除磷,COD、NH3-N、TN、TP稳定优于《城镇污水处理厂污染物排放标准》(GB/T18918-2002)一级标准及《城市污水再生利用城市杂用水水质》(GB/T18920-2002),能耗降低50%以上。有废水需要处理的单位,也可以到污水宝项目服务平台咨询具备类似污水处理经验的企业。其“4S”主要体现为以下四个方面:◇ 污水污泥同步---Sewage and Sludge Treating Synchronization◇ 处理回用同步--- Treating and Recycling Synchronization◇ 脱氮除磷同步--- Denitrifying and Dephosphorizing Synchronization◇ 节能高效同步--- Saving and Efficiency Synchronization2)、生物膜法•生物接触氧化法生物接触氧化是一种具有活性污泥法特点的生物膜法。它综合了曝气池和生物滤池两者的优点。生物接触氧化池具有容积负荷高、停留时间短、有机物去除效果好、运行管理简单和占地面积小等优点。•曝气生物滤池 当出水质要求高,有回用要求或占地面积受限时,采用好氧生物滤池,具有占地面积小,处理出水水质好的优点,缺点是工艺较普通活性污泥法复杂,其投资和运行成本高于活性污泥法。当出水用于景观水体时,因出水中悬浮物、有机物、氨氮等低,可减缓水体富营养化进展,好氧生物滤池出水清澈,作为景观用水时视觉效果较好。
⑺ 关于城市污水管道系统设计
一、工程概述
城市污水处理厂的设计工作一般分为两个阶段,即初步设计和施工图设计。
城市污水处理厂的设计工作内容包括确定厂址、选择合理的工艺流程、确定污水处理厂平面与高程的布置、计算建(构)筑物等。
1、设计资料的收集与调查
(1)建设单位的设计任务书
包括设计规模(处理水量)、处理程度要求、占地要求、投资情况等。
(2)收集相关资料
包括原水水质资料、当地气象资料(温度、风向、日照情况等)、水文地质资料(地下水位、土壤承载力、受纳水体流量、最高水位等)、地形资料、城市规划情况等。
(3)必要的现场调查
当缺乏某些重要的设计资料时,则现场的调查是必需的。
2、厂址选择
城市污水处理厂厂址选择是城市污水处理厂设计的前提,应根据选址条件和要求综合考虑,选出适用的、系统优化、工程造价低、施工及管理方便的厂址。
二、处理流程选择:
污水处理厂的工艺流程是指在达到所要求的处理程度的前提下,污水处理各单元的有机组合,以满足污水处理的要求。
1、污水处理流程的选择原则:
经济节省性原则;
运行可靠性原则;
技术先进性原则。
2、应考虑的其他一些重要因素:
充分考虑业主的需求;
考虑实际操作管理人员的水平。
本次设计采用生物好氧处理法。好氧生物处理BOD5去除率高,可达90%~95%,稳定性较强,系统启动时间短,一般为2~4周,很少产生臭气,不产生沼气,对污水的碱度要求低。
污水处理工艺流程图如下:
平面图:
三、污水处理工程设计计算:
(一)、设计水量,水质及处理程度:
平均流量:5万吨/天,变化系数1.4;
进水:COD:400 mg/L,BOD:300 mg/L,SS:350 mg/L;
出水:COD: 60 mg/L,BOD: 20 mg/L,SS: 20 mg/L;
处理程度计算:COD:(400-60)/400=85% ;
BOD:(300-20)/300=93.3% ;
SS:(350-20)/350=94.3% 。
(二)、格栅及其设计:
格栅是由一组平行的金属栅条制成,斜置在污水流经的渠道上或水泵前集水井处,用以截留污水中的大块悬浮杂质,以免后续处理单元的水泵或构筑物造成损害。
设计中取二组格栅,N=2组,安装角度α=60°
Q 设计水量=平均流量×变化系数=0.810 m3/s
2、格栅槽宽度:
B=S(n-1)+bn
式中: B——格栅槽宽度(m);
S——每根格栅条的宽度(m)。
设计中取S=0.015m,则计算得B=0.93m。
3、进水渠道渐宽部分的长度:
4、出水渠道渐窄部分的长度:
5、通过格栅的水头损失:
6、栅后明渠的总高度:
H=h+h1+h2
式中: H——栅后明渠的总高度(m);
h2——明渠超高(m),一般采用0.3-0.5m
设计中取h2 =0.30m,得到H=1.28m。
7、栅槽总长度:
8、每日栅渣量计算:
采用机械除渣及皮带输送机或无轴输送机输送栅渣,采用机械栅渣打包机将栅渣打包,汽车运走。
9、进水与出水渠道:
城市污水通过DN1200mm的管道送入进水渠道,设计中取进水渠道宽度B1 =0.9m,进水水深h1=h=0.8m,出水渠道B2=B1=0.9m,出水水深h2=h1=0.8m。
(三)、沉砂池及其设计:
沉砂池是借助于污水中的颗粒与水的比重不同,使大颗粒的沙粒、石子、煤渣等无机颗粒沉降,减少大颗粒物质在输水管内沉积和消化池内沉积。
沉砂池按照运行方式不同可分为平流式沉砂池,竖流式沉砂池,曝气式沉砂池,涡流式沉砂池。
设计中采用曝气沉砂池,沉砂池设2组,N=2组,每组设计流量0.4051m3/s
1、沉砂池有效容积:
式中: V——沉砂池有效容积(m3);
Q——设计流量(m3/s);
t——停留时间(min),一般采用1-3min。
设计中取t=2min,Q=0.4051m3/s,得到V=48.61m3。
出水堰后自由跌落0.15m,出水流入出水槽,出水槽宽度B2=0.8m,出水槽水深h2=0.35m,水流流速v2=0.89m/s。采用出水管道在出水槽中部与出水槽连接,出水管道采用钢管。管径DN2=800mm,管内流速v2=0.99m/s,水力坡度i=1.46‰。
12、排砂装置:
采用吸砂泵排砂,吸砂泵设置在沉砂斗内,借助空气提升将沉砂排出沉砂池,吸砂泵管径DN=200mm。
(四)、初沉池及其设计:
初次沉淀池是借助于污水中的悬浮物质在重力的作用下可以下沉,从而与污水分离,初次沉淀池去除悬浮物40%~60%,去除BOD20%~30%。
初次沉淀池按照运行方式不同可分为平流沉淀池、竖流沉淀池、辐流沉淀池、斜板沉淀池。
设计中采用平流沉淀池,平流沉淀池是利用污水从沉淀池一端流入,按水平方向沿沉淀池长度从另一端流出,污水在沉淀池内水平流动时,污水中的悬浮物在重力作用下沉淀,与污水分离。平流沉淀池由进水装置、出水装置、沉淀区、缓冲层、污泥区及排泥装置组成。
沉淀池设2组,N=2组,每组设计流量Q=0.4051m3/s。
10、沉淀池总高度:
H=h1+h2+h3+h4
式中:h1——沉淀池超高(m),一般采用0.3-0.5;
h3——缓冲层高度(m),一般采用0.3m;
h4——污泥部分高度(m),一般采用污泥斗高度与池底坡底i=1‰的高度之和。
设计中取h1=0.3m,h3=0.3m,得h4=3.94m,得到H=7.54m。
15、出水渠道:
沉淀池出水端设出水渠道,出水管与出水渠道连接,将污水送至集水井。
式中: v3——出水渠道水流流速(m/s),一般采用v3≥0.4m/s;
B3——出水渠道宽度(m);
H3——出水渠道水深(m),一般采用0.5-2.0。
设计中取B3=1.0M,H3=0.8m,得到v3=0.51m/s>0.4m/s。
出水管道采用钢管,管径DN=1000mm,管内流速为v=0.51m/s,水力坡降i=0.479‰。
16、进水挡板、出水挡板:
沉淀池设进水挡板和出水挡板,进水挡板距进水穿孔花墙0.5m,挡板高出水面0.3m, 伸入水下0.8m。出水挡板距出水堰0.5m,挡板高出水面0.3m,伸入水下0.5m。在出水挡板处设一个浮渣收集装置,用来收集拦截的浮渣。
17、排泥管:
沉淀池采用重力排泥,排泥管直径DN300mm,排泥时间t4=20min,排泥管流速v4=0.82m/s,排泥管伸入污泥斗底部。排泥管上端高出水面0.3m,便于清通和排气。排泥静水压头采用1.2m。
18、刮泥装置:
沉淀池采用行车式刮泥机,刮泥机设于池顶,刮板伸入池底,刮泥机行走时将污泥推入污泥斗内。
(五)、曝气池及其设计:
设计中采用传统活性污泥法。传统活性污泥法,又称普通活性污泥法,污水从池子首端进入池内,二沉池回流的污泥也同步进入,废水在池内呈推流形式流至池子末端,其池型为多廊道式,污水流出池外进入二次沉淀池,进行泥水分离。污水在推流过程中,有机物在微生物的作用下得到降解,浓度逐渐降低。传统活性污泥法对污水处理效率高,BOD去除率可达到90%以上,是较早开始使用并沿用至今的一种运行方式
7、曝气池总高度:
H总=H+h
式中: H总——曝气池总高度(m);
h——曝气池超高(m),一般取0.3—0.5m。
设计中取 h=0.5m,则 H=4.7m。
10、管道设计:
①中位管:
曝气池中部设中位管,在活性污泥培养驯化时排放上清液。中位管管径为600mm。
②放空管:
曝气池在检修时,需要将水放空,因此应在曝气池底部设放空管,放空管管径为500mm。
④消泡管
在曝气池隔墙上设置消泡水管,管径为DN25mm,管上设阀门。消泡管是用来消除曝气池在运行初期和运行过程中产生的泡沫。
⑤空气管
曝气池内需设置空气管路,并设置空气扩散设备,起到充氧和搅拌混合的作用。
11、曝气池需氧量计算:
依照气水比5:1进行计算,Q=14580m3/h。
12、鼓风机选择:
空气扩散装置安装在距离池底0.2m处,曝气池有效水深为4.2m,空气管路内的水头损失按1.0m计,则空压机所需压力为:
P=(4.2-0.2+1.0)×9.8=49kPa
鼓风机供气量:
Gsmax=14580m3/h=243m3/min。
根据所需压力及空气量,选择RE-250型罗茨鼓风机,共5台,该鼓风机风压49kPa,风量75.8m3/min。正常条件下,3台工作,2台备用;高负荷时,4台工作,1台备用
(六)、二沉池及其设计:
二沉池一般可分为平流式、辐流式、竖流式和斜板(管)等几类。
平流式沉淀池可用于大、中、小型污水处理厂,但一般多用于初沉池,作为二沉池比较少见。平流式沉淀池配水不易均匀,排泥设施复杂,不易管理。
辐流式沉淀池一般采用对称布置,配水采用集配水井,这样各池之间配水均匀,结构紧凑。辐流式沉淀池排泥机械已定型化,运行效果好,管理方便。辐流式沉淀池适用于大、中型污水处理厂。
竖流式沉淀池一般用于小型污水处理厂以及中小型污水厂的污泥浓缩池。该池型的占地面积小、运行管理简单,但埋深较大,施工困难,耐冲击负荷差。
斜管(板)沉淀池具有沉淀效率高、停留时间短、占地少等优点。一般常用于小型污水处理厂或工业企业内的小型污水处理站。斜管(板)沉淀池处理效果不稳定,容易形成污泥堵塞,维护管理不便。
设计中选用辐流沉淀池,沉淀池设2组,N=2组,每组设计流量0.405m3/s。
3、沉淀池有效水深:
h2=q′×t
式中: h2——沉淀池有效水深(m);
t——沉淀时间(h),一般采用1—3h。
设计中取 t=2.5h,得到 h2=3.5m。
4、径深比:
D/h2=10.4,满足6-12之间的要求。
5、污泥部分所需容积:
式中: Q0——平均流量(m3/s);
R——污泥回流比(%);
X——污泥浓度(mg/L);
Xr——二沉池排泥浓度(mg/L)。
设计中取Q0=0.579 m3/s,R=50%,
,
SVI——污泥容积指数,一般采用70-150;
r——系数,一般采用1.2。
设计中取SVI=100,r=1.2,得到Xr=1.2×104mg/L,X=4000mg/L。
经计算得到 V1=1563.3m3。应采用连续排泥方式。
6、沉淀池的进、出水管道设计:
进水管:流量应为设计流量+回流量,管径计算为900mm
出水管:管径计算为800mm
排泥管:管径为500mm
7、出水堰计算:
堰上负荷的校核。规定堰上负荷范围1.5-2.9L/m.s之间。
8、沉淀池总高度:
H=h1+h2+h3+h4+h5
式中:H——沉淀池总高度(m);
h1——沉淀池超高(m),一般采用0.3-0.5m;
h2——沉淀池有效水深(m);
h3——沉淀池缓冲层高度(m),一般采用0.3m;
h4——沉淀池底部圆锥体高度(m);
h5——沉淀池污泥区高度(m)。
设计中取h1=0.3m,h3=0.3m,h2=3.5m.
根据污泥部分容积过大及二沉池污泥的特点,采用机械刮吸泥机连续排泥,池底坡度为0.05。
h4=(r-r1)×i
式中:r——沉淀池半径(m);
r1——沉淀池进水竖井半径(m),一般采用1.0m;
i——沉淀池池底坡度。
设计中取r1=1.0m,i=0.05,得到h4=0.86m。
式中:V1——污泥部分所需容积(m3);
V2——沉淀池底部圆锥体容积(m3);
F——沉淀池表面积(m2)。
计算可得 =315.4m3,则h5=1.20m。
得到H=6.16m。
(七)、消毒接触池及其设计:
污水经过以上构筑物处理后,虽然水质得到了改善,细菌数量也大幅减少,但是细菌的绝对值依然十分客观,并有存在病原菌的可能,因此,污水在排放水体前,应进行消毒处理。
设计中采用平流式消毒接触池,消毒接触池设2组,每组3廊道。
1、消毒接触池容积:
V=Qt
式中: Q——单池污水设计流量(m3/s);
t——消毒接触时间(min),一般采用30min。
设计中取t=30min,得每组消毒接触池的容积为729m3。
2、消毒接触池表面积:
F=V/h2
式中:h2——消毒池有效水深,设计中取为2.5m。
设计中取h2=2.5m,得到F=291.6m2。
3、消毒接触池池长:
L′=F/B
式中:B——消毒池宽度(m),设计中取为5m。
设计中取B=5m,计算得 L=58.32m。每廊道长为19.44m,设计中取为20m。
校核长宽比:L′/B=11.7>10,合乎要求。
4、消毒接触池池高:
H=h1+h2
式中:h1——消毒池超高(m),一般采用0.3m;
设计中取h1=0.3m,计算得 H=2.8m。
5、进水部分:
每个消毒接触池的进水管管径D=800mm,v=1.0m/s。
6、混合:
采用管道混合的方式,加氯管线直接接入消毒接触池进水管,为增强混合效果,加氯点后接D=800mm的静态混合器。
(八)、污泥浓缩池及其设计:
污泥浓缩的对象是颗粒间的空隙水,浓缩的目的是在于缩小污泥的体积,便于后续污泥处理,常用污泥浓缩池分为竖流浓缩池和辐流浓缩池2种。二沉池排出的剩余污泥含水率高,污泥数量较大,需要进行浓缩处理;初沉污泥含水量较低,可以不采用浓缩处理。设计中一般采用浓缩池处理剩余活性污泥。浓缩前污泥含水率99%,浓缩后污泥含水率97%。
13、溢流堰:
浓缩池溢流出水经过溢流堰进入出水槽,然后汇入出水管排出。出水槽流量q=0.0015m3/s,设出水槽宽b=0.15m,水深0.05m,则水流速为0.2m/s,溢流堰周长:
c=π(D-2b)
计算得到c=15.86m。
溢流堰采用单侧90°三角形出水堰,三角堰顶宽0.16m,深0.08m,每格沉淀池有110个三角堰,三角堰流量q0为:
Q1=0.0015/110=0.0000136m3/s
h′=0.7q02/5
式中: q0——每个三角堰流量(m3/s);
h′——三角堰堰水深(m)。
计算得到h′=0.0079m。
三角堰后自由跌落0.10m,则出水堰水头损失为0.1079m
⑻ 污水管道水力计算的设计规定有哪些
管壁粗糙系数(n)-表2-2-7
设计充满度(h/D)(0.55-0.75)——表回2-2-8
最小设计流速(vm)(管道:0.6m/s,明渠:0.4m/s)
最大答设计流速(vx)(金属管道:10m/s,非金属:5m/s)
最小设计坡度(I)(街区内:0.004,街道下:0.003)
最小管径(街区内:200mm,街道下:300mm)
最大允许埋深(干燥土壤:7-8m)
最小覆土厚度(冰冻,动荷载,支管衔接)——P252
覆土厚度:
管道外壁顶部到地面的距离
埋设深度:
管道内壁底部到地面的距离
来源于问问我建筑网
⑼ 市政工程施工中自来水管和污水管怎样安置
参照《室外排水设计规范》来做:
第三章 排水管渠及其附属构筑物
第一节 一般规定
第3.1.1条 排水管渠系统应根据城市规划和建设情况统一布置,分期建设.排水管渠应按远期水量设计.
第3.1.2条 管渠平面位置和高程,应根据地形,道路建筑情况,土质,地下水位以及原有的和规划的地下设施,施工条件等因素综合考虑确定.
第3.1.3条 管渠及其附属构筑物,管道接口和基础的材料,应根据排水水质,水温,冰冻情况,断面尺寸,管内外所受压力,土质,地下水位,地下水侵蚀性和施工条件等因索进行选择,并应尽量就地取材.
第3.1.4条 输送腐蚀性污水的管渠必须采用耐腐蚀材料,其接口及附属构筑物必须采取相应的防腐蚀措施.
第3.1.5条 当输送易造成管内沉析的污水时,管渠形式和断面的确定,必须考虑维护检修的方便.
第3.1.6条 厂区内的生产污水,应根据其不同的回收,利用和处理方法设置专用的污水管道.经常受有害物质污染的场地的雨水,应经预理后接入相应的污水管道.
第3.1.7条 雨水管道,合流管道的设计,应尽量考虑自流排出.计算水体水位时,应同时考虑现有的和规划的水库等水利设施引起的水位变化情况.当受水体水位顶托时,应根据地区重要性和积水所造成的后果,设置潮门,闸门或泵站等设施.
第3.1.8条 设计雨水管渠时,可结合城市规划,考虑利用湖泊,池塘调蓄雨水.
第3.1.9条 污水管渠系统上应设置事故排出口.
第3.1.10条 雨水管道系统之间或合流管道系统之间,可根据需要设置连通管.必要时可在连通管处设置闸槽或闸门.连通管及附设闸井应考虑维护管理的方便.
第3.1.11条 设计污水管渠时,对每一独立系统或设置泵站的管道,宜在总出口处设置计量设施.
⑽ 海绵城市建设与“污水零直排区建设”
海绵城市建设 理念越来越深入人心,“小雨不积水、大雨不内涝、河道不黑臭、热岛有缓解”的目标已成为业内共识,这就要求排水工程建设者更新理念,紧紧抓住城镇发展过程中的高质量发展和高品质生活要求,满足人民对美好生活的向往,建设高标准、高质量的雨水系统和污水系统。
城镇排水工程是社会文明发展的重要载体,对于改善城市居民的生活环境起到决定性的作用。2012年,我国的城镇化率已达到52.6%,超过世界平均水平(52.5%),并以高于世界平均水平的速度(年均0.5%)快速推进。中国城镇化将进入“下半场”预计2030年我国的城镇化率将达到70%左右,新型城镇化发展给排水行业带来机遇也带来了挑战,应以生态文明建设的理念系统推进城镇化建设。
内涝防治 要求我们高标准建设雨水系统。气候变化致使暴雨频率和强度都有所改变,城镇化进程的加快加剧了暴雨内涝对城市的威胁。硬化屋顶地面的增加,致使雨水排水强度加大;规划中片面追求用地指标,侵占或缩窄了天然水体,雨水调蓄功能严重萎缩;城市建设者片面追求高水位、大水面,阻碍了雨水的自然调蓄和下泄。
黑臭水体治理要求我们高质量建设污水系统。“黑臭在水里,根源在岸上”,合流制 排水系统 的截流倍数偏低,造成溢流污染严重;分流制排水系统雨污混接严重,造成旱天污水直排和雨天受污染径流放江,很多城市水体逢雨必黑,黑臭河道反复治理。
在新时代海绵城市建设理念的指导下,市政雨水系统和污水系统如何高标准、高质量建设是给排水设计人员面对的新课题。海绵城市建设理念是雨水管理和污水治理中国智慧的结晶。海绵城市建设目标不能只依靠市政雨水系统实现,还需要建筑小区、绿地、道路广场和城市水系等多系统的共同参与。污水系统则应尽快推进厂网一体化建设,建管并举,提质增效,实现全收集、全处理,充分发挥污水收集处理系统的作用,把污染物有效输送至污水处理厂处理,提高污染物消减量。
1 建设高标准雨水和内涝防治系统
雨水和内涝防治是一项系统工程,涵盖从雨水径流的产生到末端排放的全过程控制,应包括源头减排、排水管渠、排涝除险等工程性措施和应急管理的非工程性措施,并应和防洪设施相衔接,而不仅仅指传统的排水管渠设施。
1.1 源头减排
源头减排设施一般由绿色屋顶、生物滞留设施、植草沟、调蓄设施和透水铺装等渗透、滞蓄和净化措施组成,主要应对低强度降雨的大概率事件,其设计应注重绿灰耦合,实现控制雨水径流产生、减排雨水径流污染、收集利用雨水和削减峰值流量。
源头减排设施的设计标准应根据年径流总量控制率确定,并应明确相应的设计降雨量。以上海为例,年径流总量控制率为70%、75%、80%时,根据近30年的统计数据所对应的设计降雨量分别为22.2 mm、26.7 mm和33.0 mm。根据年径流总量控制率对应的设计降雨量、径流控制面积和相应的径流系数,采用容积法计算得到需控制的径流体积,以此作为源头减排设施的设计规模。当降雨量小于规划确定的年径流总量控制要求时,源头减排设施应做到不直接向市政雨水管渠排放未经控制的雨水。
1.2 排水管渠
排水管渠设施一般由排水管道、沟渠、雨水调蓄设施和排水泵站等组成,主要应对短历时强降雨的大概率事件,其设计应考虑公众日常生活的便利,并满足较为频繁降雨事件的排水安全要求。
排水管渠的设计标准应根据雨水管渠设计重现期确定设计降雨强度。近几年,我国的雨水管渠设计重现期标准得到提高,《室外排水设计规范》(GB 50014)在2014年修订的时候,将原来“一般地区1~3年一遇、重要地区3~5年一遇”的规定,按不同的城镇类型(超大城市、特大城市、大城市、中等城市和小城市)、不同的城区类型(中心城区、非中心城区、中心城区的重要地区和中心城区地下通道和下沉式广场等)分别进行规定,比如超大城市和特大城市的中心城区要求3~5年一遇,中心城区的重要地区要求5~10年一遇,这一标准和欧盟标准基本吻合。同时各地应根据雨水管渠的设计重现期确定设计降雨强度,以便公众理解。以上海为例,中心城区和新城、其他地区、地下通道下沉式广场等的雨水管渠设计重现期标准分别是5年一遇、3年一遇和30年一遇,对应的小时设计降雨强度分别为58.1 mm/h、51.3 mm/h和82.2 mm/h。
雨水管渠一般按满管流设计,其传输能力是根据雨水管渠设计重现期下的设计降雨强度、汇水面积和径流系数,通过推理公式法或数学模型法计算流量确定。当汇水面积>2 km²时,考虑区域降雨和地面渗透性能的时空分布不均匀性和管网汇流过程等因素,应采用数学模型法确定雨水设计流量,并应校核内涝防治设计重现期下地面的积水深度等标准。
径流系数主要取决于土地利用情况、土壤和植被类型以及地面坡度。降雨特性(例如强度、历时)和前期降雨条件也对径流系数具有一定影响。因此进行内涝防治设计校核时,如采用推理公式法或者在数学模型中采用固定径流系数,应提高不同下垫面的径流系数,当设计重现期为20~30年时,径流系数提高10%~15%;当设计重现期为30~50年时,提高20%~25%;当设计重现期为50~100年时,提高30%~50%;当计算的径流系数>1时,应按1取值。
1.3 排涝除险
排涝除险设施主要应对长历时降雨的小概率事件,承担着在暴雨期间调蓄雨水径流、为超出源头减排设施和排水管渠设施承载能力的雨水径流提供行泄通道和最终出路等重要任务,是满足城镇内涝防治设计重现期标准的重要保障。
排涝除险设施的设计标准应根据内涝防治设计重现期确定设计降雨强度。排涝除险设施的建设,应充分利用自然蓄排水设施,充分发挥河道行泄能力和水库、洼地、湖泊、绿地等调蓄雨水的功能,合理确定排水出路。排涝除险设施的规模,应根据其类型(调蓄或排放),进行相应的水量或流量计算,且应和源头减排设施、排水管渠设施作为一个整体系统校核,满足内涝防治设计重现期的设计要求。根据内涝防治设计重现期校核地面积水排除能力时,应根据当地历史数据合理确定用于校核的降雨历时和该时段内的降雨量分布情况,有条件的地区应采用数学模型计算,计算中降雨历时应为长历时。发达国家一般根据服务面积,确定降雨历时,通常采用3~24 h。如校核结果不符合要求,应调整设计,包括放大管径、增设渗透设施、建设调蓄管道或调蓄池等。在设计内涝防治设计重现期下,雨水管渠按压力流计算,即雨水管渠应处于超载状态。
城镇内涝防治的主要目的是将降雨期间的地面积水控制在可接受的范围,因此满足内涝防治设计重现期的标准包括地面积水深度和最大允许退水时间标准。
地面积水深度标准有两点规定,一是居民住宅和工商业建筑物的底层不进水;二是道路中一条车道的积水深度≤15 cm。当路面积水深度>15 cm时,车道可能因机动车熄火而完全中断,标准要求能保证城镇道路不论宽窄,在内涝防治设计重现期下,至少有一车道能够通行。发达国家和我国部分城市已有类似的规定,如美国丹佛市规定:当降雨重现期为100年一遇时,非主干道路中央的积水深度不应超过30 cm,主干道路和高速公路中央不应有积水。上海市规定积水深度超过道路立缘石(立缘石一般高出路面10~20 cm)即为市政道路积水。
最大允许退水时间标准是指雨停后的地面积水的最大允许排干时间,因为道路积水对城市不同区域的影响不同,因此,可以根据不同的城区类型分别确定最大允许退水时间,而对于交通枢纽这样对道路积水特别敏感的区域,最大允许退水时间应采取措施进一步缩短。上海市是全国最先规定雨停后退水时间的,并从最初要求的≤2 h调整到≤1 h;天津市的排除积水实践经验为40~50 mm/h雨后1~3 h,60~70 mm/h雨后3~6 h;浙江省地方标准对积水时间进行了详细的规定,中心城区重要地区≤0.5 h,中心城区≤1 h,非中心城区2 h。
2 建设高质量污水与径流污染控制系统
改革开放40年,我国的城市建设日新月异,但城市排水系统得不到正常的建设和维护,城市管网系统雨污混接、破损淤积严重,造成污水管网的有效收集不够,统计数据表明,我国污水处理水量逐年增加,2017年全国污水处理量是2007年的3.2倍,但由于进水浓度降低,2017年COD削减量仅为2007年的2.7倍。
同时城市雨水径流污染没有得到有效控制,由于污水系统在设计的时候没有考虑到这部分水量,从而造成大量截流或调蓄收集的受污染雨水,最终无法输送到污水处理厂处理达标后排放,而是在厂前或污水提升过程中溢流排放,造成水环境污染。因此污水系统的规划和建设应与海绵城市建设中径流污染控制目标和要求接轨,将受污染的雨水径流,即截流的雨水输送和处理纳入其中。
2.1 应建设完全的污水收集系统
2010年作者就撰写文章提出要逐步消除雨污混接,分析了上海市排水系统雨污混接现象,将混接类型主要归纳为系统间混接、系统内管道混接、小区管道混接和住宅内部混接4类,还要加强管理,消除洗车排挡等污水直接进入雨水管道。随后国家地方的规范标准陆续关注由于设计不当造成的混接问题,并加以修编。国家标准《室外排水设计规范》(GB 50014)在2011年局部修订中,新增条文内容,强调“雨水管道系统和合流管道系统之间不应设置连通管道”,以避免由设计造成的系统间混接;国家标准《住宅设计规范》(GB 50096)在2011年全面修订时,新增规定“洗衣机设置在阳台上时,其排水不应排入雨水管”;上海市地方标准《住宅设计标准》(DGJ 08-20)在2013年全面修订时,也相应增加了规定“阳台雨水应排入污水系统并应采取防臭措施”。因此,2011年之后建设的大多数住宅建筑已能在设计阶段避免造成雨污混接。
但是,城镇排水系统的混接在很多已建成系统中仍然存在,同时建设周期或管理过程中的不合规操作也造成新的混接。目前城镇排水系统混接中的重灾区,包括管网河网混接、雨污系统混接和建筑小区混接。
(1)管网河网混接。主要指排水管网和河网之间的混接,大多是因合流制排水系统沿河截流工程设计不当,引起合流制系统排水管网和河网的混接,其结果是在雨季,当河水水位上涨时倒灌进入截流系统,致使上游的截流污水输送不畅而溢流入河,同时大量河水进入截流系统,造成污水处理厂进水浓度偏低。
(2)雨污系统混接。雨污系统之间的混接主要是由于目前许多地区合流制和分流制排水系统并存,部分系统之间仍存在将合流管道和分流制雨水管道相连的现象;还有不少城市的合流制排水系统和分流制排水系统合用一根污水干管,分流制位于合流制的上游,在雨季,当下游污水泵站由于后续污水系统流量限制或其他原因不能按设计水位运行时,污水截流管可能处于满管流状态,下游顶托造成上游泵站输送来的旱流污水从截流管进入截流井,进而溢流至雨水系统,实质上造成不同排水体制系统间的混接。
(3)建筑小区混接。建筑小区(包括企事业单位)的雨污混接是城镇雨污混接的重灾区,因为市政管网系统的责任主体还是相当明确,也开始开展大量的管网普查摸清底数的工作,而建筑小区的底数更难摸清。上海中心城区某区8个分流制排水系统,共查出583个混接点,混接水量13 825.14 m³/d,其中小区混接点273个,混接水量11 365.94 m³/d,个数占比46.91%,水量占比82.21%,而小区混接中,又以阳台污水的混接最为严重。
城镇排水系统混接问题是我国城市水环境治理必须面对的“顽疾”,行业主管部门和从业人员应充分认识到混接改造工作的重要性和艰巨性,从现场调查、工程建设、技术研发、标准制定、目标管理等各项工作着手,坚持不懈地推进各种混接改造目标的达成,配合对公众环保知识的宣传和环保意识的培养,消除排水系统的雨污混接现象,建设完全的污水收集系统,为城市水环境治理和污水系统提质增效提供支撑。
2.2 污水处理厂应对雨天流量的经验
许多国家无论合流制还是分流制排水系统,污水干管和污水处理厂的设计中除处理旱季流量之外,都预留部分雨季流量的处理能力,根据当地气候特点、污水系统收集范围、管网质量,雨季设计流量可以是旱季流量的3~8倍。
2.2.1 美国
美国鹿岛污水处理厂位于马萨诸塞州,其服务范围内有超过50%的区域为合流制排水系统,因此该污水处理厂进水流量随降雨量变化较为明显,详见图1。
为满足美国NPDES(国家污染物排放削减)许可证对污染物排放量为服务范围内的合流制溢流污染控制问题,该污水处理厂日均设计流量为137万m³/d(361×106加仑/d),雨季最大设计流量为52.6 m³/s(1 200 ×106加仑/d),而二级处理设计能力最高达到265万m³/d(700 ×106加仑/d),约为日均设计流量的2倍。由图1可知,鹿岛污水处理厂的二级处理能力基本能满足大多数降雨期间的入厂流量全量处理。
2.2.2 英国
英国为削减合流制区域的雨天溢流和分流制区域径流污染,确定了最大允许暴雨溢流(排放)量。对于合流制地区,要求污水设施足以应对旱季流量的昼夜峰值加上日降雨25 mm以下产生的额外流量,污水处理厂最大处理量和最大允许暴雨溢流排放量之间还存在6.5倍生活污水量的差值,需要进行调蓄。对于分流制地区,雨天径流污染控制的目标是,2倍于旱季污水流量(除去地下水入渗量)的径流不能直接放江,而应该通过截流、调蓄和处理后才排放。
2.2.3 日本
日本大阪市为削减合流制排水系统雨天溢流污染,在2002~2006年开始启动“合流制排水系统溢流污染控制紧急对策”,合流制排水系统雨天污染物排放标准,由最初的BOD5≤70 mg/L改为BOD5≤40 mg/L。采取的工程措施包括建设雨水调蓄池、调整雨天污水处理厂处理工艺和利用放水路调蓄雨水等措施。同时在合流污水溢流排放口增设过滤装置,减少固体杂质的排放。
雨季污水处理厂进水流量为旱流污水的3倍(3Q),传统处理工艺是3Q的流量经过初沉后,2Q的流量被排放,1Q的流量进入后续生化处理单元。大阪市采取的新措施是多点进水,1Q的流量进入生物处理前端,2Q的流量进入生物处理后段。
结果表明,采用该工艺,进水流量在1.48Q~4.62Q时,出水SS 和BOD5分别可达到9.3 mg/L和7.7 mg/L的控制目标。另外大阪市还拟将污水处理厂初沉池由平流式改为斜板沉淀池,从而减小处理合流污水所需沉淀池的容积,多余空地建设专门处理雨水的沉淀池。
因此在污水系统设计能力和污水处理厂工艺选择上,系统考虑雨季进入污水系统的受污染径流的雨水量,是削减合流制溢流污染和暴雨排江污染的关键措施。
2.3 旱季设计流量和雨季设计流量
我国现行《室外排水设计规范》在污水处理处理构筑物流量设计中明确规定合流制处理构筑物的提升泵站、格栅、沉砂池应按合流水量设计,但是没有明确提出雨季设计流量的概念,特别是二级处理系统,规定是按照旱流污水量设计,必要时考虑一定的合流水量,而大多数污水处理厂,为确保出水水质达标,一般在二级处理前就把超过设计流量的部分直接超越溢流了,因此,目前我国的污水系统基本没有应对雨天流量的能力。
为保障污水系统提高应对雨天流量的能力,切实提高合流制系统截流倍数,减少雨天溢流污染,有必要在污水系统旱季设计流量的基础上,提出雨季设计流量的概念。
显然,对于合流制系统,雨季设计流量就应该是截流后的合流污水量,而分流制污水系统的雨季设计流量,应在旱季设计流量的基础上,根据对径流污染控制设施的调查,增加相应的截流雨水量。
在设计过程中,应从污水管道、泵站、污水处理厂各构筑物和污泥处理系统考虑旱季设计流量和雨季设计流量的协调。比如,对于分流制污水管道,应按旱季设计流量进行设计,并按雨季设计流量校核,校核的时候可采用满管流;对于分流制污水泵站的设计流量,应按泵站进水总管的旱季设计流量确定,其总装机流量应按泵站进水总管的雨季设计流量确定;对于分流制雨水泵站,雨污分流不彻底、短时间难以改建或考虑径流污染控制的地区,雨水泵站中宜设置污水截流设施,输送至污水系统进行处理达标排放;对于污水处理厂污水处理构筑物,提升泵站、格栅、沉砂池和深度处理,均应按雨季设计流量计算,初次沉淀池和二级处理系统,应按旱季设计流量设计,雨季设计流量校核,管渠应按雨季设计流量计算;当二级处理系统不能满足要求的时候,也可参考国外的做法,在厂内增设调蓄设施,应对雨季设计流量;对于处理截流雨水的污水系统,其污泥处理处置设施的规模应统筹考虑相应的污泥增量,可在旱流污水量对应的污泥量上增加。
3 结语
排水工程是城镇居民生活和社会经济发展的生命线,是保障公众身体健康、水环境质量和水安全的重要基础设施,排水工程包括雨水系统和污水系统,基于海绵城市建设理念的排水工程设计需要进一步增强系统性、整体性和协同性,遵循从源头到末端的全过程管理和控制,雨水系统和污水系统相互配合、有效衔接,建设完善的合流制排水系统,通过截流、调蓄和处理等措施,提高截流能力并结合源头减排,控制溢流污染;建设完全的分流制排水系统,消除雨污混接,通过提升污水系统的收集和处理能力,实现对城镇所有用水过程产生的污染水和受污染雨水径流的全收集、全处理。实现保护水生态、改善水环境、保障水安全、提高水资源利用的目标,服务于新时代城镇发展的需要。
原标题:给水排水 |水业导航:基于海绵城市建设理念的排水工程设计