导航:首页 > 滤芯资讯 > 管式超滤膜的分离机理是什么

管式超滤膜的分离机理是什么

发布时间:2025-10-10 11:46:26

超滤技术使用了什么原理

‍‍

超滤处理过程无相变,对物料中组成成分无任何不良影响,且分离、纯化、浓缩过程中始终处于常温状态,特别适用于热敏性物质的处理,完全避免了高温对生物活性物质破坏这一弊端,有效保留原物料体系中的生物活性物质及营养成分。超滤设备系统回收率高,可实现物料的高效分离、纯化及高倍数浓缩。系统制作材质采用卫生级管阀,现场清洁卫生,满足GMP或FDA生产规范要求。系统工艺设计先进,集成化程度高,结构紧凑,占地面积少,操作与维护简便,工人劳动强度低。超滤设备系统能耗低,生产周期短,与传统工艺设备相比,能有效降低生产成本,提高企业经济效益。

‍‍

Ⅱ 超过滤的作用

超滤又称超过滤,用于截留水中胶体大小的颗粒,而水和低分子量溶质则允许透过膜。超滤的机理是指由膜表面机械筛分、膜孔阻滞和膜表面及膜孔吸附的综合效应,以筛滤为主。
家用超滤净水器的膜过滤方法为超滤膜过滤。超滤膜大多由醋酯纤维或与其性能类似的高分子材料制得。最适于处理溶液中溶质的分离和增浓,也常用于其他分离技术难以完成的胶状悬浮液的分离,其应用领域在不断扩大。以压力差为推动力的膜过滤可区分为超滤膜过滤、微孔膜过滤和逆渗透膜过滤三类。它们的区分是根据膜层所能截留的最小粒子尺寸或分子量大小。以膜的额定孔径范围作为区分标准时,则微孔膜(MF)的额定孔径范围为0.02~10μm;超滤膜(UF)为0.001~0.02μm;逆渗透膜(RO)为0.0001~0.001μm。由此可知,超滤膜最适于处理溶液中溶质的分离和增浓,或采用其他分离技术所难以完成的胶状悬浮液的分离。超滤膜的制膜技术,即获得预期尺寸和窄分布微孔的技术是极其重要的。孔的控制因素较多,如根据制膜时溶液的种类和浓度、蒸发及凝聚条件等不同可得到不同孔径及孔径分布的超滤膜。超滤膜一般为高分子分离膜,用作超滤膜的高分子材料主要有纤维素衍生物、聚砜、聚丙烯腈、聚酰胺及聚碳酸酯等。超滤膜可被做成平面膜、卷式膜、管式膜或中空纤维膜等形式,广泛用于如医药工业、食品工业、环境工程等。我们都知道筛子是用来筛东西的,它能将细小物体放行,而将个头较大的截留下来。可是,您听说过能筛分子的筛子吗?超膜 --这种超级筛子能将尺寸不等的分子筛分开来!那么,到底什么是超滤膜呢? 超滤膜是一种具有超级“筛分”分离功能的多孔膜。它的孔径只有几纳米到几十纳米,也就是说只有一根头发丝的1‰!在膜的一侧施以适当压力,就能筛出大于孔径的溶质分子,以分离分子量大于500道尔顿、粒径大于2~20纳米的颗粒。超滤膜的结构有对称和非对称之分。前者是各向同性的,没有皮层,所有方向上的孔隙都是一样的,属于深层过滤;后者具有较致密的表层和以指状结构为主的底层,表层厚度为0.1微米或更小,并具有排列有序的微孔,底层厚度为200~250微米,属于表层过滤。工业使用的超滤膜一般为非对称膜。超滤膜的膜材料主要有纤维素及其衍生物、聚碳酸酯、聚氯乙烯、聚偏氟乙烯、

Ⅲ 超滤膜的分类方法

按膜的材料分类
天然膜:生物膜、天然物质改性或再生制成的膜分类
合成膜:无机膜、高分子聚合物膜
按膜的结构分类:
多孔膜:微孔介质、大孔膜
非多孔膜:无机膜、高分子聚合物膜
液膜:无固相支撑型又称乳化液膜;有固相支撑型又称固定膜、液膜
按膜的功能分类
分离功能膜:气体分离膜、液体分离膜、离子交换膜、化学功能膜
能量转化功能膜:浓差能量转化膜、光能转化膜、机械能转化膜、分类转化膜、导电膜
生物功能膜:探感膜、生物反应器、医用膜
按膜的用途分类
气-相系统用膜:伴有表面流动的分子流动、气体扩散、聚合物膜解扩散流动、在溶剂化聚合物膜中扩散流动
气-液系统用膜:大孔结构
(移去气流中的雾沫夹带或将气体引相)、微孔结构制成超细孔过滤器)、聚合物(气体扩散进入液体或从液体中移去某种气体)
液-液系统用膜:气体从一种
液相进入另一液相、溶质或溶剂从液相渗透到另一液相
气-固系统用膜:用膜除去气体中的颗粒
液-固系统用膜:大孔介质过滤淤浆、生物废料处理、破乳
固-固系统用膜:基于颗粒大小的固体筛分
按膜的作用机理分类
吸附性膜:多孔膜(多孔石英玻璃、活性炭、硅胶等)、反应膜(膜有能与渗透过来的物质发生反应的物质)
扩散性膜:
聚合物膜扩散性的溶解流动)、金属膜(原子状态扩散)、玻璃膜(分子状态的扩散)
离子交换膜:阳离子交换树脂膜、阴离子交换树脂膜
选择渗透膜:渗透膜、反渗透膜、电渗析膜
非选择性膜:加热处理的微孔玻璃、过滤型的微孔膜

Ⅳ 超滤膜装置如何进行工作

超滤膜基本原理是在常温下以一定压力和流量,利用不对称微孔结构和半透膜介质,依靠膜两侧的压力差作为推动力,以错流方式进行过滤,使溶剂及小分子物质通过,大分子物质和微粒子如蛋白质、水溶性高聚物、细菌、胶体等被滤膜阻留,从而达到分离、分级、纯化、浓缩目的的一种新型膜分离技术。超滤膜元件是把一束束的膜丝两端以环氧树脂密封,使得每根膜丝外表面之间密封,与膜外壳之间联合起来形成独立的原水空间和产水空间。 超滤膜装置则是把单支的超滤膜元件按一定的排列布置并联到一起,通过主干管道的自动阀门和水泵控制所有超滤膜元件过滤、正洗、反洗的周期性运行,并配备必要的保护措施的集成化设备。

Ⅳ 陶氏超滤膜在污水处理中有何优势

陶氏超滤膜在污水处理中最重要的优势就是:
与传统的污水处理方法比较,它处内理出来的水容质非常稳定。传统方法,比如活性淤泥法的问题是,如果污水水质不一样,加药量就要有所改变,调整运行需要很好的经验,很难做得非常完美。所以用传统方法处理出来的水质会有变动,时好时坏。而膜是单纯的物理分离方式,不管水质怎样,得到的水永远是一样水质的,不会因为处理工艺、技术、操作或原水的水质而发生变化。

Ⅵ GE纳滤膜对矿物质饮用水处理有什么作用能达到什么样的效果

ge纳滤膜
而各种膜分离过程,首先是在水处理方面得到应用,而后推广到冶金、石油、化工、仪器、医药、仿生等诸多领域。
微滤、超滤、纳滤、反渗透、渗析、电渗析等技术己经广泛在给水处理、纯水制备、海水淡化、苦咸水淡化等水处理领域中得到推广和应,并在水处理的各个方面,ge滤芯安装给传统的水处理工艺以巨大的冲击和挑战。膜分离技术有着传统的给水处理工艺不可比拟的优点:
首先,膜分离技术可适用于从无机物到有机物,从病毒、细菌到微粒甚至特殊溶液体系的广泛分离,可充分确保水质,且处理效果不受原水水质、运行条件等因素的影响。
第二,膜分离过程为物理过程,不需加入化学药剂,提高了人们对水处理过程的信赖程度,易于为群众接受,属为人们称道的“绿色”技术。
第三,膜分离技术分离装置简单,占地面积小,系统集成容易,便于运输、拆卸、安装,运行环境清洁、整齐,可称之为真正意义上的“造水工厂”。
第四,膜分离过程系统简单、操作容易,且易控制,便于维修,有利于生产自动化的推广与普及。作为一种新兴的水处理技术,膜分离以其无可非议的先进性得到了世界各国学者们的广泛关注。
2纳滤技术概述
膜分离技术被称为“二十一世纪的水处理技术”,自70年代应用于水处理领域后,得到了广泛的研究和空前的发展,受到世界各国水处理工作者的普遍关注,开展了不同水平。不同层次的理论研究和技术开发、应用。在给水处理领域应用最为广泛的是一系列的低压膜,如纳滤膜、反渗透膜等。其中,纳滤膜法水处理技术以其特殊的优势,获得了世界各国的水处理工作者的普遍关注,在水处理技术的研究和开发领域取得了可喜的成绩。
纳滤技术是从反渗透技术中分离出来的一种膜分离技术,是超低压反渗透技术的延续和发展分支。一般认为,纳滤膜存在着纳米级的细孔,且截留率大于95%的最小分子约为1mm,所以近几年来这种膜分离技术被命名为:Nanofiltration,简称:NF,中文译为:纳滤。在过去的很长一段时间里,纳滤膜被称为超低压反渗透膜(LPRO:LowPressureReverseOsmosis),或称选择性反渗透膜或松散反渗透膜(LooseRO:LooseReverseOsmosis)。日本学者大谷敏郎曾对纳滤膜的分离性能进行了具体的定义:操作压力≤1.50mPa,截留分子量200~1000,NaCl的截留率≤90%的膜可以认为是纳滤膜[1]。纳滤技术已经从反渗透技术中分离出来,成为介于超滤和反渗透技术之间的独立的分离技术,己经广泛应用于海水淡化、超纯水制造、食品工业、环境保护等诸多领域,成为膜分离技术中的一个重要的分支。
3纳滤膜
纳滤过程的关键是纳滤膜。对膜材料的要求是:具有良好的成膜性、热稳定性、化学稳定性、机械强度高、耐酸碱及微生物侵蚀、耐氯和其它氧化性物质、有高水通量及高盐截留率、抗胶体及悬浮物污染,由两部分结构组成:一部分为起支撑作用的多孔膜,其机理为筛分作用;另一部分为起分离作用的一层较薄的致密膜,其分离机理可用溶解扩散理论进行解释。对于复合膜,可以对起分离作用的表皮层和支撑层分别进行材料和结构的优化,可获得性能优良的复合膜。膜组件的形式有中空纤维、卷式、板框式和管式等。其中,中空纤维和卷式膜组件的填充密度高,造价低,组件内流体力学条件好;但是这两种膜组件的制造技术要求高,密封困难,使用中抗污染能力差,对料液预处理要求高。而板框式和管式膜组件虽然清洗方便、耐污染,但膜的填充密度低、造价高。因此,在纳滤系统中多使用中空纤维式或卷式膜组件。
在我国,对纳滤过程的理论研究比较早,但对纳滤膜的开发尚处于初步阶段。在美国、日本等国家,纳滤膜的开发已经取得了很大的进展,达到了商品化的程度,如美国Filmtec公司的NF系列纳滤膜、日本日东电工的NTR-7400系列纳滤膜及东丽公司的UTC系列纳滤膜等都是在水处理领域中应用比较广泛的商品化复合纳滤膜。
对于一般的反渗透膜,脱盐率是膜分离性能的重要指标,但对于纳滤膜,仅用脱盐率还不能说明其分离性能。有时,纳滤膜对分子量较大的物质的截留率反而低于分子量较小的物质。纳滤膜的过滤机理十分复杂。由于纳德膜技术为新兴技术,因此对纳滤的机理研究还处于探索阶段,有关文献还很少。但鉴于纳滤是反渗透的一个分支,因此很多现象可以用反渗透的机理模型进行解释。关于反渗透的膜透过理论[2]有朗斯代尔、默顿等的溶解扩散理论;里德、布雷顿等的氢键理论;舍伍德的扩散细孔流动理论;洛布和索里拉金提出的选择吸附细孔流动理论和格卢考夫的细孔理论等。
纳滤膜的过滤性能还与膜的荷电性、膜制造的工艺过程等有关。不同的纳滤膜对溶质有不同的选择透过性,如一般的纳滤膜对二价离子的截留率要比一价离子高,在多组分混合体系中,对一价离子的截留率还可能有所降低。纳滤膜的实际分离性能还与纳滤过程的操作压力、溶液浓度、温度等条件有关。如透过通量随操作压力的升高而增大,截留率随溶液浓度的增大而降低等。同时可以查看中国污水处理工程网更多技术文档。
4纳滤技术的工程应用
纳滤膜的孔径范围介于反渗透膜和超滤膜之间,其对二价和多价离了及分子量在200~1000之间的有机物有较高的脱除性能,而对单价离子和小分子的脱除率则较低。而且,与反渗透过程相比,纳滤过程的操作压力更低(一般在1.0Mpa左右);同时由于纳滤膜对单价离子和小分子的脱除率低,过程渗透压较小,所以,在相同条件下,纳滤与反渗透相比可节能15%左右[3]。因而在水处理中,纳滤被广泛应用于饮用水的浓度净化、水软化、有机物和生物活性物质的除盐和浓缩、水中三卤代物前躯物的去除、不同分子量有机物的分级和浓缩、废水脱色等领域。
Sibille等研究了法国Auverw-sur-Oise市的地下水,对纳滤和生物处理饮用水(臭氧—生物活性炭过滤)进行了对比。结果表明,纳滤可以显著提高饮用水的水质,减少细菌数量和有机物的浓度,从而使后续消毒更有效,也减少了三氯甲烷的形成。但是,研究又指出,少量极易被细菌等吸收的可生物降解的有机物质(BOM:BiologicalOrganicMatter)、可同化有机碳(AOC:AssimilableOrganicCarbon)也能透过纳滤膜。
I.C.Escobar等的研究[4]中,将石灰软化设备与纳滤进行比较。结果表明,纳滤系统可有效去除原水中除了AOC以外的几乎全部溶解性有机碳(DOC:DissolvedOrganicCarbon)含量。
虽然,纳滤技术的工程应用在美国、日本等国家的给水行业中已经得到大规模的推广,但在我国,将纳滤技术广泛地应用于工程实践的条件还不成熟,尚处于尝试阶段、本要问题是国产纳滤膜的性能指标不够过关。是纳滤技术在高硬度海岛苦咸水净化的实际应用。该工程由国家海洋局杭州水处理中心设计,于1997年4月正式投入生产淡水,系统连续正常运行27个月,淡化水符合国家生活饮用水卫生标准[5]。
有关学者曾采用纳滤膜对某市自来水(以污染严重的淮河水为原水)进行深度处理试验,研究了纳滤循环制水试验工艺的效果。结果表明,循环试验工艺与单级纳滤工艺相比,在同样较低的压力下,出水率较高,并且能耗降低,减少了浓水排放。即使在回收率较高(80%)的情况下,膜出水中的总有机碳(TOC)仍比自来水低50%;对致会变物的去除十分显著,使Ames试验阳性的水转为阴性[6]。
5纳滤膜应用中的问题
纳滤膜有较高的膜通量,可以截留有机及无机污染物,而对人体必需的一些离子又有较大的透过率,因此,把纳滤膜应用于饮用水的深度净化较其它的膜分离技术有较大的优势。把钢滤膜应用于给水处理领域的主要问题是
a)膜表面容易形成附着层,使膜的通量显著下降;
b)操作结束后,膜的清洗较困难;
c)膜的耐用性差。
世界各国的水处理工作者正在进行广泛的研究,寻求解决这些问题的途径。纳滤技术在给水处理领域的推广应用还依赖于这些问题的进一步解决。

Ⅶ 过滤膜的分类有哪些

过滤膜是一种用于分离液体或气体中的固体颗粒、微生物、大分子等的半透膜。根据过滤膜的材质、孔径大小、过滤机理和应用领域,过滤膜可以分为多种类型:
1. 按材质分类:
- 有机膜:由聚合物材料制成,如聚砜、聚丙烯、聚偏氟乙烯(PVDF)、聚醚砜(PES)等。
- 无机膜:如陶瓷膜、金属膜等,通常具有耐高温、耐化学腐蚀的特点。
2. 按孔径大小分类:
- 微滤膜(MF):孔径在0.1-10微米之间,用于去除悬浮固体、细菌等。
- 超滤膜(UF):孔径在1-100纳米之间,用于去除大分子有机物、病毒等。
- 纳滤膜(NF):孔径在1纳米以下,用于去除小分子有机物、多价离子等。
- 反渗透膜(RO):孔径在0.1-1纳米之间,用于去除溶解盐、单价离子等。
3. 按过滤机理分类:
- 筛分过滤:基于物理孔径大小的分离。
- 吸附过滤:基于膜表面对某些物质的吸附作用。
- 电荷排斥:基于膜和待分离物质之间的电荷相互作用。
- 亲和过滤:基于膜表面特定化学基团与待分离物质之间的亲和作用。
4. 按结构分类:
- 平板膜:平面结构,适用于实验室和小规模工业应用。
- 管式膜:管状结构,适用于较大规模的工业应用。
- 中空纤维膜:中空的纤维状结构,具有较高的装填密度。
- 螺旋卷式膜:膜被卷绕在多孔支撑管上,形成螺旋状结构。
5. 按应用领域分类:
- 水处理膜:用于饮用水、废水处理等。
- 生物制药膜:用于蛋白质、疫苗等生物制品的纯化。
- 食品工业膜:用于果汁、乳制品等食品的浓缩和分离。
- 化工工业膜:用于化学品的分离和纯化。
6. 按功能分类:
- 透气膜:允许特定气体通过,而阻止液体和颗粒物。
- 防水透气膜:既防水又透气,常用于服装和电子产品的防水透气。
过滤膜的选择通常取决于具体的应用需求,包括待分离物质的大小、性质、处理量以及成本效益等因素。

Ⅷ 微滤膜的介绍

微滤膜能截留复0.1-1微米之间的颗粒。微制滤膜允许大分子和溶解性固体(无机盐)等通过,但会截留悬浮物,细菌,及大分子量胶体等物质。微滤膜的运行压力一般为:0.3-7bar。微滤膜过滤是世界上开发应用最早的膜技术,以天然或人工合成的高分子化合物作为膜材料。 对微滤膜而言,其分离机理主要是筛分截留。

阅读全文

与管式超滤膜的分离机理是什么相关的资料

热点内容
纯水降温为什么一开始温度不变 浏览:627
江门饮水机采购多少钱 浏览:103
用污水提升泵如何布管 浏览:225
小型医疗污水处理设备特点 浏览:462
强阳离子交换树脂用途 浏览:410
机油滤芯破碎了有什么用 浏览:96
北京回抚顺用集中隔离吗 浏览:650
污水为什么会臭 浏览:175
超滤反洗水泵安装费用 浏览:909
废水管是排什么水 浏览:781
本田190tr空气滤芯怎么换 浏览:930
纯水机用什么膜 浏览:333
纳滤处理硫酸废水 浏览:168
长园污水处理 浏览:318
环氧树脂稀释剂710 浏览:530
viomi饮水机怎么换水 浏览:143
碳晶硅超滤膜 浏览:131
乌鲁木齐污水处理器设备 浏览:488
冶金行业污水处理 浏览:361
飞利浦净水器au2010多少钱 浏览:327