A. 热固性树脂的分类
除不饱和聚酯树脂、环氧树脂、酚醛树脂外,热固性树脂主要有以下品种。
一、三聚氰胺甲醛树脂
三聚氰胺甲醛树脂是由三聚氰胺和甲醛缩聚而成的热固性树脂。用玻璃纤维增强的三聚氰胺甲醛层压板具有高的力学性能、优良的耐热性和电绝缘性及自熄性。
二、呋喃树脂
由糠醛或糠醇本身进行均聚或与其它单体进行共缩聚而得到的缩聚产物,习惯上称为呋喃树脂。这类树脂的品种很多,其中以糠醛苯酚树脂、糠醛丙酮树脂及糠醇树脂较为重要。
(1)糠醛苯酚树脂。糠醛可与苯酚缩聚生成二阶热固性树脂,缩聚反应一般用碱性催化剂。常用的碱性催化剂有氢氧化钠、碳酸钾或基它碱土金属的氢氧化物。糠醛苯酚树脂的主要特点是在给定的固化速度时有较长的流动时间,这一工艺性能使它适宜用作模塑料。用糠醛苯酚树脂制备的压塑粉特别适于压制形状比较复杂或较大的制品。模压制品的耐热性比酚醛树脂好,使用温度可以提高10~20℃,尺寸稳定性、电性能也较好。
(2)糠醛丙酮树脂。糠醛与丙酮在碱性条件下进行缩合反应形成糠酮单体缤纷可与甲醛在酸性条件下进一步缩聚,使糠酮单体分子间以次甲基键连接起来,形成糠醛丙酮树脂。
(3)糠醇树脂。糠醇在酸性条件下很容易缩聚成树脂。一般认为,在缩聚过程中糠醇分子中的羟甲基可以与另一个分子中的α氢原子缩合,形成次甲基键,缩合形成的产物中仍有羟甲基,可以继续进行缩聚反应,最终形成线型缩聚产物糠醇树脂。
呋喃树脂的性能及应用——未固化的呋喃树脂与许多热塑性和热固性树脂有很好的混容性能,因此可与环氧树脂或酚醛树脂混合来加以改性。固化后的呋喃树脂耐强酸(强氧化性的硝酸和硫酸除外)、强碱和有机溶剂的侵蚀,在高温下仍很稳定。呋喃树脂主要用作各种耐化学腐蚀和耐高浊的材料。
(1)耐化学腐蚀材料 呋喃树脂可用来制备防腐蚀的胶泥,用作化工设备衬里或其它耐腐材料。
(2)耐热材料 呋喃玻璃纤维增强复合材料的耐热性比一般的酚醛玻璃纤维增强复合材料高,通常可在150℃左右长期使用。
(3)与环氧树脂或酚醛树脂混合改性 将呋喃树脂与环氧树脂或酚醛树脂混和使用,可改进呋喃玻璃纤维增强复合材料的力学性能以及制备时的工艺性能。这类复合材料已广泛用来制备化工反应器的搅拌装置、贮槽及管道等化工设备。
三、聚丁二烯树脂
聚丁二烯树脂是一种分子量不高的液体,大分子主链上主要包含1,2-结构,又称为1,2-聚丁二烯树脂。这种树脂的大分子链上具有很多乙烯基侧链,所以,在游离基引发剂存在下,可进一步交联成三向网络结构的体型高聚物。
1,2-聚丁二烯树脂可由丁二烯在烷基锂、碱金属(常用金属钠)或可溶性碱金属复合物(如钠-萘体系)引发剂引发下,按阴离子型聚合历程合成。1,2-聚丁二烯树脂大分子链完全由碳氢组成,因此树脂固化后有优良的电性能、弯曲强度较好、耐水性优良。
四、有机硅树脂
在有机硅聚合物中,具有实用价值和得到广泛应用的主要是由有机硅单体(如有机卤硅烷)经水解缩聚而成的主链结构为硅氧键的高分子有机硅化合物。这种主链由硅氧键构成,侧链通过硅原子与有机基团相连的聚合物,称为聚有机硅氧烷。
有机硅树脂则是聚有机硅氧烷中一类分子量不高的热固性树脂。用这类树脂制造的玻璃纤维增强复合材料,在较高的温度范围内(200~250℃)长时间连续使用后,仍能保持优良的电性能,同时,还具有良好的耐电弧性能及憎水防潮性能。有机硅树脂的性能如下:
(1)热稳定性。有机硅树脂的Si-O键有较高的键能(363kJ/mol),所以比较稳定,耐热性和耐高温性能均很高。一般说来其热稳定性范围可达200~250℃,特殊类型的树脂可以更高一些。
(2)力学性能。有机硅树脂固化后的力学性能不高,若在大分子主链上引进氯代苯基,可提高力学性能。有机硅树脂玻璃纤维层压板的层间粘接强度较差,受热时弯曲强度有较大幅度的下降。若在主链中引入亚苯基,可提高刚性、强度及使用温度。
(3)电性能。有机硅树脂具有优良的电绝缘性能,它的击穿强度、耐高压电弧及电火花性能均较优异。受电弧及电火花作用时,树脂即使裂解而除去有机基团,表面剩下的二氧化硅同样具有良好的介电性能。
(4)憎水性。有机硅树脂的吸水性很低,水珠在其表面只能滚落而不能润湿。因此,在潮湿的环境条件下,有机硅树脂玻璃纤维增强复合材料仍能保持其优良的性能。
(5)耐腐蚀性能。有机硅树脂玻璃纤维增强复合材料可而浓度(质量)10%~30%硫酸、10%盐酸、10%~15%氢氧化钠、2%碳酸钠及3%过氧化氢。醇类、脂肪烃和润滑油对它的影响较小,但耐浓硫酸及某些溶剂(如四氯化碳、丙酮和甲苯)的能力较差。
B. DAP-A树脂(下列路线图中的β、γ聚合物)是一种优良的热固性树脂,被用作高级UV油墨的一种成分。用UV油
(2)(2分)①②④(全对2分,多答或少答版一个扣权1分) (3)(2分) ![]() (6)(2分)B、C(每空1分) C. 热固性树脂相关名词解释 热固性树来脂:树脂加热后产生化源学变化,逐渐硬化成型,再受热也不软化,也不能溶解。热固性树脂其分子结构为体型,它包括大部分的缩合树脂,热固性树脂的优点是耐热性高,受压不易变形。其缺点是机械性能较差。热固性树脂有酚醛、环氧、氨基、不饱和聚酯以及硅醚树脂等。热塑性树脂:是具有受热软化、冷却硬化的性能,而且不起化学反应,无论加热和冷却重复进行多少次,均能保持这种性能。凡具有热塑性树脂其分子结构都属线型。它包括含全部聚合树脂和部分缩合树脂。热塑性树脂有:PE-聚乙烯、PVC-聚氯乙烯、PS-聚苯乙烯、PA-聚酰胺、POM-聚甲醛、PC-聚碳酸酯、聚苯醚、聚砜、橡胶等。热塑性树脂的优点是加工成型简便,具有较高的机械能。缺点是耐热性和刚性较差。在室温下呈橡胶弹性,加热又能流动的弹性体叫做热塑性弹性体。 D. 热固性树脂和热固性聚合物一样吗 树脂 通常是指受热后有硬化或熔融范围,软化时在外力作用下有流动倾向,常温下是固态、半固态,有时也可以是液态的有机聚合物。广义地讲,可以作为塑料制品加工原料的任何高分子化合物都称为树脂的。 聚合物 一般指高分子化合物 高分子化合物(macromolecular compound):所谓高分子化合物,是指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。 举例:纤维素、蛋白质、蚕丝、橡胶、淀粉等天然高分子化合物,以及以高聚物为基础的合成材料,如各种塑料,合成橡胶,合成纤维、涂料与粘接剂等。 有机高分子化合物可以分为天然有机高分子化合物(如淀粉、纤维素、蛋白质、天然橡胶等)和合成有机高分子化合物(如聚乙烯、聚氯乙烯、酚醛树脂、顺丁橡胶等等),它们的相对分子质量可以从几万直到几百万或更大,但他们的化学组成和结构比较简单,往往是由无数(n)结构小单元以重复的方式排列而成。 所以聚合物的范围更大,包含树脂。但是一般情况下热固性树脂和热固性聚合物是等同。 热固性指加热时不能软化和反复塑制,也不在溶剂中溶解的性能,体型聚合物具有这种性能。 所以当说到热固性的时候其实就已经限制这个聚合物是树脂了。 E. 热固性树脂怎样提高防老化等级 热固性树脂在固化后,由于分子间交联,形成网状结构,因此刚性、硬度高、耐版温高、不易燃、制品尺寸稳定性好,权但性脆。热固性树脂提高防老化性能可以使用紫外线吸收剂RQT-X-1能够吸收波长为220-400纳米的紫外线,更大程度提高热固性树脂的防老化等级。 F. 热固性树脂有哪些
除不饱和聚酯树脂、环氧树脂、酚醛树脂外,热固性树脂主要有以下品种。 G. 请问各位:什么是热塑性树脂和热固性树脂谢谢 热塑性树脂是指可以循环反复加热、冷却,性能仍然保持不变的树脂,这种树脂因版为可以被反复使用和回收,生权产出来的次品和瑕疵品可以被再次加工利用,可以降低生产成本。聚苯硫醚(PPS)就是一种高性能的热塑性树脂。与热塑性树脂相对的是热固性树脂,热固性树脂是指加热到一定温度变成固体,固化后即使加热温度再上升也不会熔/溶化的树脂。 H. 环氧树脂为什么属于热固性树脂
热固和热塑是相对的两个概念。 I. 热固性树脂加入固化剂没加热会发生反应吗 中午好,一般的热固性树脂加入固化成份比如酸、酸酐或者胺后,在常回温时不会发生聚答合反应(也不绝对,但是低温环境中开环速率慢的简直无法忍受,会长期保持图中这种粘稠液态外观,塑料加工行业的使用UF或者环氧的毕竟谁也不希望3、4年才固化完成吧?)。热固化之所以是这种物理方式,主要是利用高温来强制使单体与固化剂发生反应来开环与闭环聚合,它在化学交联前必备因素就是为其提供足够高的能量来使固化剂超越能垒——比如MF、UF、酚醛、糠醛呋喃和酸酐环氧等等都是这种机理,请参考。 J. 热固性树脂的设备制备 热固性树脂多用缩聚(见聚合)法生产。常用热固性树脂有酚醛树脂版、脲醛树脂、三聚氰胺-甲醛权树脂、环氧树脂、不饱和树脂、聚氨酯、聚酰亚胺等。热固性树脂主要用于制造增强塑料、泡沫塑料、各种电工用模塑料、浇铸制品等,还有相当数量用于胶粘剂和涂料。 与聚合树脂属于热固性树脂相关的资料
热点内容
农村污水治理都有哪些参考
浏览:10
水蒸气蒸馏物质的量之比
浏览:540
进口ro滤芯什么的好
浏览:995
钠离子交换浓水
浏览:261
净水器一直咕咕叫是什么原因
浏览:136
净水器tds值降多少算正常
浏览:22
炼汞蒸馏炉
浏览:831
水壶里边有了水垢怎样处理
浏览:89
买净化器看什么
浏览:86
净水器滤芯一级是什么
浏览:508
室外污水波纹管焊接参数
浏览:732
青岛污水池膜结构盖板多少钱
浏览:2
如何选择客厅净水器
浏览:530
整栋楼的污水主管道如何疏通
浏览:987
童衣树脂四合扣
浏览:775
不锈钢开水壶水垢怎么清理
浏览:58
营口红润污水处理
浏览:232
超滤水烧开后有白色沉淀物是什么
浏览:399
园区污水排放量如何计算
浏览:534
六年级科学污水和污水处理评课
浏览:392
|