导航:首页 > 废水知识 > 合成氨终端污水回用

合成氨终端污水回用

发布时间:2022-02-17 00:50:03

Ⅰ 合成氨生产有什么气体,废水,固体污染物产生

合成氨生产主要的污染物有

污水:含氰污水,含氨污水,含硫污水。

废气:含硫化氢气体,造气吹风气,一氧化碳气体,二氧化碳气体

固体废物:煤灰,煤渣,铜液渣。


合成氨指由氮和氢在高温高压和催化剂存在下直接合成的氨,为一种基本无机化工流程。现代化学工业中,氨是化肥工业和基本有机化工的主要原料。


合成氨工业在20世纪初期形成,开始用氨作火炸药工业的原料,为战争服务,第一次世界大战结束后,转向为农业、工业服务。随着科学技术的发展,对氨的需要量日益增长。

主要用途

氨是重要的无机化工产品之一,在国民经济中占有重要地位,其中约有80%氨用来生产化学肥料,20%为其它化工产品的原料。氨主要用于制造氮肥和复合肥料,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。氨作为工业原料和氨化饲料,用量约占世界产量的1/2。


硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料。


液氨常用作制冷剂,贮运商品氨中有一部分是以液态由制造厂运往外地。


此外,为保证制造厂内合成氨和氨加工车间之间的供需平衡,防止因短期事故而停产,需设置液氨库。液氨库根据容量大小不同,有不冷冻、半冷冻和全冷冻三种类型。液氨的运输方式有海运、驳船运、管道运、槽车运、卡车运。

Ⅱ 山西省高炉和铸造是两高吗

摘要 山西省是能源重化工基地,高能耗和高污染的现实严峻使环保与节能减排任务十分艰巨。为了解山西省“两高”企业节能减排实施情况及存在的问题,提供切实可行的对策建议,近期国家统计局山西调查总队对山西省太原、大同、长治、晋中、临汾、吕梁、朔州、运城、忻州等9个市的38家高能耗、高污染企业转型发展情况进行了调研,这些企业主要分布于煤炭(洗选)、炼焦、化工、电力、钢铁、铸造、建材、陶瓷等行业。调查结果显示,企业节能减排取得了积极成效,但攻坚克难还需加大政策扶持力度。

Ⅲ 国内大型环保企业如何处理煤化工废水

我国近年来兴起的煤化工产业大多分布子在西北地区,水资源少,而煤化工又是水资源消耗量和废水产生量都相当大的产业,因此,废
以下为大家分享神华包头煤制烯烃、神华鄂尔多斯煤直接液化、陕煤化集团蒲城
项目名称:云天化集团呼伦贝尔金新化工有限公司煤化工水系统整体解决方案
关键词:煤化工领域水系统整体解决方案典范
项目简介
呼伦贝尔金新化工有限公司是云天化集团下属分公司。该项目位于呼伦贝尔大草原深处,当地政府要求此类化工项目的环保设施均需达到“零排放”的水准。同时此项目是亚洲首个采用BGL炉(BritishGas-Lurgi英国燃气-鲁奇炉)煤制气生产合成氨、尿素的项目,生产过程中产生的废水成分复杂、污染程度高、处理难度大。此项目也成为国内煤化工领域水系统整体解决方案的典范。
项目规模
煤气水:80m3/h污水:100m3/h
回用水:500m3/h除盐水:540m3/h
冷凝液:100m3/h
主要工艺
煤气水:除油+水解酸化+SBR+混凝沉淀+BAF+机械搅拌澄清池+砂滤
污水:气浮+A/O
除盐水:原水换热+UF+RO+混床
冷凝水:换热+除铁过滤器+混床
回用水:澄清器+多介质过滤+超滤+一级反渗透+浓水反渗透
博天环境集团
技术亮点
1、煤气化废水含大量油类,含量高达500mg/L,以重油、轻油、乳化油等形式存在,项目中设置隔油和气浮单元去除油类,其中气浮采用纳米气泡技术,纳米级微小气泡直径30-500nm,与传统溶气气浮相比,气泡数量更多,停留时间更长,气泡的利用率显著提升,因此大大提高了除油效果和处理效率。
2、煤气化废水特性为高COD、高酚、高盐类,B/C比值低,含大量难降解物质,采用水解酸化工艺,不产甲烷,利用水解酸化池中水解和产酸微生物,将污水在后续的生化处理单元比较少的能耗,在较短的停留时间内得到处理。
3、煤气废水高氨氮,设置SBR可同时实现脱氮除碳的目的。
4、双膜法在除盐水和回用水处理工艺上的成熟应用,可有效降低吨水酸碱消耗量,且操作方便。运行三年以后,目前的系统脱盐率仍可达到98%。
项目名称:陕煤化集团蒲城清洁能源化工有限责任公司水处理装置EPC项目
关键词:新型煤化工领域合同额最大水处理EPC项目
项目简介
该项目位于陕西省渭南市蒲城县,采用的是德士古气化炉和大连化物所的DMTO二代烯烃制甲醇技术。因此废水主要以气化废水及DMTO装置排水为主,具有高氨氮、高硬度的特点。博天环境承接了该公司年产180万吨甲醇、70万吨烯烃项目的污水装置、回用水装置和脱盐水装置,水处理EPC合同总额达到5亿零900万元。
项目规模
污水:1300m3/h回用水:2400m3/h
浓水处理系统:600m3/h
脱盐水:一级脱盐水1600m3/h
工艺凝液:600m3/h透平凝液:1200m3/h
主要工艺
污水:调节+混凝+沉淀+SBR
回用水:BAF+澄清+活性砂滤+双膜系统+浓水RO
脱盐水:UF+两级RO+混床
浓水处理系统:异相催化氧化
工艺凝液:过滤+阳床+混床
透平凝液:过滤+混床
技术亮点
1、污水系统将多级串联技术与SBR工艺相结合,将SBR反应工序以时间分隔为多次交替出现的缺氧、好氧转换阶段,这种环境下丝状菌导致的污泥膨胀会被限制,污泥沉降率就会提高;同时,分隔出的各个反应段时长与微生物活性相契合,充分利用快速反硝化阶段,创造良好的生物环境,促使硝化与反硝化反应彻底的进行,提高有机物去除效率,实现高氨氮污水污染物的达标处理。
2、浓水采用异相催化氧化处理技术,所用高活性异相催化填料与反应生成的Fe3+生成FeOOH异相结晶体,催化生成更多羟基自由基,具有极强的氧化能力,减少药剂投加量和污泥生成量。

Ⅳ 冰膨胀做功能量的转化

还是内能。水结构较特殊(氢键的排列),水降温时,内能不是全部作为热放出,还有一部分转化为机械能。

Ⅳ 合成氨工艺冷凝液及甲醇废水汽提回用应注意哪些事项对锅炉运行会造成哪些影响

1.注意汽提塔的液位控制,防止蒸汽带液到转化炉,造成温度降低,反应停止或催化剂受损2.同时也要防止空液,蒸汽进入脱盐水单元引发事故3.气体质量的控制,气体蒸汽流量和压力要保证,尽可能的把工艺冷凝液中的杂质气体干净

Ⅵ 目前有几种处理工厂废水的方法

1.电解法:利用电解槽中的电化学反应,处理废水中的各类污染物。工业废水中的溶解性污染物可通过电解中的氧化还原反应,形成沉淀或形成气体溢出。电解法包括电解氧化还原、电解气浮和电解凝聚,主要用于处理含铬及含氰废水。
2.化学沉淀法:向废水中投加可溶性化学药剂(即沉淀剂),与水中呈离子状态的无机污染物起化学反应,生成不溶于水或难溶于水的化合物,析出沉淀,使废水得到净化。化学沉淀法多用于去除废水中的重金属离子,如汞、铬、铅、锌等。化学沉淀法有氢氧化物沉淀法、硫化物沉淀法、钡盐沉淀法、铁氧体沉淀法。具体联系污水宝或参见http://www.dowater.com更多相关技术文档。
3.消毒杀菌:消毒杀菌技术主要用于水的深度处理。消毒杀菌主要是采用氯、次氯酸盐、二氧化氯、臭氧、臭氧-紫外线等。二氧化氯用于给水处理消毒,近年来受到广泛的注意,主要是由于它不会与水中的腐殖质反应产生卤代烃。臭氧消毒被认为是在水处理过程中替代加氯的一种行之有效的消毒方法,因为臭氧首先是具有很强的杀菌力,其次是氧化分解有机物的速度快,使消毒后水的致突变性降为最低。

Ⅶ 我公司的废水含有有机氨,经过生化池,由于氨化作用,氨氮就会上升,请问有什么好的解决方法么

该考虑化学生物联用
本文作者: 陈昭考

随着工农业生产的发展和人民生活水平的提高,含氮化合物的排放量急剧增加,已成为环境的主要污染源,并引起各界的关注。经济有效地控制氨氮废水污染已经成为当今环境工作者所面临的重大课题。

1 氨氮废水的来源
含氮物质进入水环境的途径主要包括自然过程和人类活动两个方面。含氮物质进入水环境的自然来源和过程主要包括降水降尘、非市区径流和生物固氮等。人类的活动也是水环境中氮的重要来源,主要包括未处理或处理过的城市生活和工业废水、各种浸滤液和地表径流等。人工合成的化学肥料是水体中氮营养元素的主要来源,大量未被农作物利用的氮化合物绝大部分被农田排水和地表径流带入地下水和地表水中。随着石油、化工、食品和制药等工业的发展,以及人民生活水平的不断提高,城市生活污水和垃圾渗滤液中氨氮的含量急剧上升。近年来,随着经济的发展,越来越多含氮污染物的任意排放给环境造成了极大的危害。氮在废水中以有机态氮、氨态氮(NH4+-N)、硝态氮(NO3--N)以及亚硝态氮(NO2--N)等多种形式存在,而氨态氮是最主要的存在形式之一。废水中的氨氮是指以游离氨和离子铵形式存在的氮,主要来源于生活污水中含氮有机物的分解,焦化、合成氨等工业废水,以及农田排水等。氨氮污染源多,排放量大,并且排放的浓度变化大。
2 氨氮废水的危害
水环境中存在过量的氨氮会造成多方面的有害影响:
(1)由于NH4+-N的氧化,会造成水体中溶解氧浓度降低,导致水体发黑发臭,水质下降,对水生动植物的生存造成影响。在有利的环境条件下,废水中所含的有机氮将会转化成NH4+-N,NH4+-N是还原力最强的无机氮形态,会进一步转化成NO2--N和NO3
--N。根据生化反应计量关系,1gNH4+-N氧化成NO2--N消耗氧气3.43 g,氧化成NO3--N耗氧4.57g。
(2)水中氮素含量太多会导致水体富营养化,进而造成一系列的严重後果。由于氮的存在,致使光合微生物(大多数为藻类)的数量增加,即水体发生富营养化现象,结果造成:堵塞滤池,造成滤池运转周期缩短,从而增加了水处理的费用;妨碍水上运动;藻类代谢的最终产物可产生引起有色度和味道的化合物;由于蓝-绿藻类产生的毒素,家畜损伤,鱼类死亡;由于藻类的腐烂,使水体中出现氧亏现象。
(3)水中的NO2--N和NO3--N对人和水生生物有较大的危害作用。长期饮用NO3--N含量超过10mg/L的水,会发生高铁血红蛋白症,当血液中高铁血红蛋白含量达到70mg/L,即发生窒息。水中的NO2--N和胺作用会生成亚硝胺,而亚硝胺是“三致”物质。NH4+-N和氯反应会生成氯胺,氯胺的消毒作用比自由氯小,因此当有NH4+-N存在时,水处理厂将需要更大的加氯量,从而
增加处理成本。近年来,含氨氮废水随意排放造成的人畜饮水困难甚至中毒事件时有发生,我国长江、淮河、钱塘江、四川沱江等流域都有过相关报道,相应地区曾出现过诸如蓝藻污染导致数百万居民生活饮水困难,以及相关水域受到了“牵连”等重大事件,因此去除废水中的氨氮已成为环境工作者研究的热点之一。

3 氨氮废水处理的主要技术
目前,国内外氨氮废水处理有折点氯化法、化学沉淀法、离子交换法、吹脱法和生物脱氨法等多种方法,这些技术可分为物理化学法和生物脱氮技术两大类。

3.1 生物脱氮法
微生物去除氨氮过程需经两个阶段。第一阶段为硝化过程,亚硝化菌和硝化菌在有氧条件下将氨态氮转化为亚硝态氮和硝态氮的过程。第二阶段为反硝化过程,污水中的硝态氮和亚硝态氮在无氧或低氧条件下,被反硝化菌(异养、自养微生物均有发现且种类很多)还原转化为氮气。在此过程中,有机物(甲醇、乙酸、葡萄糖等)作为电子供体被氧化而提供能量。常见的生物脱氮流程可以分为3类,分别是多级污泥系统、单级污泥系统和生物膜系统。

工业氨氮去除大全

根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。故本工程的关键之一在于氨氮的去除,去除氨氮的主要方法有:物理法、化学法、生物法。物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术。目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。1. 折点氯化法去除氨氮折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯就会增多。因此该点称为折点,该状态下的氯化称为折点氯化。处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg氯气。pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。折点加氯法处理後的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。折点氯化法除氨机理如下: Cl2+H2O→HOCl+H++Cl- NH4++HOCl→NH2Cl+H++H2O NHCl2+H2O→NOH+2H++2Cl- NHCl2+NaOH→N2+HOCl+H++Cl- 折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低(小于50mg/L)的废水来说,用这种方法较为经济。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。投资较少,但运行费用高,副产物氯胺和氯化有机物会造成二次污染,氯化法只适用于处理低浓度氨氮废水。2. 选择性离子交换化去除氨氮离子交换是指在固体颗粒和液体的界面上发生的离子交换过程。离子交换法选用对NH4+离子有很强选择性的沸石作为交换树脂,从而达到去除氨氮的目的。沸石具有对非离子氨的吸附作用和与离子氨的离子交换作用,它是一类矽质的阳离子交换剂,成本低,对NH4+有很强的选择性。O.Lahav等用沸石作为离子交换材料,将沸石作为一种把氨氮从废水中分离出来的分离器以及硝化细菌的载体。该工艺在一个简单的反应器中分吸附阶段和生物再生阶段两个阶段进行。在吸附阶段,沸石柱作为典型的离子交换柱;而在生物再生阶段,附在沸石上的细菌把脱附的氨氮氧化成硝态氮。研究结果表明,该工艺具有较高的氨氮去除率和稳定性,能成功地去除原水和二级出水中的氨氮。沸石离子交换与pH的选择有很大关系,pH在4~8的范围是沸石离子交换的最佳区域。当pH<4时,H+与NH4+发生竞争;当pH>8时,NH4+变为NH3而失去离子交换性能。用离子交换法处理含氨氮10~20mg/L的城市污水,出水浓度可达1mg/L以下。离子交换法具有工艺简单、投资省去除率高的特点,适用于中低浓度的氨氮废水(<500mg/L),对于高浓度的氨氮废水会因树脂再生频繁而造成操作困难。但再生液为高浓度氨氮废水,仍需进一步处理。3. 空气吹脱法与汽提法去除氨氮空气吹脱法是将废水与气体接触,将氨氮从液相转移到气相的方法。该方法适宜用于高浓度氨氮废水的处理。吹脱是使水作为不连续相与空气接触,利用水中组分的实际浓度与平衡浓度之间的差异,使氨氮转移至气相而去除废水中的氨氮通常以铵离子(NH4+)和游离氨(NH3)的状态保持平衡而存在。将废水pH值调节至堿性时,离子态铵转化为分子态氨,然後通入空气将氨吹脱出。吹脱法除氨氮,去除率可达60%~95%,工艺流程简单,处理效果稳定,吹脱出的氨气用盐酸吸收生成氯化铵可回用于纯堿生产作母液,也可根据市场需求,用水吸收生产氨水或用硫酸吸收生产硫酸铵副产品,未收尾气返回吹脱塔中。但水温低时吹脱效率低,不适合在寒冷的冬季使用。用该法处理氨氮时,需考虑排放的游离氨总量应符合氨的大气排放标准,以免造成二次污染。低浓度废水通常在常温下用空气吹脱,而炼钢、石油化工、化肥、有机化工、有色金属冶炼等行业的高浓度废水则常用蒸汽进行吹脱。该方法比较适合处理高浓度氨氮废水,但吹脱效率影响因子多,不容易控制,特别是温度影响比较大,在北方寒冷季节效率会大大降低,现在许多吹脱装置考虑到经济性,没有回收氨,直接排放到大气中,造成大气污染。汽提法是用蒸汽将废水中的游离氨转变为氨气逸出,处理机理与吹脱法一样是一个传质过程,即在高pH值时,使废水与气体密切接触,从而降低废水中氨浓度的过程。传质过程的推动力是气体中氨的分压与废水中氨的浓度相当的平衡分压之间的差。延长气水间的接触时间及接触紧密程度可提高氨氮的处理效率,用填料塔可以满足此要求。塔的填料或充填物可以通过增加浸润表面积和在整个塔内形成小水滴或生成薄膜来增加气水间的接触时间汽提法适用于处理连续排放的高浓度氨氮废水,操作条件与吹脱法类似,对氨氮的去除率可达97%以上。但汽提塔内容易生成水垢,使操作无法正常进行。吹脱和汽提法处理废水後所逸出的氨气可进行回收:用硫酸吸收作为肥料使用;冷凝为1%的氨溶液。4. 生物法去除氨氮生物法去除氨氮是在指废水中的氨氮在各种微生物的作用下,通过硝化和反硝化等一系列反应,最终形成氮气,从而达到去除氨氮的目的。生物法脱氮的工艺有很多种,但是机理基本相同。都需要经过硝化和反硝化两个阶段。硝化反应是在好氧条件下通过好氧硝化菌的作用将废水中的氨氮氧化为亚硝酸盐或硝酸盐,包括两个基本反应步骤:由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应。由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。亚硝酸菌和硝酸菌都是自养菌,它们利用废水中的碳源,通过与NH3-N的氧化还原反应获得能量。反应方程式如下: 亚硝化: 2NH4++3O2→2NO2-+2H2O+4H+ 硝化 : 2NO2-+O2→2NO3-硝化菌的适宜pH值为8.0~8.4,最佳温度为35℃,温度对硝化菌的影响很大,温度下降10℃,硝化速度下降一半;DO浓度:2~3mg/L;BOD5负荷:0.06-0.1kgBOD5/(kgMLSS•d);泥龄在3~5天以上。在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从废水中逸出由于兼性脱氮菌(反硝化菌)的作用,将硝化过程中产生的硝酸盐或亚硝酸盐还原成N2的过程,称为反硝化。反硝化过程中的电子供体是各种各样的有机底物(碳源)。以甲醇为碳源为例,其反应式为: 6NO3-+2CH3OH→6NO2-+2CO2+4H2O 6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH-反硝化菌的适宜pH值为6.5~8.0;最佳温度为30℃,当温度低于10℃时,反硝化速度明显下降,而当温度低至3℃时,反硝化作用将停止;DO浓度<0.5mg/L;BOD5/TN>3~5。生物脱氮法可去除多种含氮化合物,总氮去除率可达70%~95%,二次污染小且比较经济,因此在国内外运用最多。其缺点是占地面积大,低温时效率低。常见的生物脱氮流程可以分为3类:⑴多级污泥系统多级污泥系统通常被称为传统的生物脱氮流程。此流程可以得到相当好的BOD5去除效果和脱氮效果,其缺点是流程长,构筑物多,基建费用高,需要外加碳源,运行费用高,出水中残留一定量甲醇;⑵单级污泥系统单级污泥系统的形式包括前置反硝化系统、後置反硝化系统及交替工作系统。前置反硝化的生物脱氮流程,通常称为A/O流程。与传统的生物脱氮工艺流程相比,该工艺特点:流程简单、构筑物少,只有一个污泥回流系统和混合液回流系统,基建费用可大大节省;将脱氮池设置在去碳源,降低运行费用;好氧池在缺氧池後,可使反硝化残留的有机污染物得到进一步去除,提高出水水质;缺氧池在前,污水中的有机碳被反硝化菌所利用,可减轻其後好氧池的有机负荷。此外,後置式反硝化系统,因为混合液缺乏有机物,一般还需要人工投加碳源,但脱氮的效果高于前置式,理论上可接近100%的脱氮效果。交替工作的生物脱氮流程主要由两个串联池子组成,通过改换进水和出水的方向,两个池子交替在缺氧和好氧的条件下运行。它本质上仍是A/O系统,但利用交替工作的方式,避免了混合液的回流,其脱氮效果优于一般A/O流程。其缺点是运行管理费用较高,必须配置计算机控制自动操作系统;⑶生物膜系统将上述A/O系统中的缺氧池和好氧池改为固定生物膜反应器,即形成生物膜脱氮系统。此系统中应有混合液回流,但不需污泥回流,在缺氧的好氧反应器中保存了适应于反硝化和好氧氧化及硝化反应的两个污泥系统。由于常规生物处理高浓度氨氮废水还存在以下:为了能使微生物正常生长,必须增加回流比来稀释原废水;硝化过程不仅需要大量氧气,而且反硝化需要大量的碳源,一般认为COD/TKN至少为9。5. 化学沉淀法去除氨氮化学沉淀法是根据废水中污染物的性质,必要时投加某种化工原料,在一定的工艺条件下(温度、催化剂、pH值、压力、搅拌条件、反应时间、配料比例等等)进行化学反应,使废水中污染物生成溶解度很小的沉淀物或聚合物,或者生成不溶于水的气体产物,从而使废水净化,或者达到一定的去除率。化学沉淀法处理NH3-N是始于20世纪60年代,在90年代兴起的一种新的处理方法,其主要原理就是NH4+、Mg2+、PO43-在堿性水溶液中生成沉淀。在氨氮废水中投加化学沉淀剂Mg(OH)2、H3PO4与NH4+反应生成MgNH4PO4•6H2O(鸟粪石)沉淀,该沉淀物经造粒等过程後,可开发作为复合肥使用。整个反应的pH值的适宜范围为9~11。pH值<9时,溶液中PO43-浓度很低,不利于MgNH4PO4•6H2O沉淀生成,而主要生成Mg(H2PO4)2;如果pH值>11,此反应将在强堿性溶液中生成比MgNH4PO4•6H2O更难溶于水的Mg3(PO4)2的沉淀。同时,溶液中的NH4+将挥发成游离氨,不利于废水中氨氮的去除。利用化学沉淀法,可使废水中氨氮作为肥料得以回收。

Ⅷ 城市污水排放1级A标准

GB 18918-2002 《城镇污水处理厂污染物排放标准》一级标准共要求指标12项,其中化学专需氧量(COD)与悬浮物(SS)以及氨属氮和总磷是常规重点控制的污染物指标,具体详见下表内容:

(8)合成氨终端污水回用扩展阅读

《城镇污水处理厂污染物排放标准》的适用范围明确规定为:

专门针对城镇污水处理厂污水、废气、污泥污染物排放制定的国家专业污染物排放标准,适用于城镇污水处理厂污水排放、废气的排放和污泥处置的排放与控制管理。

根据国家综合排放标准与国家专业排放标准不交叉执行的原则,本标准实施后,城镇污水处理厂污水、废气和污泥的排放不再执行综合排放标准。

污水处理厂噪音控制仍执行国家或地方的噪音控制标准。

参考资料

网络-城镇污水处理厂污染物排放标准

Ⅸ 资源综合利用,国家采取什么措施

指导思想和基本原则

以邓小平理论和“三个代表”重要思想为指导,深入贯彻落实科学发展观,坚持节约资源和保护环境的基本国策,遵循政府推动、市场引导、企业主体、自主创新、因地制宜、重点突破的方针,加快科技创新,推广先进适用技术,推进资源综合利用产业化,提高资源利用效率,减少废弃物排放,促进经济社会又好又快发展。

坚持宏观调控与市场机制相结合,发挥市场配置资源的基础性作用,完善政策体系,建立有利于促进资源综合利用的长效机制;坚持以企业为主体,产学研相结合,选择环境影响严重、产生量大

的废弃资源,组织技术攻关,强化科技创新能力建设;坚持重点突破和全面推进相结合,依据资源禀赋和产业构成,形成资源综合利用产业集群,探索和完善循环经济发展模式。

(三)主要范围

一是在矿产资源开采过程中对共生、伴生矿进行综合开发与合理利用的技术;二是对生产过程中产生的废渣、废水(废液)、废气、余热、余压等进行回收和合理利用的技术;三是对社会生产和消费过程中产生的各种废弃物进行回收和再生利用的技术。

二、矿产资源综合利用技术

(一)能源矿产资源综合利用技术

1.石油天然气矿产资源综合利用技术

(1)推广在油田开发建设中,采用适用技术,对伴生天然气进行回收利用。

(2)推广从石油和天然气中回收硫资源生产硫磺技术。

(3)推广高效井下污水处理和再生利用技术。

(4)推广柴油机余热利用技术。

(5)推广采用不稳定排放硫化氢气体资源化利用技术回收井口无组织排放的含硫化氢气体。

(6)推进页岩气勘探开发技术。

(7)研发废弃钻井液、井下作业废液资源化利用和无害化处置技术。

2.煤炭资源综合利用技术

(1)推广无煤柱开采技术,推广采用不稳定或难采煤层开采技术、边角煤残采技术。

(2)推广煤系高岭土超细、增白、改性技术。

(3)推进煤系铝矾土、耐火粘土、膨润土、硅藻土、硫铁矿、油母页岩和石墨等资源综合利用技术的产业化。

(4)推进煤炭地下气化(UCG)技术的产业化,特别是加快具有井下无人、无设备,集建井、采煤、气化三大工艺于一体,适用于煤矿大量的煤柱、建筑物下压煤等呆滞煤量回收利用技术的研发和产业化。

(5)研发难选煤、干法选煤和高硫煤综合利用技术。

(6)研发“三下”(建筑物下、铁路下、水体下)及矸石充填采煤技术;研究提高开采上限技术。

(7)研发矿井水资源化利用技术。

3.地热资源利用技术

推广采用热泵等技术,利用地下热能进行采暖和制冷。

(二)金属矿产资源综合利用技术

1.黑色金属矿产资源综合利用技术

(1)推广磁铁矿精选作业的磁筛等高效利用技术。

(2)推广含稀土复合矿和钒钛磁铁矿综合利用技术。

(3)推广低品位、表外矿、复杂共伴生黑色金属矿产资源综合利用技术。

(4)推进尾矿再选技术及生产各种建筑材料的产业化。

(5)研发低品位硫铁矿选矿富集技术。

(6)研发尾矿干堆技术和尾矿高效浓缩工艺及设备。

2.有色金属矿产资源综合利用技术

(1)无废(少废)开采技术

--推广尾砂充填、废石充填、全尾砂膏体充填等充填法采矿技术。

--推广原地浸出采矿技术。

(2)推广采用大型低品位矿产自然崩落法技术开采。

(3)推广拜耳法用于低铝硅比一水硬铝石矿的选矿。

(4)推广低品位、表外矿、复杂共伴生有色金属矿产资源综合利用技术。

(5)推广复杂多金属硫化矿矿浆电解处理技术及中低品位氧化锌矿选冶联合处理技术。

(6)推广铜铅锌锡矿细粒、微细粒矿载体浮选技术。

(7)推广铜矿等有色金属矿伴生金、银等贵金属的综合利用技术。

(8)推广有色金属硫化?D?D氧化混合矿选矿技术。

(9)推广湿法冶金关键装备应用。

(10)研发矿山塌陷区、废石堆场和尾矿库修复与垦植技术。

(11)研发对复杂有色金属矿石选别与富集技术。

(12)研发低品位矿生物提取技术。

(13)研发尾矿有价金属综合回收利用技术。

3.贵金属矿产资源综合利用技术

(1)推广含金银等多金属矿选矿尾渣中综合回收有价金属成分和非金属矿资源的矿物加工技术。

(2)推广采用复杂金矿循环流态化焙烧技术。

(3)推广高硫高砷高碳复杂难处理金矿的预处理技术。

(4)推广浮选富集?D炭浸工艺技术等低品位金矿的综合利用技术。

4.稀有、稀土金属矿产资源综合利用技术

(1)推广采用电解工艺开发稀土镁中间合金技术,综合利用稀土尾矿。

(2)推广高效低毒高纯氧化铕提取技术。

(3)推进稀土冶炼分离清洁生产工艺技术的产业化。

(三)非金属矿产资源综合利用技术

1.化工原料非金属矿产资源综合利用技术

(1)盐湖钾盐综合利用技术

--推进盐湖钾盐伴生矿综合利用技术的产业化。

--研发固体难采钾矿溶采技术,非水溶性钾矿开发利用技术。

(2)磷矿综合利用技术

--推广磷矿伴生铁、硫、氟、碘、钒、钛等资源综合回收技术。

--推广反(双)浮选磷矿降镁技术。

--研发中低品位磷矿、中低品位胶磷矿选矿技术和窑法直接利用技术。

(3)硼矿综合利用技术

--研发低品位硼矿选矿技术。

--研发硼铁矿中硼、铁、铀有效分离和回收技术。

(4)研发中低品位萤石综合利用技术。

(5)研发钾长石综合利用技术。

2.建材原料非金属矿产资源综合利用技术

(1)玻璃陶瓷原料非金属矿有效利用技术

--推广硅质原料非金属矿产的均化开采以及浮选技术。

--推广陶瓷生产采用低品位原料配方技术产业化。

--推广利用中低品位高岭岩替代叶蜡石生产玻璃纤维技术产业化。

(2)填料及其它深加工用非金属矿的合理利用技术

--推广利用煤系高岭土生产高档填料、涂料技术。

--推广温石棉尾矿提取轻质氧化镁及综合利用技术。

--推广伟晶岩中石英提纯技术。

(3)推广石灰石矿均化开采配比技术。

(4)推广石英砂岩提纯技术。

(5)研发低品位菱镁矿、滑石、硅藻土、蓝晶石族等非金属矿选矿综合利用技术。

三、工业“三废”综合利用技术

(一)煤炭工业“三废”综合利用技术

1.煤矸石综合利用技术

(1)煤矸石发电技术

--推广适合燃烧煤矸石的大型循环流化床锅炉,在有条件的地区推广热、电、冷联产技术和热、电、煤气联供技术。

--推广炉内石灰脱硫和静电除尘技术。

--研发煤矸石等低热值燃料电厂锅炉高效除尘、脱硫、灰渣干法输送、存储及利用技术。

(2)煤矸石生产建筑材料技术

--制砖技术。推广全煤矸石生产承重多孔砖、非承重空心砖和清水墙砖技术。

--制水泥技术。推广利用煤矸石为原料,部分或全部代替粘土配制水泥生料,烧制水泥熟料技术。

--生产其他建材产品技术。推广利用煤矸石为原料生产陶瓷制品、陶粒、岩棉、加气混凝土等技术。

(3)推广利用煤矸石充填采煤塌陷区、采空区和露天矿坑及煤矸石复垦造地造田技术。

(4)推广利用煤矸石制取聚合氯化铝、硫酸铝、合成系列分子筛等化工产品技术。

(5)推广利用煤矸石生产复合肥料技术。

(6)推广煤矸石中极细粒钛铁矿、锐钛矿等杂质的分离技术。

(7)研发利用煤矸石生产特种硅铝铁合金、铝合金技术,以及利用煤矸石生产铝系列、铁系列超细粉体的技术。

(8)研发煤矸石提取五氧化二钒及其他稀有元素技术。

2.矿井水综合利用技术

推广采用混凝、沉淀(或浮升)以及过滤、消毒等技术,净化处理煤矿矿井水。

3.煤层气综合利用技术

(1)推进煤层气民用、发电、化工等技术的产业化。

(2)研发低浓度瓦斯利用技术。

(二)电力工业“三废”综合利用技术

1.粉煤灰、脱硫石膏综合利用技术

(1)粉煤灰综合利用技术

--推广采用粉煤灰生产水泥、砌块、陶粒等建筑材料技术。

--推广采用粉煤灰建造水坝、油井平台、道路路基等建筑工程技术。

--推广粉煤灰制取漂珠、空心微珠、碳等化合物技术。

--推进高铝粉煤灰提取氧化铝技术的产业化。

--推进粉煤灰造纸及生产岩棉技术的产业化。

--研发粉煤灰用于农业(改良土壤、生产复合肥料、造地)、污水处理以及各类填充材料等技术。

(2)推广脱硫石膏制水泥缓凝剂、纸面石膏板、建筑石膏、粉刷石膏、砌块等建材产品的综合利用技术。

(3)研发脱硫石膏免煅烧制干混砂浆。

2.废水综合利用技术

推广灰场冲灰废水封闭式循环利用等技术。

3.废气综合利用技术

推广燃煤电厂烟气中回收硫资源生产硫磺技术。

(三)石油天然气工业“三废”综合利用技术

1.废渣综合利用技术

(1)推广对油气采炼过程中产生的各类油砂、污泥、残渣、钻屑采用固化等无害化综合处理技术,并用于筑路、制造建筑材料、调剖堵水剂等。

(2)推广石油焦乳化焦浆/油(EGC)代油节能技术。

(3)研发改进缓和湿式氧化(WAO)-间歇式生物反应器(SBR)处理碱渣联合工艺,形成专有成套技术。

(4)研发污水处理场油泥(包括罐底泥)、浮渣和剩余活性污泥处理组合技术。

2.废水(液)综合利用技术

(1)推广钻井污水、废液综合处理技术,实现闭路循环利用。

(2)推广炼油企业含氢尾气膜法回收技术。利用膜分离技术建设芳烃、加氢尾气膜法回收装置,回收芳烃预加氢精制单元酸性气、异构化富氢、加氢裂化低分气、柴油加氢低分气中的富含氢气体。

(3)推广采用中和、酸化以及各种精制技术,从石油炼制产生的酸碱废液、废催化剂中,回收环烷酸、粗酚、碳酸钠、浮选捕集剂等资源。

(4)研发石油化工高浓度、难降解的有机废水处理技术以及油田废水替代清水技术。

(5)研发经济有效的废水深度处理技术和回用技术、氨氮废水处理技术与回收利用技术。

3.废气综合利用技术

(1)推广对炼油厂催化裂化过程中产生的高温烟气采用气能量回收技术进行能量回收。

(2)研发催化裂化再生烟气、加热炉气、工艺排气及电站排气中二氧化硫和氮氧化物处理技术。

(四)钢铁工业“三废”综合利用技术

1.冶炼废渣综合利用技术

(1)推广炼钢炉渣回收和磁选粉深加工处理技术。

(2)推广立磨粉磨粒化高炉矿渣技术。

(3)推广硫铁矿烧渣综合利用技术。

(4)推广冷轧盐酸再生及铁粉回收技术。

(5)推广钢渣返回烧结,替代石灰作为炼铁厂烧结溶剂技术。

(6)推广转炉煤气干法除尘及尘泥压块技术。

(7)推广氧化铁皮回收利用技术。采用直接还原技术制取粉末冶金用的还原铁粉。

(8)推广含铁尘泥综合利用技术。

(9)推广废钢渣生产磁性材料技术。

(10)研发含锌尘泥综合利用技术。

(11)研发不锈钢和特殊钢渣的处理和利用技术,特别是防止水溶性铬离子浸出的技术。

(12)研发钢铁渣游离氧化钙、游离氧化镁降解处理技术。

2.废水(液)综合利用技术

(1)推广对不同浓度的焦化废水优化分级处理与使用技术。

(2)推广采用“电氧化气浮”技术对废水进行深度处理并回用。

(3)推广污水深度处理脱盐回用技术。采用抗污染芳香族聚酰胺反渗透膜,生产高品质的回用水。

(4)推广冷轧含油乳化液膜分离回收技术。

(5)研发矿山酸性废水治理与循环利用技术。

(6)研发矿山含硫矿物,As、Pb、Cd废水处理与循环利用技术。

3.废气及余热、余压综合利用技术

(1)推广全燃烧高炉煤气锅炉的应用技术。

(2)推广焦炉、高炉、转炉煤气的回收技术。

(3)推广利用还原铁生产中回转窑废高温烟气余热发电技术。

(4)推广高炉煤气余压发电TRT(高炉煤气余压透平发电装置)结合干法除尘技术。

(5)推广采用利用溴化锂制冷等技术回收利用冶金生产过程中炉窑烟气余热。

(6)推广采用双预蓄热式燃烧技术,实现炉窑废气余热的利用。

(7)推广铁合金矿热炉、烧结机等中低温烟气余热发电技术。

(8)推广焦化干息焦技术,回收利用焦炭显热。

(9)推广低热值煤气燃气-蒸汽联合循环发电技术(CCPP)。

(10)推广炼钢厂除尘系统高温烟气余热发电技术。

(11)推广电炉余热回收及综合利用技术。

(12)推进烧结烟气脱硫副产石膏资源化利用技术的产业化。

(五)有色金属工业“三废”综合利用技术

1.冶炼废渣综合利用技术

(1)推广采用炉渣选矿法从冶炼炉渣中回收金属铜技术。

(2)推广铜冶炼阳极泥及废渣(料)综合利用技术,回收金、银、铂、钯、硒、碲、铅、铋、铟等。

(3)推广铜冶炼冷态渣,镍冶炼冷态渣深度还原磁选提铁综合利用技术。

(4)推广采用“破碎-磁选分选焦煤”、“球磨-磁选生产铁粉”等技术处理锌渣、窑渣。

(5)推广从铅电解阳极泥中提取金银的火法和湿法技术工艺。

(6)推广锌渣中提取银的技术。

(7)推广从锌浸出渣中提取铟技术。

(8)推广金属镁还原渣部分替代钙质和硅质原料生产水泥技术。

(9)研发高效利用铅锌冶炼渣再回收铅锌技术,以及稀散金属回收技术。

(10)研发低耗高效脱除氟、氯、氧化锌物料技术。

(11)研发采用氢气还原法从冶炼各类烟尘中制取金属锗综合利用技术。

(12)研发赤泥综合利用技术。

2.废水(液)综合利用技术

(1)推广轧制废油回收利用技术。

(2)推广从生产印刷线路板产生含铜废液中回收金属铜技术。

(3)研发加工生产过程中表面处理废液、酸洗污泥综合回收技术。

3.废气及余热综合利用技术

(1)推广采用氨吸收法技术,回收铜、铅、锌等有色金属冶炼企业产生的烟气二氧化硫,副产硫酸铵、硫酸钾等。

(2)推广采用钙吸收技术,对二氧化硫烟气脱硫并回用。

(3)推广采用氧化锌渣脱除铅锌冶炼烟气二氧化硫技术。

(4)推广冶炼废气中有价元素的回收利用技术。

(5)推广菱镁矿资源利用过程中二氧化碳回收以及生产二氧化碳衍生产品先进技术。

(6)推广有色冶金炉窑烟气余热利用技术。

(六)化学工业“三废”综合利用技术

1.磷石膏等化工废渣综合利用技术

(1)推广蒸氨废渣综合利用技术。

(2)推广采用电石渣替代石灰石用于水泥工业、纯碱工业以及电厂的烟气脱硫技术。

(3)推广利用铬渣作水泥矿化剂技术;铬渣制自溶性烧结矿并冶炼含铬生铁技术;铬渣作为熔剂生产钙镁磷肥技术;铬渣制钙铁粉、铸石、人造骨料、玻璃着色剂及铬渣棉等技术。

(4)推广磷石膏制磷酸联产水泥、制硫酸钾、制硫铵和碳酸钙以及制硫酸铵、硫酸铵钾等作为化工原料的综合利用技术;磷石膏制水泥缓凝剂、纸面石膏板、建筑石膏、粉刷石膏、砌块等建材产品的综合利用技术;磷石膏作为盐碱地改良剂技术。

(5)推广黄磷炉渣生产水泥、混凝土、磷渣砖、保温材料、低温烧结陶瓷等技术。

(6)推广黄磷泥生产五氧化二磷以及双渣肥等综合利用技术。

(7)推广造气煤渣综合利用技术。

(8)推广利用硼泥制备轻质碳酸镁、氧化镁等镁盐技术。

(9)推广利用硼泥生产建筑材料、农业肥料和冶金辅助材料技术。

(10)推广氟石膏生产建筑材料等综合利用技术。

(11)研发磷石膏充填采矿技术。

2.废水(液)综合利用技术

(1)推广纯碱生产中蒸氨废清液晒盐技术,采用高效蒸发技术和设备制氯化钙联产氯化钠。

(2)推广合成氨生产中采用水解汽提技术回收尿素。

(3)推广氮肥生产污水回用技术。

(4)推广循环冷却水超低排放技术。

(5)推广回收硼酸母液制备硼镁肥、轻质碳酸镁、氧化镁等镁盐产品技术。

(6)推广采用大孔径吸附树脂对2,3-酸废水回收利用技术。

(7)推广“树脂吸附-氧化-树脂吸附”技术对2-萘酚生产废水进行治理和资源化利用。

(8)推广处理DSD (4,4-二氨基二苯乙烯-二磺酸)酸氧化工序生产废水采用树脂法将有机物吸附并洗脱和回收利用的资源化技术。

(9)推广苯胺、邻甲苯胺和对甲苯胺生产废水资源化技术。

(10)推广树脂吸附法处理氯化苯水洗废水综合利用技术。

(11)推广从电镀废水中回收镍、钴等稀有金属技术。

(12)推广从制盐母液中提取氯化钾、工业溴、氯化镁技术。

3.废气、余热综合利用技术

(1)推广采用吸附、汽提、变压吸附等技术,从电石法聚氯乙烯生产尾气中回收氯乙烯、乙炔气。

(2)推广利用黄磷尾气发电并提纯一氧化碳生产甲醇、甲酸等化工产品技术。

(3)推广醇烃化工艺替代铜洗工艺技术。

(4)推广全燃式造气吹风气余热回收利用技术。

(5)推广湿法磷酸及磷肥生产副产品氟生产各种氟化物技术。

(6)推广以碳酸钠吸收硝酸生产尾气中的氮氧化物,生产硝酸钠、亚硝酸钠的技术。

(7)推广利用电石、炭黑生产尾气中的一氧化碳,作为燃料及化工原料用于制甲醇、合成氨和羰基产品技术。

(8)推广对含二氧化碳废气进行综合利用技术。其中利用氨水吸收尾气中二氧化碳制取碳酸氢铵;深冷制取液态二氧化碳或干冰;用纯碱吸收二氧化碳制取碳酸氢钠;用二氧化碳废气制取轻质碳酸镁;用烧碱废液吸收二氧化碳制取纯碱;用废气中的二氧化碳代替硫酸分解酚钠提取酚。

(9)推广氯化氢废气综合利用技术。其中用甘油吸收氯化氢制取二氯丙醇;在催化剂作用下制取环氧氯丙烷、二氯异丙醇,制取氯磺酸、染料、二氯化碳等化工产品;采用催化氯化法、电解法、硝酸氧化法生产氯气;副产盐酸生产聚氯乙烯等产品。

(10)推广催化干气蒸汽转化法制氢技术。

(11)推广草甘膦与有机硅生产中的氯元素循环利用技术。将草甘膦生产中的尾气经回收净化用于有机硅单体的合成。有机硅单体生产中产生盐酸,经净化后用于草甘膦合成,从而使含氯元素的化合物(氯甲烷、氯化氢)在草甘膦和有机硅两大类产品之间实现循环利用。

(七)建材工业“三废”综合利用技术

1.废渣综合利用技术

(1)推广石材加工碎石和采矿废石生产人造石材(装饰材料)技术。

(2)研发废陶瓷高附加值再利用技术。

2.废水综合利用技术

推广采用无机混凝剂(PAC)+高分子助凝剂(PHM)等混凝沉淀处理技术。

3.废气、余热综合利用技术

(1)推广水泥窑废气余热发电技术。

(2)推进玻璃熔窑废气余热发电技术产业化。

(八)食品发酵工业“三废”综合利用技术

1.废渣综合利用技术

(1)推广玉米脱胚提油和小麦提取蛋白技术。

(2)推广利用酒精糟生产全糟蛋白饲料等技术。

(3)推广啤酒废酵母干燥生产饲料酵母技术;废酵母经酶处理制备医药培养基酵母浸膏技术。

(4)推广柠檬酸废渣替代天然石膏技术。

(5)推进啤酒废酵母生产制备核苷酸、氨基酸类物质技术的产业化。

(6)推广玉米芯生产木寡糖技术。

(7)推广利用制糖废糖蜜生产高活性酵母等发酵制品技术。

(8)推进利用酶技术从麦糟中提取功能性膳食纤维和蛋白质的产业化。

(9)推进果蔬浓缩汁生产废渣制备果胶、功能性膳食纤维和蛋白饲料技术的产业化。

(10)研发酵母细胞壁残渣制备甘露糖蛋白质及水溶性葡聚糖等。

(11)研发啤酒糟采用多菌种混合固体发酵生物改性,生产肽蛋白技术。

(12)研发马铃薯、木薯淀粉生产废渣综合利用技术。

2.废水(液)综合利用技术

(1)推广发酵剩余资源厌氧发酵生产沼气技术。

(2)推广麦汁煮沸二次蒸汽回用技术。

(3)推广味精废母液生产复合肥技术。

(4)推广玉米浸泡水和谷氨酸离交尾液混合培养饲用酵母粉技术。

(5)推广木薯干片干式粉碎和鲜木薯湿法破碎分离技术,浓缩出精淀粉浆液和蛋白黄浆。

(6)研发采用膜过滤技术(MF)回收菌体制成饲料技术。

(7)研发薯类淀粉生产高浓工艺废水(俗称汁水或细胞水)回收蛋白技术。

(8)研发适用于食品行业生产的膜材料及膜分离装置;研发排放废水深度处理的膜技术与膜材料。

3.废气综合利用技术

研发利用酒精等生产过程中产生的二氧化碳生产降解塑料技术。

(九)纺织工业资源综合利用技术

1.废旧纤维等废渣综合利用技术

(1)推广废旧纤维循环利用技术。利用废旧涤纶及锦纶纤维、生产废料等生产再生纤维技术。

(2)推广利用废旧纤维作为产业用增强材料技术。

(3)推广溶解、萃取、离子交换等技术,对化纤工业产生的固体废弃物进行回收利用。

(4)推广针刺、热熔、纺粘、缝编等技术对废花、落棉、纱布角、短纤维等废弃物进行回收利用。

(5)推进废弃毛中提取蛋白制备生物蛋白纤维技术的产业化。

(6)推进利用双氧水对剥茧抽丝后的废弃物进行湿法纺丝技术的产业化。

(7)推进蚕蛹蛋白提炼及深加工、桑柞蚕丝下脚料生产针刺无纺布等综合利用产业化。

2.废水(液)综合利用技术

(1)推广采用水蒸汽直接蒸馏法从含溴染料废水中制取溴素技术;以分散蓝2BLN水解母液以及硝化废酸为原料从废水中离析回收2,4-二硝基苯酚。

(2)推进洗毛废水采用高效分离回收等工艺设备提取羊毛脂技术产业化。

(3)推进聚酯企业生产废水中乙醛等有机物回收与利用技术产业化。

(4)研发适用于排放废水深度处理的膜材料,并研发适用于浆料、染料浓缩与回收工艺的膜分离装置。

(十)造纸工业“三废”综合利用技术

1.废渣综合利用技术

(1)推广造纸废渣污泥资源化利用技术。

(2)推进制浆碱回收白泥生产优质碳酸钙技术的产业化。

2.废水(液)综合利用技术

(1)推广制浆造纸过程水的梯级使用和废水深度处理部分回用技术。

(2)推广造纸白水多圆盘过滤机处理回收利用技术。

(3)推广厌氧生物处理高浓废水生产沼气技术。

(4)推广制浆封闭式筛选、中浓技术。

(5)推进纸浆废液生产微生物制剂技术的产业化。

四、再生资源回收利用技术

(一)废旧金属再生利用技术

1.推广采用机械化手段对废旧汽车、废旧船舶等机械设备的拆解和利用。

2.推广黄杂铜直接生产高精度板、带、管等技术。

3.推广紫杂铜熔炼除氧、除杂技术以及轧制过程中的表面处理和精整技术。

4.推广组合式熔炼炉组生产再生铝合金技术。

5.推广废铝易拉罐钻切屑利用技术;电解铝残极(阳极、阴极)生产石墨化炭阴极技术。

6.推广废铅酸蓄电池机械化拆解、破碎分选技术,分别回收处理塑料壳、铅极板、含铅物料(铅膏)、废酸液等;再生铅渣回收锡、锑等有价金属的技术。

7.研发废钢铁镀锌、镀铬等镀层的处理技术;废高合金钢的鉴定、检测和分选技术;混堆状废线材加工处理技术及装备;废易拉罐等优质废铝的保级利用技术。

(二)废旧家电及电子产品再生利用技术

1.推广电热丝等干法分离阴极射线管屏锥玻璃技术。采用工业吸尘器回收并妥善收集荧光粉。

2.推广加热析出、催化分解等技术,回收液晶面板上的液晶物质和稀贵金属铟并做无害化处理。

3.推广环保型的溶蚀、酸解、电解、精炼等技术,处理芯片等含稀贵金属的废料,回收金、银、钯等。

4.推广高效粉碎、分选技术,处理已去除芯片、电容器等部件的线路板,回收铜、玻璃纤维和树脂等。

5.推广粉碎、分选等物理方法在密闭的设施中处理含有多溴联苯、多溴二苯醚等有害成分的电线、电缆,回收铜、铝和塑料。

6.推广破碎、分选等物理方法在设置有环保和安全措施的密闭设施中处理废旧冰箱、空调、冷柜等制冷电器。

(三)废旧橡胶、轮胎再生利用技术

1.推广胶粉活化技术,提高胶粉活性,扩大胶粉利用率。

2.推广“预硫化和无模硫化翻新”轮胎翻新技术。

3.推广废旧橡胶常温粉碎、湿法粉碎、冷冻粉碎等生产精细胶粉技术。

(四)废纸板和废纸再生利用技术

1.推广废瓦楞纸箱中高浓连续碎解、纤维分级处理、中高浓筛选、大直径盘磨打浆技术,生产包装纸及纸板。

2.推广高浓筛选、高浓漂白、高浓揉搓等技术,处理废旧报纸及带有涂料、印刷油墨等需脱墨的纸张。

3.研发大型废纸和废纸板制浆技术及成套设备。

(五)废塑料再生利用技术

1.推广废塑料物理再生利用和机械化分类技术。

2.推广废塑料活化无机填料改性、纤维增强改性、弹性体增韧改性、树脂合金改性、链结构改性等化学再生利用技术。

3.推广利用废旧聚酯瓶生产聚酯切片技术。

4.推广利用废旧塑料、废弃木质材料生产木塑材料及其制品技术。

(六)废玻璃再生利用技术

1.推广废玻璃作为原料生产平板玻璃、瓶罐器皿等玻璃制品直接再利用技术。

2.推广废玻璃生产建筑和保温隔音等材料的间接再生利用技术。

(七)建筑废弃物再生利用技术

1.推广改性沥青混合料再生道路材料制备技术及装备。

2.研发建筑垃圾减量化控制技术及建筑垃圾再生材料在建筑工程中应用的成套技术。

Ⅹ 合成氨工业的废水排放的直接排放和间接排放的区别

合成来氨工业的废水排放源的直接排放和间接排放的区别
1、直接排放没有经过污水处理,碱性重,会对水源和土壤造成污染。间接排放,是经过污水处理,不会对水源和土壤造成污染。
2、直接排放是国家环保局不允许的。可以进行间接排放。
3、直接排放,污水的的浓度高,间接排放污水的浓度低。
工业废水是指工业生产过程中产生的废水、污水和废液,其中含有随水流失的工业生产用料、中间产物和产品以及生产过程中产生的污染物。随着工业的迅速发展,废水的种类和数量迅猛增加,对水体的污染也日趋广泛和严重,威胁人类的健康和安全。因此,对于保护环境来说,工业废水的处理比城市污水的处理更为重要。

阅读全文

与合成氨终端污水回用相关的资料

热点内容
纯水机进水电磁阀为什么24v不到位 浏览:790
惠而浦直饮净水机多少钱 浏览:40
镀铬后的废水处理最方便 浏览:851
既热式饮水机怎么装前置过滤器 浏览:585
皮革行业含碱废水 浏览:288
鱼缸双侧过滤连接步骤 浏览:735
雨污水管线的材质 浏览:968
施特劳斯智饮机滤芯是什么 浏览:631
污水处理产业扶持政策有哪些 浏览:811
锦鲤鱼池过滤泵流量 浏览:711
超滤器是什么意思 浏览:881
纯水静静怎么打 浏览:846
超滤截COD 浏览:914
电子超纯水水罐用什么材质 浏览:49
清除水垢硅磷晶 浏览:519
crv空气净化器怎么打开 浏览:526
反渗透膜低温清洗 浏览:785
郑州过滤王管理中心地址 浏览:872
水水垢成分 浏览:866
陕西原装外置污水提升泵要多少钱 浏览:419