A. 高性能树脂基复合材料的图书目录
1 绪论
1.1 高性能树脂基复合材料的定义
1.2 高性能树脂基复合材料的特点和应用
1.3 高性能树脂基复合材料的发展趋势
1.4 复合材料界面的研究
2 高性能增强材料
2.1 引言
2.2 高性能玻璃纤维
2.2.1 玻璃纤维的结构及组成
2.2.2 玻璃纤维的物理和化学性能
2.2.3 玻璃纤维及其制品的生产工艺
2.2.4 高性能复合材料用玻璃纤维制品种类
2.2.5 高性能玻璃纤维
2.3 碳纤维
2.3.1 概述
2.3.2 碳纤维的制造方法
2.3.3 碳纤维的性能
2.3.4 碳纤维的应用
2.4 芳纶纤维
2.4.1 概述
2.4.2 芳纶纤维的制备
2.4.3 芳纶纤维的结构与性能
2.4.4 芳纶纤维的应用
2.5 超高分子量聚乙烯纤维
2.5.1 概述
2.5.2 UHMW-PE纤维的制造
2.5.3 UHMW-PE纤维的性能
2.5.4 UHMW-PE纤维的应用
2.6 聚苯并双恶唑纤维
2.6.1 概述
2.6.2 PBO纤维的制造
2.6.3 PBO纤维的结构与性能
2.6.4 PBO纤维的应用
2.7 聚[2,5-二羟基-1,4-苯撑吡啶并二咪唑]纤维
2.7.1 概述
2.7.2 M5纤维的制备
2.7.3 M5纤维分子结构特征和性能
2.7.4 M5纤维的应用与展望
2.8 陶瓷纤维
2.8.1 碳化硅纤维
2.8.2 氧化铝纤维
2.8.3 氮化硼纤维
2.8.4 硼纤维
2.8.5 晶须
3 高性能树脂基体
3.1 酚醛树脂
3.1.1 概述
3.1.2 酚醛树脂的合成原理
3.1.3 酚醛树脂的合成方法
3.1.4 酚醛树脂的固化
3.1.5 酚醛树脂的改性
3.2 高性能环氧树脂
3.2.1 概述
3.2.2 高性能环氧树脂的合成和性能
3.2.3 高性能环氧树脂的固化
3.3 聚酰亚胺树脂
3.3.1 缩聚型聚酰亚胺树脂
3.3.2 加聚型聚酰亚胺
3.4 氰酸酯树脂
3.4.1 概述
3.4.2 氰酸酯单体的合成
3.4.3 氰酸酯基的反应特性
3.4.4 氰酸酯树脂的固化反应
3.4.5 氰酸酯树脂结构与性能的关系
3.4.6 氰酸酯树脂的性能
3.4.7 氰酸酯树脂的增韧改性
3.4.8 氰酸酯树脂的应用
3.5 聚芳基乙炔树脂
3.5.1 引言
3.5.2 芳基乙炔树脂的合成
3.5.3 聚芳基乙炔树脂的性能
3.5.4 聚芳基乙炔树脂基复合材料的性能
3.5.5 聚芳基乙炔树脂及其复合材料的应用
3.6 硅炔树脂
3.6.1 硅炔树脂的合成
3.6.2 硅炔树脂的结构
3.6.3 硅炔树脂的固化
3.6.4 硅炔树脂的性能
3.6.5 硅炔树脂的改性
3.7 硼硅炔树脂
3.7.1 碳硼烷的合成、性质及表征
3.7.2 硼硅炔树脂的种类
3.7.3 硼硅炔树脂的应用
3.8 聚倍半硅氧烷
3.8.1 聚倍半硅氧烷的定义与分类
3.8.2 POSS的合成
3.8.3 POSS的结构与性能关系
3.8.4 POSS有机一无机杂化聚合物
3.8.5 POSS的应用
3.9 聚苯并咪唑树脂
3.9.1 聚苯并咪唑树脂的合成
3.9.2 聚苯并咪唑树脂的性能
3.10 聚醚醚酮树脂
3.10.1 PEEK树脂的制备
3.10.2 PEEK树脂的特性
3.10.3 PEEK树脂的成型工艺
3.10.4 PEEK树脂的应用
3.11 聚苯硫醚
3.11.1 PPS树脂的合成路线
3.11.2 PPS树脂的性能
3.11.3 PPS树脂的应用
3.12 聚芳醚腈树脂
3.12.1 PEN树脂的制备
3.12.2 PEN树脂的特性
3.12.3 PEN树脂的应用
4 复合材料界面
4.1 引言
4.2 复合材料界面理论
4.2.1 浸润性理论
4.2.2 化学键理论
4.2.3 过渡层理论
4.2.4 可逆水解理论
4.2.5 摩擦理论
4.2.6 扩散理论
4.2.7 静电理论
4.2.8 酸碱作用理论
4.3 增强纤维的表面处理
4.3.1 偶联剂处理
4.3.2 表面氧化处理
4.3.3 表面涂层
4.3.4 化学气相沉积(CVD)
4.3.5 电聚合处理
4.3.6 低温等离子处理
4.3.7 表面接枝
4.4 复合材料界面的分析表征
4.4.1 界面浸润性的分析表征
4.4.2 增强纤维表面形貌的分析表征
4.4.3 增强纤维表面化学组分、功能团及化学反应的分析表征
4.4.4 界面力学性能的分析表征
4.4.5 界面形态的微观分析表征
5 热固性树脂基复合材料成型工艺
5.1 模压成型工艺
5.1.1 概述
5.1.2 模压料的制备
5.1.3 模压成型工艺
5.2 缠绕成型工艺
5.2.1 概述
5.2.2 缠绕规律的分析
5.2.3 缠绕成型工艺
5.3 拉挤成型工艺
5.3.1 概述
5.3.2 拉挤成型工艺
5.4 树脂传递模塑(RTM)成型工艺
5.4.1 原材料
5.4.2 RTM成型工艺
5.5 袋压成型工艺
5.5.1 袋压成型工艺种类及特点
5.5.2 袋压成型工艺
6 热塑性树脂基复合材料成型工艺
6.1 概述
6.2 预浸料或片状模塑料的制备
6.2.1 预浸渍技术
6.2.2 后浸渍技术
6.3 热塑性复合材料的冲压成型工艺
6.4 热塑性复合材料的拉挤成型工艺
6.4.1 预浸纤维拉挤成型工艺
6.4.2 纤维拉挤成型工艺
6.5 热塑性复合材料的模压成型工艺
6.6 热塑性复合材料缠绕成型工艺
B. 高性能树脂基复合材料的内容简介
本书是根据材料类专业硕士研究生培养疗案和课程设置的要求编写的,共6章,主要介绍专了高性属能复合材料基体(如环氧树脂、酚醛树脂、聚酰亚胺树脂、芳基乙炔树脂、硅炔树脂、硼硅炔树脂等)的结构与性能、合成方法和固化性能;高性能增强材料(如玻璃纤维、碳纤维、芳纶纤维、PBO纤维、陶瓷纤维等)的结构与性能、制造方法;复合材料的界面;高性能树脂基复合材料的成型工艺,如缠绕成型、拉挤成型、袋压成型、模压成型等。
C. 树脂基复合材料与高分子材料相比有哪些优势
复合材料与工程专业就业前景是可以的。有以下几个优势:1、复合材料与版工程专业涉及权材料学、化学、物理学等多门学科,是一门极具发展潜力的多学科交叉新型专业。2、主要是培养具备复合材料与工程领域的专业知识和实验技能。3、可以适应现代材料学科的高科技化发展趋势,掌握复合材料设计与制备技术。4、重点掌握高性能纤维增强树脂基复合材料的制备技术,能从事先进复合材料与结构的设计、制备、评价的高级专业技术人才。
D. 树脂基复合材料的压缩强度可以大于200MPa吗
先进复合材料性能特点是让其在各个领域有突出表现的主要原因。它很好的克服单一材料缺点。金属是高强度、中
E. 树脂基复合材料知识
纤维增强树脂基复合材料常用的树脂为环氧树脂和不饱和聚酯树脂。目前常用的有:热固性树脂、热塑性树脂,以及各种各样改性或共混基体。热塑性树脂可以溶解在溶剂中,也可以在加热时软化和熔融变成粘性液体,冷却后又变硬。热固性树脂只能一次加热和成型,在加工过程中发生固化,形成不熔和不溶解的网状交联型高分子化合物,因此不能再生。复合材料的树脂基体,以热固性树脂为主。早在40年代,在战斗机、轰炸机上就开始采用玻璃纤维增强塑料作雷达罩。60年代美国在F—4、F—111等军用飞机上采用了硼纤维增强环氧树脂作方向舵、水平安定面、机翼后缘、舵门等。在导弹制造方面,50年代后期美国中程潜地导弹“北极星A—2”第二级固体火箭发动机壳体上就采用了玻璃纤维增强环氧树脂的缠绕制件,较钢质壳体轻27%;后来采用高性能的玻璃纤维代替普通玻璃纤维造“北极星A—3”,使壳体重量较钢制壳体轻50%,从而使“北极星A—3”导弹的射程由2700千米增加到4500千米。70年代后采用芳香聚酰胺纤维代替玻璃纤维增强环氧树脂,强度又大幅度提高,而重量减轻。碳纤维增强环氧树脂复合材料在飞机、导弹、卫星等结构上得到越来越广泛的应用。
在化学工业上的应用
编辑
环氧乙烯基酯树脂在氯碱工业中,有着良好的应用。
氯碱工业是玻璃钢作耐腐材料最早应用领域之一,目玻璃钢已成为氯碱工业的主要材料。玻璃钢已用于各种管道系统、气体鼓风机、热交换器外壳、盐水箱以至于泵、池、地坪、墙板、格栅、把手、栏杆等建筑结构上。同时,玻璃钢也开始进入化工行业的各个领域。在造纸工业中的应用也在发展,造纸工业以木材为原料,造纸过程中需要酸、盐、漂白剂等,对金属有极强的腐蚀作用,唯有玻璃钢材料能抵抗这类恶劣环境,玻璃钢材料已、在一些国家的纸浆生产中显现其优异的耐蚀性。
在金属表面处理工业中的应用,则成为环氧乙烯基酯树脂重要应用,金属表面处理厂所使用的酸,大多为盐酸、基本上用玻璃钢是没有问题的。环氧树脂作为纤维增强复合材料进入化工防腐领域,是以环氧乙烯基酯树脂形态出现的。它是双酚A环氧树脂与甲基丙烯酸通过开环加成化学反应而制成,每吨需用环氧树脂比例达50%,这类树脂既保留了环氧树脂基本性能,又有不饱和聚酯树脂良好的工艺性能,所以大量运用在化工防腐领域。
其在化工领域的防腐主要包括:化工管道、贮罐内衬层;电解槽;地坪;电除雾器及废气脱硫装置;海上平台井架;防腐模塑格栅;阀门、三通连接件等。为了提高环氧乙烯基酯树脂优越的耐热性、防腐蚀性和结构强度,树脂还不断进行改性,如酚醛、溴化、增韧等环氧乙烯基酯树脂等品种,大量运用于大直径风叶、磁悬浮轨道增强网、赛车头盔、光缆纤维牵引杆等。
树脂基复合材料作为一种复合材料,是由两个或两个以上的独立物理相,包含基体材料(树脂)和增强材料所组成的一种固体产物。树脂基复合材料具有如下的特点:
(1)各向异性(短切纤维复合材料等显各向同性);
(2)不均质(或结构组织质地的不连续性);
(3)呈粘弹性行为;
(4)纤维(或树脂)体积含量不同,材料的物理性能差异;
(5)影响质量因素多,材料性能多呈分散性。
树脂基复合材料的整体性能并不是其组分材料性能的简单叠加或者平均,这其中涉及到一个复合效应问题。复合效应实质上是原相材料及其所形成的界面相互作用、相互依存、相互补充的结果。它表现为树脂基复合材料的性能在其组分材料基础上的线性和非线性的综合。复合效应有正有负,性能的提高总是人们所期望的,但有进材料在复合之后某些方面的性能出现抵消甚至降低的现象是不可避免的。
复合效应的表现形式多样,大致上可分为两种类型:混合效应和协同效应。
混合效应也称作平均效应,是组分材料性能取长补短共同作用的结果,它是组分材料性能比较稳定的总体反映,对局部的扰动反应并敏感。协同效应与混合效应相比,则是普遍存在的且形式多样,反映的是组分材料的各种原位特性。所谓原位特性意味着各相组分材料在复合材料中表现出来的性能并不只是其单独存在时的性能,单独存在时的性能不能表征其复合后材料的性能。
树脂基复合材料的力学性能
力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。
1、树脂基复合材料的刚度
树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。
由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。
对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。
2、树脂基复合材料的强度
材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。
树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。
单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。
单向树脂基复合材料的横向拉伸强度和压缩强度也不同。实验表明,横向压缩强度是横向拉伸强度的4~7倍。横向拉伸的破坏模式是基体和界面破坏,也可能伴随有纤维横向拉裂;横向压缩的破坏是因基体破坏所致,大体沿45°斜面剪坏,有时伴随界面破坏和纤维压碎。单向树脂基复合材料的面内剪切破坏是由基体和界面剪切所致,这些强度数值的估算都需依靠实验。
杂乱短纤维增强树脂基复合材料尽管不具备单向树脂基复合材料轴向上的高强度,但在横向拉、压性能方面要比单向树脂基复合材料好得多,在破坏机理方面具有自己的特点:编织纤维增强树脂基复合材料在力学处理上可近似看作两层的层合材料,但在疲劳、损伤、破坏的微观机理上要更加复杂。
树脂基复合材料强度性质的协同效应还表现在层合材料的层合效应及混杂复合材料的混杂效应上。在层合结构中,单层表现出来的潜在强度与单独受力的强度不同,如0/90/0层合拉伸所得90°层的横向强度是其单层单独实验所得横向拉伸强度的2~3倍;面内剪切强度也是如此,这一现象称为层合效应。
树脂基复合材料强度问题的复杂性来自可能的各向异性和不规则的分布,诸如通常的环境效应,也来自上面提及的不同的破坏模式,而且同一材料在不同的条件和不同的环境下,断裂有可能按不同的方式进行。这些包括基体和纤维(粒子)的结构的变化,例如由于局部的薄弱点、空穴、应力集中引起的效应。除此之外,界面粘结的性质和强弱、堆积的密集性、纤维的搭接、纤维末端的应力集中、裂缝增长的干扰以及塑性与弹性响应的差别等都有一定的影响。
树脂基复合材料的物理性能
树脂基复合材料的物理性能主要有热学性质、电学性质、磁学性质、光学性质、摩擦性质等(见表)。对于一般的主要利用力学性质的非功能复合材料,要考虑在特定的使用条件下材料对环境的各种物理因素的响应,以及这种响应对复合材料的力学性能和综合使用性能的影响;而对于功能性复合材料,所注重的则是通过多种材料的复合而满足某些物理性能的要求。
树脂基复合材料的物理性能由组分材料的性能及其复合效应所决定。要改善树脂基复合材料的物理性能或对某些功能进行设计时,往往更倾向于应用一种或多种填料。相对而言,可作为填料的物质种类很多,可用来调节树脂基复合材料的各种物理性能。值得注意的是,为了某种理由而在复合体系中引入某一物质时,可能会对其它的性质产生劣化作用,需要针对实际情况对引入物质的性质、含量及其与基体的相互作用进行综合考虑。
树脂基复合材料的化学性能
大多数的树脂基复合材料处在大气环境中、浸在水或海水中或埋在地下使用,有的作为各种溶剂的贮槽,在空气、水及化学介质、光线、射线及微生物的作用下,其化学组成和结构及各种性能会发生各种变化。在许多情况下,温度、应力状态对这些化学反应有着重要的影响。特别是航空航天飞行器及其发动机构件在更为恶劣的环境下工作,要经受高温的作用和高热气流的冲刷,其化学稳定性是至关重要的。
作为树脂基复合材料的基体的聚合物,其化学分解可以按不同的方式进行,它既可通过与腐蚀性化学物质的作用而发生,又可间接通过产生应力作用而进行,这包括热降解、辐射降解、力学降解和生物降解。聚合物基体本身是有机物质,可能被有机溶剂侵蚀、溶胀、溶解或者引起体系的应力腐蚀。所谓的应力腐蚀,是掼材料与某些有机溶剂作用在承受应力时产生过早的破坏,这样的应力可能是在使用过程中施加上去的,也可能是鉴于制造技术的某些局限性带来的。根据基体种类的不同,材料对各种化学物质的敏感程度不同,常见的玻璃纤维增强塑料耐强酸、盐、酯,但不耐碱。一般情况下,人们更注重的是水对材料性能的影响。水一般可导致树脂基复合材料的介电强度下降,水的作用使得材料的化学键断裂时产生光散射和不透明性,对力学性能也有重要影响。不上胶的或仅只热处理过的玻璃纤维与环氧树脂或聚酯树脂组成的复合材料,其拉伸强度、剪切强度和弯曲强度都很明显地受沸水影响,使用偶联剂可明显地降低这种损失。水及各种化学物质的影响与温度、接触时间有关,也与应力的大小、基体的性质及增强材料的几何组织、性质和预处理有关,此外还与复合材料的表面的状态有关,纤维末端暴露的材料更易受到损害。
聚合物的热降解有多种模式和途径,其中可能几种模式同时进行。如可通过"拉链"式的解聚机理导致完全的聚合物链的断裂,同时产生挥发性的低分子物质。其它的方式包括聚合物链的不规则断裂产生较高分子量的产物或支链脱落,还有可能形成环状的分子链结构。填料的存在对聚合物的降解有影响,某些金属填料可通过催化作用加速降解,特别是在有氧存在的地方。树脂基复合材料的着火与降解产生的挥发性物质有关,通常加入阻燃剂减少着火的危险。某些聚合物在高温条件下可产生一层耐热焦炭,这些聚合物与尼龙、聚酯纤维等复合后,因这些增强物本身的分解导致挥发性物质产生可带走热量而冷却烧焦的聚合物,进一步提高耐热性,同时赋予复合材料以优良的力学性能,如良好的坑震性。
许多聚合物因受紫外线辐射或其它高能辐射的作用而受到破坏,其机理是当光和射线的能量大于原子间的共价键能时,分子链发生断裂。铅填充的聚合物可用来防止高能辐射。紫外线辐射则一般受到更多的关注,经常使用的添加剂包括炭黑、氧化锌和二氧化钛,它们的作用是吸收或者反射紫外线辐射,有些无面填料可以和可见光一样传输紫外线,产生荧光。
力学降解是另一种降解机理,当应力的增加频率超过一个键通过平移所产生的响应能力时,就发生键的断裂,由此形成的自由基还可能对下一阶段的降解模式产生影响。硬质和脆性聚合物基体应变小,可进行有或者没有链断裂的脆性断裂,而较软但粘性高的聚合物基体大多是力学降解的。
树脂基复合材料的工艺特点
树脂基复合材料的成型工艺灵活,其结构和性能具有很强的可设计性。树脂基复合材料可用模具一次成型法来制造各种构件,从而减少了零部件的数量及接头等紧固件,并可节省原材料和工时;更为突出的是树脂基复合材料可以通过纤维种类和不同排布的设计,把潜在的性能集中到必要的方向上,使增强材料更为有效地发挥作用。通过调节复合材料各组分的成分、结构及排列方式,既可使构件在不同方向承受不同的作用力,还可以制成兼有刚性、韧性和塑性等矛盾性能的树脂基复合材料和多功能制品,这些是传统材料所不具备的优点。树脂基复合材料在工艺方面也存在缺点,比如,相对而言,大部分树脂基复合材料制造工序较多,生产能力较低,有些工艺(如制造大中型制品的手糊工艺和喷射工艺)还存在劳动强度大、产品性能不稳定等缺点。
树脂基复合材料的工艺直接关系到材料的质量,是复合效应、"复合思想"能否体现出来的关键。原材料质量的控制、增强物质的表面处理和铺设的均匀性、成型的温度和压力、后处理及模具设计的合理性都影响最终产品的性能。在成型过程中,存在着一系列物理、化学和力学的问题,需要综合考虑。固化时在基体内部和界面上都可能产生空隙、裂纹、缺胶区和富胶区;热应力可使基体产生或多或少的微裂纹,在许多工艺环节中也都可造成纤维和纤维束的弯曲、扭曲和折断;有些体系若工艺条件选择不当可使基体与增强材料之间发生不良的化学反应;在固化后的加工过程中,还可进一步引起新的纤维断裂、界面脱粘和基体开裂等损伤。如何防止和减少缺陷和损伤,保证纤维、基体和界面发挥正常的功能是一个非常重要的问题。
树脂基复合材料的成型有许多不同工艺方法,连续纤维增强树脂基复合材料的材料成型一般与制品的成型同时完成,再辅以少量的切削加工和连接即成成品;随机分布短纤维和颗粒增强塑料可先制成各种形式的预混料,然后进行挤压、模塑成型。
组合复合效应
复合体系具有两种或两种以上的优越性能,称为组合复合效应贫下中农站这样的情况很多,许多的力学性能优异的树脂基复合材料同时具有其它的功能性,下面列举几个典型的例子。
1、光学性能与力学性能的组合复合
纤维增强塑料,如玻璃纤维增强聚酯复合材料,同时具有充分的透光性和足够的比强度,对于需要透光的建筑结构制品是很有用的。
2、电性能与力学性能的组合复合
玻璃纤维增强树脂基复合材料具有良好的力学性能,同时又是一种优良的电绝缘材料,用于制造各种仪表、电机与电器的绝缘零件,在高频作用下仍能保持良好的介电性能,又具有电磁波穿透性,适制作雷达天线罩。聚合物基体中引入炭黑、石墨、酞花菁络合物或金属粉等导电填料制成的复合材料具有导电性能,同时具有高分子材料的力学性能和其它特性。
3、热性能与力学性能的组合复合
①耐热性能
树脂基复合材料在某些场合的使用除力学性能外,往往需要同时具有好的耐热性能。
②耐烧蚀性能
航空航天飞行器的工作处于严酷的环境中,必须有防护材料进行保护;耐烧蚀材料靠材料本身的烧蚀带走热量而起到防护作用。玻璃纤维、石英纤维及碳纤维增强的酚醛树脂是成功的烧蚀材料。酚醛树脂遇到高温立即碳化形成耐热性高的碳原子骨架;玻璃纤维还可部分气化,在表面残留下几乎是纯的二氧化硅,它具有相当高的粘结性能。两方面的作用,使酚醛玻璃钢具有极高的耐烧蚀性能。
F. 碳纤维增强树脂基复合材料用了哪些树脂,性能怎么样
环氧树脂,目前还没有检测性能的具体办法。
G. 高性能树脂基复合材料的介绍
本书可作为高等院校材料类专业本科高年级学生及硕士研究生的教材,也可作为从事复合材料科研、设计、生产及应用人员的参考书。
H. 高性能复合材料的重点发展方向有哪些
尽管新冠疫情持续蔓延,令行业面临诸多挑战,但到去年年底,有迹象表明,与复合材料行业相关的汽车和交通等众多领域开始复苏。运输业在虽然结构转型还远未完成,但目前行业已经开始正视挑战。然而,航空业目前还未恢复到以前水平,如今,航空航天的未来比以往任何时候都更依赖于其创新能力。
汽车工业:在未来几年内突破2017年的高水位线
与新冠疫情相关的停产对2020年的轻型汽车供需产生了极大的负面影响。2020年初的制造业停产使对材料的需求骤然停止,新冠疫情流行对经济影响进一步降低了全球对新型乘用车的需求。尽管到夏季恢复生产并且需求恢复高于预期,但2020年全球产量比上年依然下降20%。汽车用复合材料的销售量也相应下降,降至约35亿磅。
轻型汽车生产的恢复将是渐进的,并具有明显的地区差异。中国是首先受到冠状病毒影响的大市场,预计到2022年将完全恢复到2017年的水平。欧盟和北美等成熟市场的汽车需求在新冠疫情大流行之前有所放缓,并且在2025年之前恐怕难以恢复到2017年的水平。对于随市场涨跌的汽车商品供应商来说,复苏之路将是漫长而缓慢的。
幸运的是,许多复合材料不是商品,由于它们在成本、重量和性能方面与竞争材料相比具有明显优势,因此市场份额正在增加。由于二氧化碳排放和燃油经济性的法规监管,对轻质材料的需求超过了市场的增长。在2021年至2030年之间,欧洲二氧化碳排放限制将收紧60%以上。美国可能会重新考虑暂停奥巴马时代的燃油经济性标准,这可能需要在2020年至2025年之间将车队燃油经济性提高23%。
使用轻质材料(包括复合材料)可以帮助原始设备制造商OEM满足法规要求,保持消费者的吸引力。从2008年到2018年,先前的效率法规帮助复合材料在汽车应用中每年增加2%,鉴于当前的法规环境,这种趋势可能会持续下去。
然而,仅靠轻质材料并不能使OEM满足较高的燃油经济性要求。因此,汽车制造商计划在未来几年内部署一种新的混合电动汽车动力系统。这将包括大量增加混合动力、电池电动和燃料电池汽车,以补充内燃机。电动汽车的兴起为电池盒、氢燃料箱和其他要求轻量化和耐腐蚀的部件中的复合材料创造了机会。
此外,在设计这些新车时,可以利用零件整合的机会。这些因素可能使复合材料在未来十年中占据更多的汽车材料用量份额,并将有助于推动汽车复合材料的总销量在2023年之前超过2017年的水平。
复合材料行业的增长潜力可通过将汽车产量和汽车复合材料的销量指数化以2017年为基准年并预测到2025年的需求来进行说明。如果复合材料继续像过去十年那样以每年高于市场2%的速度增长,到2023年,汽车复合材料的产量将超过基准年的2017年,但全球汽车产量预计不会在2025年之前恢复到2017年的水平。
尽管2020年对于汽车行业和复合材料制造商来说是艰难的一年,但汽车复合材料的长期前景是光明的。根据成本、重量和性能方面的价值,该行业将在未来几年内突破2017年的高水位线。
2020年新冠疫情给许多行业和生活方方面面带来了重大影响和破坏,汽车和复合材料行业也不例外,两者都受到了新冠疫情的巨大影响,其影响将在未来几年内显现出来。然而,对于复合材料制造商而言,有一个好消息是,预期的汽车行业复苏、全球环境监督和电动汽车的激增将为复合材料和轻质汽车材料提供很有前途的前景。
航空航天:以创新为基础的技术解决方案对于其成功至关重要
在过去的几年里,航空航天业受到了一系列事件的巨大影响,最显著的是波音737 Max的停飞和新冠疫情流行。2020年11月18日,美国联邦航空局局长Steve Dickson取消了2019年3月13日发布的波音737 Max停飞令。但是期间的18个月给整个行业带来了巨大损失。
此外,在新冠疫情大流行期间,波音公司和空中客车公司都不得不暂时关闭其设施。正如预期的那样,波音和空中客车公司都在为大幅降低生产率和降低订单而苦苦挣扎。
随着航空航天工业的复苏,以创新为基础的技术解决方案对于其成功至关重要。利用计算机功能的项目继续推动复合材料制造业在航空航天领域的发展,其中包括集成计算材料工程(integrated computational materials engineering,ICME),它可以利用不同模型框架之间的数据流进行数字制造,3D打印部件及其完整性认证验证的差距越来越大,而通过使用分析学可以弥补这一差距。
借助ICME,航空航天制造商可以在涵盖整个组织的框架中看到敏捷性的显著优势。复合材料是理想的材料系统,可以驱动建模、分析或数字孪生方法增加价值,在这种方法中,复合材料成分、添加剂及其形态的复杂性不仅在成分选择方面而且在制造工艺方面都带来无数的性能差异。当通过计算可以显著减少客户要求与FAA认证之间的时间时,这就显得格外重要。
美国现代化新型技术和优先考虑事项的交叉点一直集中在高超音速、太空和网络安全领域,后者给整个航空航天供应链带来了巨大挑战,尤其是对保护信息的需求。从2020年11月30日开始,美国国防部(DOD)引入了一种自我评估方法,要求DOD供应链量化并报告其当前的网络安全合规性。在创新方面,政府机构继续促进初创技术开发商与一级航空航天公司之间的合作。空军AFWERX计划就是一个例子,该计划促进了整个行业、学术界和军队之间的联系。
对这些新兴技术至关重要的是材料的进步,基于马赫数5到马赫数20之间最恶劣的空间环境中生存的材料的需求,导致对增材制造用陶瓷基复合材料的研究和投资有所增加。为了在航空航天领域站稳脚跟,复合材料行业可以借鉴在聚合物基复合材料和金属基复合材料中获得的经验教训,利用ICME工作流程为陶瓷基复合材料的模型驱动设计提供依据。此外,将专家知识转换为基本的2×2正交实验设计,在同一试验中比较传统材料,将为使用新的复合材料和制造方法建立信心。
尽管基础指标历来包括高强度重量比、耐腐蚀和耐化学腐蚀性能,但新的行星外空间要求在极端高温和低温下都具有长周期服役能力。如美国航空航天学会(AIAA)标准指导委员会(SSC)等机构资源服务为标准制定做出了贡献,这将有助于使航空航天利益相关者之间的测试和其他活动标准化。
总之,航空航天的未来比以往任何时候都更依赖于其创新能力。这将需要政府、主要机构、供应链和初创公司利益相关者之间的综合发展。每个利益相关者在平衡合规性和业务模式中断以确保反弹方面将发挥重要作用。
玻璃纤维:2021年的前景更加光明
由于新冠疫情影响,2020年是复合材料行业的危机年,因为疫情引发了现金流和需求危机、供应链中断和工人安全问题。虽然2020年充满挑战,但2021年的前景似乎更加光明。
2020年初,美国复合材料行业起步相当不错,并显示出与2019年相似的良好增长迹象。到3月底,新订单推迟甚至被取消。在第二季度,特别是在4月和5月,疫情流行影响最大,导致了自大萧条以来最严重、最剧烈的经济收缩。夏季有超过2000万人失业,各行各业的工厂也被关闭。运输、建筑和海运业受到的打击最大,导致2020年第二季度美国玻璃纤维的需求与2020年第一季度相比减少了20%。
但是,2020年下半年成为经济和复合材料行业复苏最快的时期。自2020年7月以来,在刺激计划和工厂重新开张的推动下,美国复合材料行业的各种最终用途行业的需求开始增长,包括汽车、船舶和建筑行业。因此,与2020年第二季度相比,美国玻璃纤维市场在2020年第三季度增长了约23%。
在2020年第四季度,美国玻璃纤维市场保持强劲,11月的增长率与2019年11月相比约为5%。到2020年底,玻璃纤维市场无法从大流行中完全恢复过来,预计将下降约6%,需求降至24.4亿磅,而2019年为25.9亿磅。冠状病毒对整个价值链的影响都是不规律的,汽车、管道和储罐、航空航天和海洋应用呈显著下降趋势,而风能、电气和电子以及建筑业仍保持良好发展态势。
风电行业是2020年的一个亮点,尽管由于供应链瓶颈、跨境运输问题和政府的限制在3月和4月暂时放缓,但风能产业仍实现了两位数的增长。总体而言,市场增长是因为风电场开发商急于在年底预期到期之前及时开工,以获得生产税抵免资格。
COVID-19迫使高管们重新思考复合材料行业的未来。在某些细分市场中,过剩的产能加剧了缓慢的复苏,如航空航天业。波音公司首席执行官Dave Calhoun估计,航空旅行需要2至3年时间才能恢复到COVID之前的水平。
消费者对可持续性的意识也越来越高,这促使行业参与者在材料和复合材料零件的生产中探索绿色材料、可再生能源和回收技术。此外,大多数部门越来越多地使用数字技术来改变工作和劳动力。
在去年12月批准的新刺激方案和冠状病毒疫苗的帮助下,Lucintel预计2021年第1季度和第2季度在美国玻璃纤维行业中将有良好的复苏。汽车、住房、管道和储罐、电气和电子产品、消费品和海洋的有利趋势将导致2021年玻璃纤维市场以8%至10%的速度增长,达到或超过2019年的需求水平。
碳纤维:所有细分市场都具有巨大增长潜力
自2010年以来,全球碳纤维市场已从不到4万吨增长到2019年的10万吨以上。在此期间,碳纤维增长平稳且不间断,每年增长速度达到10%到12%。
但是2020年,随着COVID-19大流行来袭,全球碳纤维几乎在一夜之间发生了变化。2020年,全球对碳纤维的需求总计约为10.5万吨,仅比2019年增长1%,预计在2021年,增长幅度也仅为1%。
碳纤维市场受到许多领域应用增长的推动,例如航空航天、风能、体育用品、船舶、汽车、压力容器等。在2020年之前,所有这些细分市场的增长率以及整个行业的增长率都在稳步上升。
但是随着2020年初边境的关闭,国际航空旅行停止,飞机停飞,飞机制造商大幅削减了生产率,碳纤维行业似乎在瞬间失去了动力。碳纤维在航空航天领域的应用占工业总量的20%以上,占行业价值的40%。商业航空业的放缓严重影响了碳纤维行业,要恢复到疫情之前的水平可能要花费数年的时间。
尽管航空航天方面的消息令人沮丧,但2020年并非所有的都是坏消息。当人们学会了居家工作和在家附近度假时,一些市场表现良好,如在2020年,体育用品的需求跃升了30%至40%,风力涡轮机的安装按计划继续比上一年增加了20%。
按照最终用途市场划分,2020年碳纤维应用市场细分大致如下:
风能—23%;
航空航天—20%;
体育用品—12%;
汽车—10%;
压力容器—10%;
用于注塑塑料和其他短纤维应用的复合材料—8%;
建筑和基础设施—8%;
其他细分市场—9%
正如疫情之前的时期一样,随着新应用和项目的投产,碳纤维的所有细分市场都具有巨大的增长潜力。在新冠疫情暴发之前,碳纤维具有吸引力的潜在长期大趋势保持不变。碳纤维的优点——刚度、高强度重量比、耐腐蚀性、导电性等——至今仍然有效。为了实现增长,碳纤维和CFRP零件必须同时具有技术和经济效益。
因此,人们对推动碳纤维整体需求的各个行业和应用有着不同的看法,有些行业下滑,有些行业则会上涨。那些已经收缩的领域尤其是航空航天领域,导致碳纤维行业的总量在2020年看起来相对平稳,预计2021年只会有非常温和的增长。但是,长期前景更为乐观。在未来几年内,可以合理预期碳纤维行业将再次恢复较强劲的同比增长。
至于碳纤维行业的产能,全球碳纤维生产商的铭牌产能合计约为16万吨,足以满足当前需求。一些生产商正在计划增加新的工厂和产能,以满足日益增长的未来需求。最后,必须牢记,碳纤维仍处于早期发展阶段。飞机是通过手工制造的,每天只有一两架;其他应用稍高一些,但仍然没有自动化。与之相比,汽车的批量生产速度超过每分钟一辆。如今,碳纤维仍主要用于小批量应用,尚未实现“大量生产”。
总而言之,新冠疫情给碳纤维行业带来了一定的打击,但这只是暂时的。尽管在这不平凡的一年里发生了很多事情,但碳纤维的未来还是充满希望的,未来几年的发展也将会十分有趣。
建筑与基础设施:建设有所缩减,可能是行业的转折点
当人们在谈论复合材料主要应用领域时,建筑工业往往不是位居榜首,但它却一直在发展。全球建筑经济是世界上最大的建筑经济体之一,也是最大的资源和能源消费领域之一,它同样也是最大的污染源之一,这些因素共同推动了对可持续发展的全面需求,复合材料在其中可以发挥作用。
根据《全球建筑展望》和牛津经济研究院发布的《2030年全球建筑》,预计到2030年,全球建筑业产值将增长85%,达到15.5万亿美元,其中大部分增长将集中在美国、中国和印度。麦肯锡全球研究所报告称,到2025年,全球20个最大的城市将需要3600万套新住房。
建筑业的其他研究表明,美国23%的空气污染、40%的水污染和50%的垃圾填埋场垃圾都是建筑业造成的。此外,美国绿色建筑委员会说,建筑物和建筑项目每年约占全球能源消耗的40%。
复合材料在建筑中的作用是多种多样的,从窗框和木材增强到复合材料钢筋和纤维增强混凝土。无论使用哪种材料,复合材料的轻量化、设计灵活性和耐用性优势都有助于加快施工速度,提高建筑的可持续性得分。
以阿拉伯联合酋长国(UAE)迪拜正在建设的未来博物馆为例,这座78米高的建筑有七层楼,里面有一个环形外壳,位于三层裙楼顶上。圆环的外立面包括1024块阻燃复合材料板,每个面板均覆盖有不锈钢,具有独特的3D形状,并融合了模制的阿拉伯文字。
在美国纽约州布鲁克林,增材制造复合材料帮助加快了45层高的One South First和相连的10 Grand的建设速度,这些建筑位于Domino Park内。这些建筑物包括一个复杂的混凝土立面,需要通过浇口预制数百个混凝土框架。Gate聘请了添加剂工程解决方案公司(AES)来帮助制造用于塑造混凝土框架的模具。在部分生产中,AES选择了LNP Thermomp AM复合材料,一种高模量、低翘曲的材料,由SABIC提供的短切碳纤维增强ABS树脂材料。
由于新冠疫情的到来,2021年的住宅建设和公共建设都会有所委缩。大多数基础设施和公共建筑的建设将受到政府实体的预算平衡、税收和收费收入的下降以及与大流行相关的未预算支出的限制。在短期内,只有少数非住宅利基市场看起来很有希望。其中包括对许多类型的现有设施进行翻新,以适应与冠状病毒相关的要求。此外,在医院和疗养院之外需要更多的设施来提供医疗、筛查和测试。学校建设可能是部分例外。随着更多家庭的搬迁,对新建和改建或扩建学校的需求将不断增长。
新冠疫情的流行增加了对替代稀缺的现场熟练工人的方式的需求。在某种程度上,复合材料和产品可以替代现场制造,或者由经验较少或技能水平较低的工作人员更快地安装,即使产品本身成本更高,对复合材料的需求也将不断增长。
因此,对于承包商而言,2021年可能是充满挑战的一年。但这可能标志着希望打入建筑市场的复合材料制造商的转折点。(广东博皓复合材料有限公司成立于2004年,有着近二十年复合材料行业服务经验,是一家复合材料行业整体解决方案服务商。我们致力于为客户提供完善的顾问式采购服务,先进的复合材料产品解决方案,顶尖的复合材料工艺及技术服务,高品质的复合材料模具设计与制造。)