㈠ 城市污水处理常用方法都有哪些,城市污
城市污水治理的几种常用方法
活性污泥处理法
目前在城市生活污水中应用最多的就是所谓的活性污泥法,它有处理能力强,处理后水质好等优势。其大致组成包括由曝气池,沉淀池,污泥排放以及回流等系统。待处理的污水和活性污泥回流共同进入曝气池然后混合,然后在其中与空气接触使得含氧量增加,发生代谢反应。经过充分搅拌的混合液变为悬浮状态,所以其中的有机污染物和氧气能够与微生物接触发生反应。接下来进入的是沉淀池,原来的悬浮固体会在其中沉降而被隔离,所以从沉淀池流出的已经为净化水。沉淀池里的污泥一般都会回流,从而保证曝气池中的悬浮固体和微生物有一定的浓度。在曝气池里的反应会使微生物增殖,所以过多的微生物要排出沉淀池以维持整个系统的稳定性。除需要能够氧化和分解有机物外,活性污泥还必须有一定凝聚和沉降能力,以便可以使其从混合液中分离,进而在出口得到纯净的水。活性污泥法的缺点在于其基础建设的成本过高,不易实施。
生物膜处理法
所谓生物膜法,就是通过在一些固体物表面附着的微生物对污水中的有机污染物加以处理的方法。它和活性污泥处理方法发展时间基本一致。所谓的“生物膜”即是附着在固体表面的微生物形象叫法,一般是由非常密集的好氧菌,厌氧菌,原生动物和藻类等结合一起形成的生态系统。生物膜所附着的固体介质叫做载体或滤料,由此向外生物膜可以分成厌气层,好气层,附着以及运动水层。整个方法的基本运作过程为,先由生物膜吸附水层中的有机物,然后由好氧菌进行分解,再由厌氧菌进行厌气分解,运动水层通过流动不断更新生物膜,由此反复实现对污水的净化作用。
一般适用生物膜法的场合为中小规模城市废水的处理,所用的处理结构是生物滤池或生物转盘,在我国的南方一般使用生物滤池。由于材料和技术的不断革新,生物膜法技术近年来进步很大。因为生物膜法中微生物一般固定在填料上,所以构成的生态系统比较稳定,微生物生活和消耗的能量比活性污泥法中要小得多,其剩余的污泥也更少。生物膜法所拥有的高效率高,高耐冲击性、产泥量低以及运管便利性等优势使其在各种处理方法中竞争力极大。生物膜法的劣势在于成本较高且单位处理效率低。所以进一步降低成本,提高效率是今后生物膜法研究的主要方向。
氧化处理法
氧化处理法是当今被广泛使用的一种城市污水预处理方法,有较大的潜力。可根据其中氧化剂的种类和反应器类型对其分类为化学氧化法,催化氧化法以及光催化氧化法等。其中,化学氧化法的操作比较简单,但效果不够明显且运行成本较高,所以实际工作中应用不多。为实现处理效果的提高,降低成本的目标,目前找到了一些其他氧化技术。
在这些新方法中的其中一种就是光催化法。它的特点是所需设备简单,条件温和,氧化能力高并且处理效果彻底。在污水处理中受到广泛欢迎。
光催化反应就是通过光的作用发生的化学反应。反应过程中分子由于吸收特定波长的光波而转变为分子激发态,进而发生化学反应形成新物质,或者变成中间化学产物以促进热反应的进行。光化学反应所需的活化能来自于光,把太阳能的中的光能进行光电转化和光化学转化加以利用是目前非常热门的研究领域。
光催化氧化技术利用光激发氧化将O2、H2O2等氧化剂与光辐射相结合。所用光主要为紫外光,包括uv-H2O2、uv-O2等工艺,可以用于处理污水中CHCl3、CCl4、多氯联苯等难降解物质。另外,在有紫外光的Feton 体系中,紫外光与铁离子之间存在着协同效应,使H2O2分解产生羟基自由基的速率大大加快,促进有机物的氧化去除。
所谓光化学反应,就是只有在光的作用下才能进行的化学反应。该反应中分子吸收光能被激发到高能态,然后电子激发态分子进行化学反应。光化学反应的活化能来源于光子的能量。在太阳能利用中,光电转换以及光化学转换一直是光化学研究十分活跃的领域。80 年代初,开始研究光化学应用于环境保护,其中光化学降解治理污染尤受重视,包括无催化剂和有催化剂的光化学降解。前者多采用臭氧和过氧化氢等作为氧化剂,在紫外光的照射下使污染物氧化分解;后者又称光催化降解,一般可分为均相、多相两种类型。均相光催化降解主要以Fe2+或Fe3+及H2O2为介质,通过光助-芬顿(photo-Fenton)反应使污染物得到降解,此类反应能直接利用可见光;多相光催化降解就是在污染体系中投加一定量的光敏半导体材料,同时结合一定能量的光辐射,使光敏半导体在光的照射下激发产生电子空穴对,吸附在半导体上的溶解氧、水分子等与电子-空穴作用,产生·OH 等氧化性极强的自由基,再通过与污染物之间的羟基加合、取代、电子转移等使污染物全部或接近全部矿质化,最终生成CO2、H2O 及其它离子如NO3-、PO43-、S042-、Cl-等。与无催化剂的光化学降解相比,光催化降解在环境污染治理中的应用研究更为活跃。
氧化处理法目前由于低成本以及高效率的优势特点处理方式已经得到了广泛的关注。另外它在对污水进行深度处理和不易进行生物降解的有机废水处理等场合都有不错的前景,成为了国内外一项活跃的研究课题,很多人认为氧化法将在21 世纪成为废水处理的一项重要方法。
㈡ 回旋加速器适用于哪些领域
核物理学的发展与加速器有密切的关系。回旋加速器是圆形粒子加速器种类中的第一种,它是用相刘小型的仪器获得高速度和高能量的加速装置。
回旋加速器的原理与设想,是由美国物理学家劳伦斯1930年首先提出的。劳伦斯(Ernest Orland Law rence,1901~1958)是美国伯克利大学教授,很早就选定了核物理学作为自己的科研方问。当时,为了研究核物理,劳伦斯提出了一种使粒子作曲线运动并同时加速的方案。1929年初复的一天,正当他苦思如何利用低电压获得高能粒子之际,在伯克利分校图书馆中他看到了维德罗有关直线加速器的论文,他立即想到是否有可能改变加速粒子的共振方式,例如让正离子在磁场的作用下,在两个半圆形电极之间进行回旋运动,从而得到加速的方法。
1930年的春天,劳伦斯的设想第一次得到了检验的机会。他让他的研究生爱德勒夫森(Nels Edlefson)做了两个结构相当简陋的加速器模型。用一块现成的磁铁,装成一台玻璃真空室,真空室的直径只有10.16厘米,室中固定两块半圆形的中空腔体电极,在电极间加无线电频率的高电压,把氢离子注入后,居然显示出了使离子回旋加速的效果。
1931年春天,劳伦斯得到了国家科学研究委员会的第一笔资金,使得研究工作有了迅速进展。他又让利文斯顿(M.S.Livingston)做了一只微型回旋加速器,直径(指真空室)11.43厘米,在两D形电极上加不到1000电压,竟得到了8万伏的加速效果。很快地,回旋加速器的尺寸在加大,同时也进入到标准化设计与建造的时代。
回旋加速器不仅是核物理试验中的一种重要设备,而且在工业、医疗等方面有着广泛的用途。
㈢ 脉冲放电污水处理的机理是什么
从化学角度看,高压脉冲放电处理焦化废水的依据是等离子体的化学反应过程。等离子体空间富集的离子、电子、激发态的原子、分子和自由基,提供了极活泼的反应性物种。纳秒脉冲电晕放电所产生的非平衡等离子体,因为脉宽小,脉冲前沿上升时间短,其能量基本上不消耗在对产生自由基无用的离子加速迁移上,而是作用在自由电子上,使其具有形成高活性自由基所需的能量,促进焦化废水中的氰化物、酚等有害物质的激发裂解或电离。同时脉冲电晕放电产生的紫外线、臭氧等多种效应也会对有害物质起到降解作用。由于放电等离子体中存在大量高能电子(2~20eV)和臭氧,并不断辐射紫外线,这三种因素对废水协同作用产生大量的活性自由基,有如下反应:
焦化废水的pH=9.45,溶液中H较少而OH大量存在,通过反应式(1)-(6)在溶液中产生很多氧化能力极强的.OH和O3,能有效的氧化溶液中的污染物分子。
高频脉冲电处理焦化废水的工作原理水网博客——水业思想的集散地!3J7F(?xJU/[x
作为处理焦化废水的连续式电解氧化技术,该技术由于效果好、费用低和操作方便而受到格外青睐。电极氧化基本原理可分为2个部分,即直接氧化和间接氧化。
直接氧化作用通过两种途径在电极表面发生电催化降解,其一是与电极表面的羟基自由基作用,称为电化学燃烧过程;其二是被电极表面生成的过氧化物所氧化,称为电化学转化过程。电化学燃烧过程有利于水体中的有机物被彻底矿化为CO2和H2O,体现为溶液中的TOC和COD的有效降低。电化学转化过程可有效实现芳香族化合物的开环反应,但对小分子有机物的催化氧化能力较弱,对溶液中的TOC和COD的去除率较低。
直接氧化作用的原理是通过电化学作用在溶液中产生羟基自由基(·OH) ,由于·OH具有很高的氧化还原电位( E0 = 2180 V) ,具有很强的氧化活性,从而通过一系列的链式反应,破坏有机物结构,使有机物降解。直接氧化的电极反应式如下:
此外,还有间接氧化作用是指添加于废水中的Cl - (NaCl)在阳极放出电子而生成的初生态氯[Cl ] ,初生态氯[Cl ]很不稳定,具有很强的氧化能力,可以与任何有机物发生氧化反应,从而氧化分解废水中有机物,反应式如下:
经过上述反应生成了一系列的自由基,羟基自由基是最活跃的氧化剂之一,其氧化还原电位为:·OH+ H++ e H2O,φ0= 2.80V,在已知的氧化剂中仅次于F2。且具有较高的电负性或电子亲和能(569.3kJ),容易选择性地进攻高电子云密度点,·OH还具有加成作用,当有碳碳双键存在时,将发生加成反应。这些自由基具有强氧化性,
将电解槽与高频脉冲电源相连接构成电解体系,其进行的电解过程就是高频脉冲电解。电流从接通到断开的时间Ton为脉冲持续时间,也叫脉冲宽度,即电解的工作时间。电流从断开到接通的时间Toff为电解间歇时间或叫脉冲间歇。
脉冲周期为脉冲宽度和脉冲间歇之和,脉冲频率则是脉冲周期的倒数。设占空比为r,则r为导通时间(脉冲宽度)与脉冲周期之比:r= Ton /(Ton + Toff),通过改变占空比r的值,就可得到不同的节能效果。高频脉冲即不断地重复进行“供电—断电—供电”的高频率脉冲电解过程,使电解效率得到大幅度地提高。脉冲电解,通电时间小于电解处理总反应时间,铁的溶解量将少于直流电解时的溶解量。因此,脉冲电解与直流电解相比,由于施加脉冲信号,电极上的反应时断时续,有利于扩散、降低浓差极化,从而降低电耗。
电解槽内的电流是离子在电场作用下流动而形成的。在供电时间内,离子浓度会迅速降低;而在断电间隙时间内,离子浓度又会得到迅速恢复和补充。所以在脉冲供电方式下电流密度要比直流供电下的电流密度有所提高,这就使电解去污效果增强。
周期换向脉冲是在正向脉冲(阴极脉冲)后紧跟一个反向脉冲(阳极脉冲)。在电解过程中,如果施加周期换向的脉冲信号,既具备脉冲电解的特点,又由于两极均可溶,更有利于金属离子与胶体间的絮凝作用。同时两极极性的经常变化,对防止电极钝化也起到积极作用。这就是周期换向的脉冲电解新概念,在电镀领域已有应用,但在废水治理领域尚未见报道。脉冲电压通常在100~400V左右,相对直流供电的电压增大了不少。事实上,采用较高的电压,可以大大降低总电流强度和减少电解时间,从而提高电流效率,降低电耗、电解效果会更好。由于整个平均电耗降低,电流又不大,因此变压器不易发热,设备运行安全可靠。
㈣ 周琪的科研项目
1. 环境保护部国家水体污染控制与治理科技重大专项, 巢湖流域城市水污染控制及水环境治理技术研究与综合示范项目,6674.0万元,2008-2011,主持
2. 环境保护部国家水体污染控制与治理科技重大专项, 巢湖流域城市水污染治理技术集成与协同控污机制,401万元,2009-2011,主持
3. 污染控制与资源化研究国家重点实验室,自主研究课题, 城市污水处理物理化学作用与生物过程交互影响机制与调控方法,60万,2009-2011,主持
4. 环境保护部国家水体污染控制与治理科技重大专项, 巢湖流域城镇污水处理功能提升及污泥处理技术与示范课题,2468万,2008.8-2010.12,参加
5. 环境保护部国家水体污染控制与治理科技重大专项, 三峡库区中小城市污水处理厂优化运行调控技术研究与示范,1020万元,2008.8-2010.12,参加
6. 崇明村镇生活污水节能型生物生态联合处理技术与示范(2008DFA91000),中法国际 合作,104万元,2008.08-2011.08,主持
7. 中法合作项目,“崇明村镇生活污水节能型生物生态联合处理技术与示范”, 2007-2009,上海市科委国际合作项目,50万,参加
8. 大型污水处理厂节能减排技术工程示范,上海市科委,30万元,2008.01-2009.09,主持
9. 集成式分质供排水及资源化技术在上海世博会的应用研究(2007DFB90280德国),284万元,2008-2009,主持
10. 石油开采业生物破乳剂应用关键技术研究,上海市科委,100万元,2007-2009,主持
11. 黄浦江、苏州河受污染水体生态修复关键技术研究 ,科技攻关重大计划项目,250万2004,08-2006,12 .主持
12. 低氧膜生物反应器中利用丝状菌高效处理小城镇污水的研究,教育部重点项目2003-2004 .主持
13. 城市污水处理与资源化技术研究及工程示范 ,国家十五863计划子课题,国家科技部十五重大科技专项,1200万元2003-2005 .主持
14. 人工湿地去除面源中的氮磷 科技部中法项目2001年5万,主持
15. 暴雨径流氮磷污染人工湿地控制技术(2000-09),国家十五攻关 2000-2003 主持.
16. 高性能冷却系统研究,国家九五攻关 1997年 主持
17. 水解酸化-好氧处理苯酚丙酮废水试验研究,上海高桥化工厂 2000年 主持
18. 除磷脱氮菌胶团特性及物质传递过程研究,教育部骨干教师基金 2000-2001 主持.
19. 低氧脱氮高效除磷活性污泥的工艺研究,教育部科研基金 2000年 主持
20. 高速藻类氧化塘处理废水,国家科技部(中法合作)1998年 第一负责人
21. 杨浦区小河道治理技术研究,杨浦区河道管理所 1999年 第一负责人
22. 典型工业区混合废水厌氧好氧生物处理工艺研究与示范 ,国家九五攻关 1997年 参加
23. 超高负荷活性污泥系统,国家九五攻关 1997年 参加
24. 新型纤维床生物滤池处理有机废气研究,国家教育部归国留学人员基金 1998 主持
25. 新型纤维床生物滤池处理废气中苯的研究,美国俄亥俄州环境计划 1996 参加
26. 高能电子束和芬顿试剂用于印染污水脱色的研究,美国国家环保局1995 参加
27. 厌氧-好氧一体化处理城市污水的研究,上海市教委 1994 负责
28. 武进市城区环境规划研究,武进市政府 1995 负责
29. 发达地区城市化进程中的水环境研究,国家自然科学基金 1993 参加
30. 厌氧污泥的附着及颗粒化机理研究,国家青年自然科学基金 1991 参加
31. 新型澄清器处理饮用水及石油废水的研究,洛阳石化研究院 1987 负责
32. UBF反应器处理啤酒废水的研究,重庆市环保局 1986 参加
33.重庆市乡镇企业污染对策研究,重庆市环保局 1983 参加
㈤ 常用污水废气处理方式有哪些
污水和废气的处理是完全不同的处理方法,所以在这里我分开说明
污水的处理方法:
1、物理法:利用物理作用处理、分离和回收废水中的污染物。
例如沉淀法(重力分离法)除去水中相对密度大于1的悬浮物。
过滤法(滤网沙层活性碳)可除去水中的悬浮物。
蒸发法用于浓缩废水中不挥发性和可溶性物质。
另外还有离心分离法、汽浮(浮选)法、高梯度磁分离法等。
2、化学法:利用化学反应或物理化学作用处理回收可溶性废物或胶状物质。
例如中和法用于中和酸性或碱性废水。萃取法利用可溶性废物在两相作用中溶解度不同的“分配”,回收酚类和重金属等。
氧化还原法用来除去废水中还原性或氧化性污染物,杀灭天然水体中的病原菌。此外还有混凝法和化学沉淀法等。
3、物理化学法:吸附法、离子交换法、萃取法、膜析法、蒸发法。
4、生物法:利用微生物的生化作用处理废水中的有机污染物。
生物过滤法和活性污泥法来处理生活污水或有机生产废水,使有机物转化降解成无机盐而得到净化。此外还有生物塘法等。
5、污泥土地处理法:用于有机质处理。污水灌溉,慢速下渗,快速下渗。
不同的污水处理工艺所选用的原则不同,一般会根据污水处理单位水量,污染物、处理单位电耗,成本、占地面积、管理维护难易程度。
废气处理方法:
废气处理的方法有很多种,这里我就简单的列举几个比较常用的
1.冷凝回收法
冷凝回收法是把废气直接导入冷凝器或先经吸附吸收后,解析的浓缩废气导入冷凝器,冷凝液经分离可回收有价值的有机物的一种方法。
2.吸收法
吸收法可分为化学吸收及物理吸收,由于有机废气中含有大量的“三苯”气体,化学活性低,一般不能采用化学吸收。
3.直接燃烧法
直接燃烧法是利用燃气或燃油等辅助燃料燃烧放出的热量将混合气体加热到一定温度(700~800℃),驻留一定的时间(0.3~0.5秒),使可燃的有害物质进行高温分解变为无害物质的一种方法。
4.热力燃烧法
热力燃烧是指把废气温度提高到可燃气态污染物的温度,使其进行全氧化分解的过程。
5.催化燃烧法
催化燃烧是在催化剂的作用下,将废气中的有害可燃组分完全氧化为二氧化碳和水的过程。
6. 活性炭吸附法
活性炭吸附是将有机废气由排气风机送人吸附床,有机废气在吸附床被活性炭吸附剂吸附而使气体得到净化,净化后的气体排向大气即完成净化过程。
㈥ 光催化氧化一般放在水处理的哪一步进行
目前用于环境水处理领域的光催化剂主要种类有哪些深度处理常见的方法有以下几种。1.1活性炭吸附法与离子交换活性炭是一种多孔性物质,而且易于自动控制,对水量、水质、水温变化适应性强,因此活性炭吸附法是一种具有广阔应用前景的污水深度处理技术。活性炭对分子量在500~3000的有机物有十分明显的去除效果,去除率一般为70%~86.7%[1],可经济有效地去除嗅、色度、重金属、消毒副产物、氯化有机物、农药、放射性有机物等。常用的活性炭主要有粉末活性炭(PAC)、颗粒活性炭(GAC)和生物活性碳(BAC)三大类。近年来,国外对PAC的研究较多,已经深入到对各种具体污染物的吸附能力的研究。淄博市引黄供水有限公司根据水污染的程度,在水处理系统中,投加粉末活性炭去除水中的COD,过滤后水的色度能降底1~2度;臭味降低到0度[2]。GAC在国外水处理中应用较多,处理效果也较稳定,美国环保署(USEPA)饮用水标准的64项有机物指标中,有51项将GAC列为最有效技术[3]。GAC处理工艺的缺点是基建和运行费用较高,且容易产生亚硝酸盐等致癌物,突发性污染适应性差。如何进一步降低基建投资和运行费用,降低活性炭再生成本将成为今后的研究重点。BAC可以发挥生化和物化处理的协同作用,从而延长活性炭的工作周期,大大提高处理效率,改善出水水质。不足之处在于活性炭微孔极易被阻塞、进水水质的pH适用范围窄、抗冲击负荷差等。目前,欧洲应用BAC技术的水厂已发展到70个以上,应用最广泛的是对水进行深度处理[4]。抚顺石化分公司石油三厂采用BAC技术,既节省了新鲜水的补充量,减少污水排放量,减轻水体污染,降低生产成本,还体现了经济效益和社会效益的统一[5]。今后的研究重点是降低投资成本和增加各种预处理措施与BAC联用,提高处理效果。1.2膜分离法膜分离技术是以高分子分离膜为代表的一种新型的流体分离单元操作技术[6,7]。它的最大特点是分离过程中不伴随有相的变化,仅靠一定的压力作为驱动力就能获得很高的分离效果,是一种非常节省能源的分离技术。微滤可以除去细菌、病毒和寄生生物等,还可以降低水中的磷酸盐含量。天津开发区污水处理厂采用微滤膜对SBR二级出水进行深度处理,满足了景观、冲洗路面和冲厕等市政杂用和生活杂用的需求[8]。超滤用于去除大分子,对二级出水的COD和BOD去除率大于50%。北京市高碑店污水处理厂采用超滤法对二级出水进行深度处理,产水水质达到生活杂用水标准,回用污水用于洗车,每年可节约用水4700m3[9]。反渗透用于降低矿化度和去除总溶解固体,对二级出水的脱盐率达到90%以上,COD和BOD的去除率在85%左右,细菌去除率90%以上[10]。缅甸某电厂采用反渗透膜和电除盐联用技术,用于锅炉补给水。经反渗透处理的水,能去除绝大部分的无机盐、有机物和微生物[11]。纳滤介于反渗透和超滤之间,其操作压力通常为0.5~1.0MPa,纳滤膜的一个显著特点是具有离子选择性,它对二价离子的去除率高达95%以上,一价离子的去除率较低,为40%~80%[12]。潘巧明等人采用膜生物反应器-纳滤膜集成技术处理糖蜜制酒精废水取得了较好结果,出水COD小于100mg/L,废水回用率大于80%[13]。我国的膜技术在深度处理领域的应用与世界先进水平尚有较大差距。今后的研究重点是开发、制造高强度、长寿命、抗污染、高通量的膜材料,着重解决膜污染、浓差极化及清洗等关键问题。1.3高级氧化法工业生产中排放的高浓度有机污染物和有毒有害污染物,种类多、危害大,有些污染物难以生物降解且对生化反应有抑制和毒害作用。而高级氧化法在反应中产生活性极强的自由基(如•OH等),使难降解有机污染物转变成易降解小分子物质,甚至直接生成CO2和H2O,达到无害化目的。1.3.1湿式氧化法湿式氧化法(WAO)是在高温(150~350℃)、高压(0.5~20MPa)下利用O2或空气作为氧化剂,氧化水中的有机物或无机物,达到去除污染物的目的,其最终产物是CO2和H2O[14]。福建炼油化工有限公司于2002年引进了WAO工艺,彻底解决了碱渣的后续治理和恶臭污染问题,而且运行成本低,氧化效率高[15]。1.3.2湿式催化氧化法湿式催化氧化法(CWAO)是在传统的湿式氧化处理工艺中加入适宜的催化剂使氧化反应能在更温和的条件下和更短的时间内完成,也因此可减轻设备腐蚀、降低运行费用[16,17]。目前,建于昆明市的一套连续流动型CWAO工业实验装置,已经体现出了较好的经济性[18]。湿式催化氧化法的催化剂一般分为金属盐、氧化物和复合氧化物3类。目前,考虑经济性,应用最多的催化剂是过渡金属氧化物如Cu、Fe、Ni、Co、Mn等及其盐类。采用固体催化剂还可避免催化剂的流失、二次污染的产生及资金的浪费。1.3.3超临界水氧化法超临界水氧化法把温度和压力升高到水的临界点以上,该状态的水就称为超临界水。在此状态下水的密度、介电常数、粘度、扩散系数、电导率和溶剂化学性能都不同于普通水。较高的反应温度(400~600℃)和压力也使反应速率加快,可以在几秒钟内对有机物达到很高的破坏效率。美国德克萨斯州哈灵顿首次大规模应用超临界水氧化法处理污泥,日处理量达9.8t。系统运行证明其COD的去除率达到99.9%以上,污泥中的有机成分全部转化为CO2、H2O以及其他无害物质,且运行成本较低[19]。1.3.4光化学催化氧化法目前研究较多的光化学催化氧化法主要分为Fenton试剂法、类Fenton试剂法和以TiO2为主体的氧化法。Fenton试剂法由Fenton在20世纪发现,如今作为废水处理领域中有意义的研究方法重新被重视起来。Fenton试剂依靠H2O2和Fe2+盐生成•OH,对于废水处理来说,这种反应物是一个非常有吸引力的氧化体系,因为铁是很丰富且无毒的元素,而且H2O2也很容易操作,对环境也是安全的[20]。Fenton试剂能够破坏废水中诸如苯酚和除草剂等有毒化合物。目前国内对于Fenton试剂用于印染废水处理方面的研究很多,结果证明Fenton试剂对于印染废水的脱色效果非常好。另外,国内外的研究还证明,用Fenton试剂可有效地处理含油、醇、苯系物、硝基苯及酚等物质的废水。类Fenton试剂法具有设备简单、反应条件温和、操作方便等优点,在处理有毒有害难生物降解有机废水中极具应用潜力。该法实际应用的主要问题是处理费用高,只适用于低浓度、少量废水的处理。将其作为难降解有机废水的预处理或深度处理方法,再与其他处理方法(如生物法、混凝法等)联用,则可以更好地降低废水处理成本、提高处理效率,并拓宽该技术的应用范围。光催化法是利用光照某些具有能带结构的半导体光催化剂如TiO2、ZnO、CdS、WO3等诱发强氧化自由基•OH,使许多难以实现的化学反应能在常规条件下进行。锐钛矿中形成的TiO2具有稳定性高、性能优良和成本低等特征。在全世界范围内开展的最新研究是获得改良的(掺入其他成分)TiO2,改良后的TiO2具有更宽的吸收谱线和更高的量子产生率。1.3.5电化学氧化法电化学氧化又称电化学燃烧,是环境电化学的一个分支。其基本原理是在电极表面的电催化作用下或在由电场作用而产生的自由基作用下使有机物氧化。除可将有机物彻底氧化为CO2和H2O外,电化学氧化还可作为生物处理的预处理工艺,将非生物相容性的物质经电化学转化后变为生物相容性物质。这种方法具有能量利用率高,低温下也可进行;设备相对较为简单,操作费用低,易于自动控制;无二次污染等特点。1.3.6超声辐射降解法超声辐射降解法主要源于液体在超声波辐射下产生空化气泡,它能吸收声能并在极短时间内崩溃释放能量,在其周围极小的空间范围内产生1900~5200K的高温和超过50MPa的高压。进入空化气泡的水分子可发生分解反应产生高氧化活性的•OH,诱发有机物降解;此外,在空化气泡表层的水分子则可以形成超临界水,有利于化学反应速度的提高。超声波对含卤化物的脱卤、氧化效果显著,氯代苯酚、氯苯、CH2Cl2、CHCl3、CCl4等含氯有机物最终的降解产物为HCl、H2O、CO、CO2等。超声降解对硝基化合物的脱硝基也很有效。添加O3、H2O2、Fenton试剂等氧化剂将进一步增强超声降解效果。超声与其他氧化法的组合是目前的研究热点,如US/O3、US/H2O2、US/Fenton、US/光化学法。目前,超声辐射降解水体污染物的研究仍处于试验探索阶段。1.3.7辐射法辐射法是利用高能射线(γ、χ射线)和电子束等对化合物的破坏作用所开发的污水辐射净化法。一般认为辐射技术处理有机废水的反应机理是由于水在高能辐射的作用下产生•OH、H2O2、•HO2等高活性粒子,再由这些高活性粒子诱发反应,使有害物质降解。辐射法对有机物的处理效率高、操作简便。该技术存在的主要难题是用于产生高能粒子的装置昂贵、技术要求高,而且该法的能耗大、能量利用率较低;此外为避免辐射对人体的危害,还需要特殊的保护措施。资料可登录易净水网查看。因此该法要投入运行,还需进行大量的研究探索工作。1.4臭氧法臭氧具有极强的氧化性,对许多有机物或官能团发生反应,有效地改善水质。臭氧能氧化分解水中各种杂质所造成的色、嗅,其脱色效果比活性炭好;还能降低出水浊度,起到良好的絮凝作用,提高过滤滤速或者延长过滤周期。目前,由于国内的臭氧发生技术和工艺比较落后,所以运行费用过高,推广有难度。
㈦ 环境扫描的三种主要模式
随着社会科学技术的不断发展进步,微区信息已经成为了现代物质信息研究的重要组成部分,环境扫描电子显微镜是近年发展起来的新型扫描电镜。它主要用于各种样品的表面形貌观察和成分分析,具有对试样必须干燥、洁净、导电的要求,广泛地应用于生命科学、医学、材料学等诸多学科。本文主要为大家介绍一下环境扫描电子显微镜的工作原理及应用范围。
图7水稻叶片表面腊质(野生型)(Bar=5μm) 图8水稻叶片表面腊质(突变体)(Bar=5μm)
㈧ 城市污水处理中深度处理有哪些工艺
深度处理常见的方法有以下几种。
1.1 活性炭吸附法与离子交换
活性炭是一种多孔性物质,而且易于自动控制,对水量、水质、水温变化适应性强,因此活性炭吸附法是一种具有广阔应用前景的污水深度处理技术。活性炭对分子量在500~3 000的有机物有十分明显的去除效果,去除率一般为70%~86.7%[1],可经济有效地去除嗅、色度、重金属、消毒副产物、氯化有机物、农药、放射性有机物等。
常用的活性炭主要有粉末活性炭(PAC)、颗粒活性炭(GAC)和生物活性碳(BAC)三大类。近年来,国外对PAC的研究较多,已经深入到对各种具体污染物的吸附能力的研究。淄博市引黄供水有限公司根据水污染的程度,在水处理系统中,投加粉末活性炭去除水中的COD,过滤后水的色度能降底1~2度;臭味降低到0度[2]。GAC在国外水处理中应用较多,处理效果也较稳定,美国环保署(USEPA)饮用水标准的64项有机物指标中,有51项将GAC列为最有效技术[3]。
GAC处理工艺的缺点是基建和运行费用较高,且容易产生亚硝酸盐等致癌物,突发性污染适应性差。如何进一步降低基建投资和运行费用,降低活性炭再生成本将成为今后的研究重点。BAC可以发挥生化和物化处理的协同作用,从而延长活性炭的工作周期,大大提高处理效率,改善出水水质。不足之处在于活性炭微孔极易被阻塞、进水水质的pH 适用范围窄、抗冲击负荷差等。目前,欧洲应用BAC技术的水厂已发展到70个以上,应用最广泛的是对水进行深度处理[4]。抚顺石化分公司石油三厂采用BAC技术,既节省了新鲜水的补充量,减少污水排放量,减轻水体污染,降低生产成本,还体现了经济效益和社会效益的统一[5]。今后的研究重点是降低投资成本和增加各种预处理措施与BAC联用,提高处理效果。
1.2 膜分离法
膜分离技术是以高分子分离膜为代表的一种新型的流体分离单元操作技术[6,7]。它的最大特点是分离过程中不伴随有相的变化,仅靠一定的压力作为驱动力就能获得很高的分离效果,是一种非常节省能源的分离技术。
微滤可以除去细菌、病毒和寄生生物等,还可以降低水中的磷酸盐含量。天津开发区污水处理厂采用微滤膜对SBR二级出水进行深度处理, 满足了景观、冲洗路面和冲厕等市政杂用和生活杂用的需求[8]。
超滤用于去除大分子,对二级出水的COD和BOD去除率大于50%。北京市高碑店污水处理厂采用超滤法对二级出水进行深度处理,产水水质达到生活杂用水标准,回用污水用于洗车,每年可节约用水4 700 m3[9]。
反渗透用于降低矿化度和去除总溶解固体,对二级出水的脱盐率达到90%以上,COD和BOD的去除率在85%左右,细菌去除率90%以上[10]。缅甸某电厂采用反渗透膜和电除盐联用技术,用于锅炉补给水。经反渗透处理的水,能去除绝大部分的无机盐、有机物和微生物[11]。
纳滤介于反渗透和超滤之间,其操作压力通常为0.5~1.0 MPa,纳滤膜的一个显著特点是具有离子选择性,它对二价离子的去除率高达95%以上,一价离子的去除率较低,为40%~80%[12]。潘巧明等人采用膜生物反应器-纳滤膜集成技术处理糖蜜制酒精废水取得了较好结果,出水COD小于100 mg/L,废水回用率大于80%[13]。
我国的膜技术在深度处理领域的应用与世界先进水平尚有较大差距。今后的研究重点是开发、制造高强度、长寿命、抗污染、高通量的膜材料,着重解决膜污染、浓差极化及清洗等关键问题。
1.3 高级氧化法
工业生产中排放的高浓度有机污染物和有毒有害污染物,种类多、危害大,有些污染物难以生物降解且对生化反应有抑制和毒害作用。而高级氧化法在反应中产生活性极强的自由基(如•OH等),使难降解有机污染物转变成易降解小分子物质,甚至直接生成CO2和H2O,达到无害化目的。
1.3.1 湿式氧化法
湿式氧化法(WAO)是在高温(150~350 ℃)、高压(0.5~20 MPa)下利用O2或空气作为氧化剂,氧化水中的有机物或无机物,达到去除污染物的目的,其最终产物是CO2和H2O[14]。福建炼油化工有限公司于2002年引进了WAO工艺,彻底解决了碱渣的后续治理和恶臭污染问题,而且运行成本低,氧化效率高[15]。
1.3.2 湿式催化氧化法
湿式催化氧化法(CWAO)是在传统的湿式氧化处理工艺中加入适宜的催化剂使氧化反应能在更温和的条件下和更短的时间内完成,也因此可减轻设备腐蚀、降低运行费用[16,17]。目前,建于昆明市的一套连续流动型CWAO工业实验装置,已经体现出了较好的经济性[18]。
湿式催化氧化法的催化剂一般分为金属盐、氧化物和复合氧化物3类。目前,考虑经济性,应用最多的催化剂是过渡金属氧化物如Cu、Fe、Ni、Co、Mn等及其盐类。采用固体催化剂还可避免催化剂的流失、二次污染的产生及资金的浪费。
1.3.3 超临界水氧化法
超临界水氧化法把温度和压力升高到水的临界点以上,该状态的水就称为超临界水。在此状态下水的密度、介电常数、粘度、扩散系数、电导率和溶剂化学性能都不同于普通水。较高的反应温度(400~600 ℃)和压力也使反应速率加快,可以在几秒钟内对有机物达到很高的破坏效率。
美国德克萨斯州哈灵顿首次大规模应用超临界水氧化法处理污泥,日处理量达9.8 t。系统运行证明其COD的去除率达到99.9%以上,污泥中的有机成分全部转化为CO2、H2O以及其他无害物质,且运行成本较低[19]。
1.3.4 光化学催化氧化法
目前研究较多的光化学催化氧化法主要分为Fenton试剂法、类Fenton试剂法和以TiO2为主体的氧化法。
Fenton试剂法由Fenton在20世纪发现,如今作为废水处理领域中有意义的研究方法重新被重视起来。Fenton试剂依靠H2O2和Fe2+盐生成•OH,对于废水处理来说,这种反应物是一个非常有吸引力的氧化体系,因为铁是很丰富且无毒的元素,而且H2O2也很容易操作,对环境也是安全的[20]。Fenton试剂能够破坏废水中诸如苯酚和除草剂等有毒化合物。目前国内对于Fenton试剂用于印染废水处理方面的研究很多,结果证明Fenton 试剂对于印染废水的脱色效果非常好。另外,国内外的研究还证明,用Fenton试剂可有效地处理含油、醇、苯系物、硝基苯及酚等物质的废水。
类Fenton试剂法具有设备简单、反应条件温和、操作方便等优点,在处理有毒有害难生物降解有机废水中极具应用潜力。该法实际应用的主要问题是处理费用高,只适用于低浓度、少量废水的处理。将其作为难降解有机废水的预处理或深度处理方法,再与其他处理方法(如生物法、混凝法等)联用,则可以更好地降低废水处理成本、提高处理效率,并拓宽该技术的应用范围。
光催化法是利用光照某些具有能带结构的半导体光催化剂如TiO2、ZnO、CdS、WO3等诱发强氧化自由基•OH,使许多难以实现的化学反应能在常规条件下进行。锐钛矿中形成的TiO2具有稳定性高、性能优良和成本低等特征。在全世界范围内开展的最新研究是获得改良的(掺入其他成分)TiO2,改良后的TiO2具有更宽的吸收谱线和更高的量子产生率。
1.3.5 电化学氧化法
电化学氧化又称电化学燃烧,是环境电化学的一个分支。其基本原理是在电极表面的电催化作用下或在由电场作用而产生的自由基作用下使有机物氧化。除可将有机物彻底氧化为CO2和H2O外,电化学氧化还可作为生物处理的预处理工艺,将非生物相容性的物质经电化学转化后变为生物相容性物质。这种方法具有能量利用率高,低温下也可进行;设备相对较为简单,操作费用低,易于自动控制;无二次污染等特点。
1.3.6 超声辐射降解法
超声辐射降解法主要源于液体在超声波辐射下产生空化气泡,它能吸收声能并在极短时间内崩溃释放能量,在其周围极小的空间范围内产生1 900~5 200 K的高温和超过50 MPa的高压。进入空化气泡的水分子可发生分解反应产生高氧化活性的•OH,诱发有机物降解;此外,在空化气泡表层的水分子则可以形成超临界水,有利于化学反应速度的提高。
超声波对含卤化物的脱卤、氧化效果显著,氯代苯酚、氯苯、CH2Cl2、CHCl3、CCl4等含氯有机物最终的降解产物为HCl、H2O、CO、CO2等。超声降解对硝基化合物的脱硝基也很有效。添加O3、H2O2、Fenton试剂等氧化剂将进一步增强超声降解效果。超声与其他氧化法的组合是目前的研究热点,如US/O3、US/H2O2、US/Fenton、US/光化学法。目前,超声辐射降解水体污染物的研究仍处于试验探索阶段。
1.3.7 辐射法
辐射法是利用高能射线(γ、χ射线)和电子束等对化合物的破坏作用所开发的污水辐射净化法。一般认为辐射技术处理有机废水的反应机理是由于水在高能辐射的作用下产生•OH、H2O2、•HO2等高活性粒子,再由这些高活性粒子诱发反应,使有害物质降解。
辐射法对有机物的处理效率高、操作简便。该技术存在的主要难题是用于产生高能粒子的装置昂贵、技术要求高,而且该法的能耗大、能量利用率较低;此外为避免辐射对人体的危害,还需要特殊的保护措施。更多资料可登录易净水网查看。因此该法要投入运行,还需进行大量的研究探索工作。
1.4 臭氧法
臭氧具有极强的氧化性,对许多有机物或官能团发生反应,有效地改善水质。臭氧能氧化分解水中各种杂质所造成的色、嗅,其脱色效果比活性炭好;还能降低出水浊度,起到良好的絮凝作用,提高过滤滤速或者延长过滤周期。目前,由于国内的臭氧发生技术和工艺比较落后,所以运行费用过高,推广有难度。
㈨ 污水处理厂除臭的方式有哪些其运行成本又如何
1.污水处理厂气态污染物的特征及来源
污水处理厂的气态污染物以挥发性有机物以及硫化氢、甲硫醇、氨等恶臭物质为主,臭气的扩散对室内外空气环境影响严重,直接影响到工人的身体健康和工作效率,并对周围居民的生活产生影响。
根据污水处理的过程,这些臭气产生源可分为污水处理系统和污泥处理系统。污水处理系统中的臭气源主要分布在进水头部、预处理、初级处理及滤池反冲洗液、污泥处理上清液等,曝气池的搅拌和充氧也会产生部分臭气。污泥处理系统中的臭气来源主要分布在污泥浓缩、厌氧消化后的污泥脱水和污泥堆放、外运过程。主要臭气产生源、产生原因及其相对污染程度详见表1。
表1 污水处理中的臭气源
根据以上技术、经济比较,确定污水处理厂的除臭方法采用高能离子法,其除臭设计的换气次数为脱水机房 8次/小时。
4. 结论
综上所述,几种除臭方法各有特点,而利用H2O2和高能离子脱臭则是以后及未来发展的主要方向。在利用各自的优点基础上,加以改进、优化,达到造福于民的目的。