⑴ 污水处理过程中(就是最简单的好氧厌氧处理中) 硝化池跟反硝化池的温度 怎么控制在最佳温度
《室外排水设计规范》(GB50014-2006)中对规定污水厂内生物处理构筑物的水温“宜”为10-37℃。专硝化反应的属最佳温度一般为20-30℃,15℃以下硝化反应速率下降,5℃以下停止;反硝化最佳温度为20-40℃,15℃以下反硝化菌活性下降;普通好氧菌最佳温度一般为15-30℃。
但污水处理构筑物一般不刻意去为实现最佳温度而采取额外技术措施提高水温,因为这样做的成本太高!只有冬季特别寒冷地区,水处理构筑物采取保温等措施,而不是增温。另外,罗茨风机曝气,会压缩后的发热空气带入水中,但对水温影响较小。无法维持最佳温度。
⑵ 废水处理的硝化反应条件。
小试SBR反应抄器,,当DO浓度恒定为0.4mg.L-1时,氨氮氧化的速率较低.提高DO浓度,氨氮氧化速率可随之升高.低氨氮生活污水硝化过程中仍有N2O产生.DO浓度为0.4 mg.L-1和0.9 mg.L-1时,污水N2O产生量(以N计)分别为1.5 mg.L-1和1.6mg.L-1;而DO浓度为1.5 mg.L-1和2.0 mg.L-1时,N2O产生量则分别降低至0.5 mg.L-1和0.4 mg.L-1.当DO浓度高于1.5mg.L-1后,继续提高DO浓度,氨氮氧化速率升高的速率变缓,同时N2O产生量大幅降低.因此,从提高污水脱氮效率节能降耗和控制N2O产生量2个角度考虑,生活污水脱氮过程中控制DO浓度在1.5 mg.L-1较为适宜.
⑶ 污水处理中脱氮原理反硝化、硝化的顺序,不明白,(我是个外行)
在污水处理中按脱氮原理,或者说要达到脱氮的目标,顺序是先硝化细菌在好氧环境下进行硝化作用,把污水污泥中的氮转化为硝酸盐和亚硝酸盐,然后在缺氧条件下反硝化细菌进行反硝化反应,把硝酸盐和亚硝酸盐氮转化为氮气,以达到脱氮的目的。
但是,污水处理中,不仅要脱氮,而且还要除磷,而磷在好氧条件下才聚磷,厌氧和缺氧要在好氧之前。但这对脱氮影响不大,因为污水处理中的经过好氧处理的大部分污泥还要回流利用,所以厌氧——缺氧——好氧是个循环的过程,经过循环过程,氮在缺氧去除,磷在好氧去除。
(3)硝化反应污水处理扩展阅读:
A2/O工艺(AAO工艺、AAO法:厌氧-缺氧-好氧),是一种很常用的二级污水处理工艺,具有脱氮除磷的作用,用于二级污水处理或者三级污水处理,后续增加深度处理后,可作为中水回用,具有良好的脱氮除磷效果。
首先,污水与回流污泥进入厌氧池进行混合,经一定时间厌氧分解作用,去除部分BOD,并使部分含氮化合物转化成氮气(反硝化作用)而释放,回流污泥中的聚磷微生物(聚磷菌等)释放出磷,满足细菌对磷的需求。
然后,污水流入缺氧池,池中的反硝化细菌以污水中的含碳有机物为碳源,将好氧池内通过内循环回流进来的硝酸根和亚硝酸根还原为氮气而释放。
接下来,污水流入好氧池,水中的氨氮进行硝化反应生成硝酸根或亚硝酸根,同时水中的有机物氧化分解供给吸磷微生物能量,微生物从水中吸收磷,则磷富集在微生物内,最后经沉淀分离后以富磷污泥的形式从系统中排出。
网络:A2O
⑷ 污水厂前置厌氧池的作用能否进行硝化反应
污水处理上前置厌氧池作用1.水解酸化2.活性污泥吸附
能不能硝化反应 主要看工艺配合
⑸ 污水处理中什么是硝化和反硝化
硝化是指一个生物用氧气将氨氧化为亚硝酸盐继而将亚硝酸盐氧化为硝酸盐的作用。尤指将有机化合物转化成硝基化合物或硝酸酯(如用硝酸和硫酸的混合物处理)。将氨降解为亚硝酸盐的步骤常常是硝化作用的限速步骤。硝化作用是土壤中氮循环的重要步骤。这一过程由俄国微生物学家谢尔盖·尼古拉耶维奇·维诺格拉茨基发现。
反硝化,也称脱氮作用,是指细菌将硝酸盐(NO3−)中的氮(N)通过一系列中间产物(NO2−、NO、N2O)还原为氮气(N2)的生物化学过程。参与这一过程的细菌统称为反硝化菌。
常见硝化方法:
(1)稀硝酸硝化一般用于含有强的第一类定位基的芳香族化合物的硝化,反应在不锈钢或搪瓷设备中进行,硝酸约过量10~65%。
(2)浓硝酸硝化这种硝化往往要用过量很多倍的硝酸,过量的硝酸必需设法利用或回收。
(3)浓硫酸介质中的均相硝化当被硝化物或硝化产物在反应温度下为固体时,常常将被硝化物溶解于大量浓硫酸中,然后加入硫酸和硝酸的混合物进行硝化。
(4)非均相混酸硝化当被硝化物或硝化产物在反应温度下都是液体时,常常采用非均相混酸硝化的方法,通过强烈的搅拌,使有机相被分散到酸相中而完成硝化反应。
(5)有机溶剂中硝化这种方法的优点是采用不同的溶剂,常常可以改变所得到的硝基异构产物的比例,避免使用大量硫酸作溶剂,以及使用接近理论量的硝酸。常用的有机溶剂有乙酸、乙酸酐、二氯乙烷等。
⑹ 关于污水处理的硝化和反硝化
具体的工艺可以参照下面的文献:
http://www.ee.org.cn/Article/es/envir/envirtech/waterinfo/200603/7670.html
硝化反应和反专硝化的含义和反应方属式见下图
⑺ 污水处理中好氧池的主要作用是利用硝化细菌对污水中的氨氮进行硝化反应对吗
对的。硝化细菌是一种好气性细菌,能有氧的水中或砂 层中生长 ,并在氮循环以及水质版净化过程中扮权演着很重要的角色。它们包括形态互异类型的一种杆菌、球菌或螺旋菌。属于自营性细菌的一类,包括两个细菌亚群,一类是亚硝酸细菌(又称氨氧化菌),将氨氧化成亚硝酸,另一类是硝酸细菌(又称硝化细菌),将亚硝酸氧化成硝酸。
⑻ 污水处理中的硝化反应
就是硝化细菌在好养的条件下把氨态氮转化为硝酸盐或亚硝酸盐
⑼ 污水处理反硝化反应为什么需要H离子
我最爱回答这种课本知识了,不用费脑子。
反硝化细菌可以将硝酸盐作为电子回传递链的最答终电子受体,来完成物质能量交换。最终把硝态氮、亚硝态氮还原成氮气,来完成自然界中氮的循环。
氢离子的作用是使氮离子降价。但是并不是说,PH越低越好,反硝化适宜pH为:7-8之间。
我写的很片面,因为你问的很片面。相比这个问题,碱度对硝化作用的影响更值得人们去了解。
⑽ 如何增强污水处理过程中的硝化能力
一、纯菌扩大培养法
纯菌扩大培养法是利用生物分离提取技术,首先获得硝化菌纯菌株,然后依据硝化菌的生物学特征以及营养生理特点,在硝化菌最适宜的生长环境条件下进行纯化培养。纯菌扩大培养法主要优点为:纯度高、浓度高、培养周期短、在短时间内可以实现硝化菌的高密度培养、对污染物具有较强的特定性,在扩大培养过程中,以目标污染物为唯一的氮源,经过反复的筛选和训化后,可以达到高效降解目标污染物的目的。缺点为:工序较多,操作复杂、菌种单一,在实际投加应用中对新环境的适应能力较弱,与土著微生物竞争过程中表现出不相容性,可能被逐渐取代、富集成本较高。目前国内纯菌扩大培养法的研究相对较少,主要应用于处理特定目标污染物或能适应特定条件的硝化菌以及水产养殖等方面的研究。
二、活性污泥富集法
活性污泥富集法是以活性污泥中的硝化菌为富集菌种,在不同的污水处理工艺如序批式活性污泥法(SBR),厌氧好氧法A/O、周期循环活性污泥法(CASS)、膜生物反应器(MBR)等运行条件下,通过控制硝化菌生长环境中的pH、温度、溶解氧DO、营养物质等条件,逐渐提高进水的基质负荷来刺激硝化菌的生长,从而实现活性污泥中的硝化菌的富集。硝化污泥富集法的主要优点为:工艺较为简单易于操作、成本较低、可在线连续富集投加、可解决菌种量大运输困难的问题,与纯菌扩大培养法相比活性污泥富集法中的种群丰富,在实际的工程应用中表现出更强的可行性。主要缺点为:与纯菌扩大培养法相比,富集速率缓慢,富集周期较长、硝化菌的浓度较低、储存成本较高。目前国内外对活性污泥法的研究较为成熟,中试水平的研究也有很多,主要运用于污水处理系统的硝化强化等方面。
三、载体固定法
载体固定法主要是利用固定微生物技术将游离的硝化菌利用物理、化学的方法固定于选择性的载体上,使其在载体上生长繁殖,从而达到硝化菌高度集中的目的。此法的主要优点有:可以减小污水处理系统中的污泥量,从而减少污泥的处理成本等,同时也可避免二次污染,固定于载体活性污泥中的硝化菌更加稳定,不易流失。缺点主要有:固定过程繁琐,工艺操作复杂、固定周期不确定等。载体固定法在国内外的研究也较多,主要运用于污水处理中脱氮方面的研究。
四、硝化菌富集的应用
硝化菌富集的应用主要紧密联系于污水处理的研究,在污水处理系统中添加硝化菌或硝化污泥来提高系统中的硝化反应速率,以实现缩短污泥龄或硝化系统快速恢复启动的目的。此外在水产养殖中硝化菌可以起到净化水质的作用,所以在水产养殖中也具有实际的应用价值。