『壹』 含铁废水由来和危害
含铁废水由来和危害是需要了解的,清楚由来能从源头上杜绝,知晓危害能用更好的办法处理,每个细节都是非常关键的。中达咨询就含铁废水由来和危害和大家介绍一下。
溶解于天然淡水中的铁含量变化很大,从每升几微克到几百微克,甚至超过1毫克。这主要取决于水的氧化还原性质和pH值。在还原性条件下,二价铁占优势;在 氧化性条件下,三价铁占优势。二价铁的化合物溶解度大。二价铁进入中性的氧化性条件的配镇穗水中,就逐渐氧化为三价铁。三价铁的化合物溶解度小,可水解为不溶的 氢氧化铁沉淀。
三价铁只有在酸性水中溶解度才会增大,或者在碱性较强而部分地生成络离子如Fe(OH)宫时,溶解度才有增加的趋势。因此,在pH值约为 6~9的天然水中,铁的含量不高。只有在地下水中,在主要由地下水补给的河段中,以及在湖泊底层水中才有高含量的铁。海洋中铁的平均值为 2微克/升。
工厂排放的含铁废水酸性很强时,铁含量很高;含铁废水排入天然水体,往往由于酸性降低,产生三价的氢氧化铁沉淀。新生成的胶体氢氧化铁有很强 的吸附能力,在河流中能吸附多种其他污染物,而被水流带到流速减慢的地方,如湖泊、河口等处,逐渐沉降到水体底部。在水体底部的缺氧条件下,由于生物作 用,三价铁又被还原为易溶的二价铁,其他污染物随铁的溶解而重新进入水中。 工厂排放的含铁废水主要是酸性采矿废水和清洗钢铁表面铁锈的酸浸洗池排出的废水。为了除掉废水中高含量的铁和其他重金属,往往向沉淀池投加石灰,以中和水 的酸性,使氢氧化铁沉淀下来。铁对废水生化处理构筑物中的微生物有致死作用,例如废水中的二氯化铁浓度为 5毫克/升(以铁离子计)可使活性污泥的形成减慢,抑制沉淀池和消化池中的沉淀发酵。污水中铁的浓度达0.7~1.7毫克/升时,生物滤池的渗滤作用便受 到破坏。 虽然铁对人和动物毒性很小,但水体中铁化合物的浓度为0.1~0.3毫克/升时,会影响水的色、嗅、味等感官性状。例如,水体中所含的某些铁化合物的浓度 达旅运到0.04毫克/升,便会出现异味。印染工业用水中铁含量过高时,往往使产品出现难看的斑点。因此,象塑料、纺织、造纸、酿造和食品工业的用水,对含铁 量的要求比饮用水还要高。 在我国现行的《工业三废排放试行标准》中,铁的含量未作任何限制。但若将含铁废水直接排放,培卜废水中存在的溶解性铁离子造成水体中的溶解氧迅速降低,排水是赤橙色且浑浊,对环境造成严重污染。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
『贰』 污水中如何检测铁离子
(1)溶液棕黄色
(2)加苯酚显紫红色(络合物)
Fe3+ + 6C6H5OH =[Fe(C6H5O)6]3- + 6H+.
(3)加SCN-(离子) 显血红色 (络合物)
Fe3+ + 3SCN- ==Fe(SCN)3(络专合反应,是可属逆的,两种离子结合的比例不唯一,是检验三价铁的特征反应,二价铁无此特性)
(4)加氢氧化钠有红褐色沉淀,从开始沉淀到沉淀完全时溶液的pH(常温下):2.3.7
(5)NH4SCN试法:
Fe3+与SCN-生成血红色具有不同组成的络离子.碱能分解络合物,生成Fe(OH)3沉淀,故反应需要在酸性溶液中进行.HNO3有氧化性,可使SCN-受到破坏,故应用稀HCL溶液酸化试液.其他离子在一般含量时无严重干扰.
(6)K4Fe(CN)6试法:
Fe3+在酸性溶液中与K4Fe(CN)6生成蓝色沉淀(以前为普鲁土蓝),但实际上它与前述滕氏蓝系同一物质.其他阳离子在一般含量时不干扰鉴定.Co2+、Ni2+等与试剂生成淡蓝色至绿色沉淀,不要误认为是Fe3+.
『叁』 二价铁废水排放标准
国家规定生活饮用水中铁含量小型集中式供水和分散式供水>0.5算超标常规生活饮用水>0.3算超标。另外离子含量应≤0.3mg/L,水中铁含量>0.3mg/L时水变浊,超过lmg/L时,水具有铁腥味。
『肆』 硫酸亚铁可以去除水中的硫酸根吗
硫酸亚铁铁离子除砷法是利用铁离子或其化合物对砷离子进行吸附共沉来达到除砷的目的。这种方法主硫酸亚铁除砷要针对砷的水体污染。这种方法除砷,对水体中的酸碱性要求比较高,一般是在5.5-8.5这个范围内,一般是对含砷污水添加硫酸亚铁等铁盐混凝剂进行酸碱调节(硫酸亚铁处理碱性废水),同时增加污水中铁的含量。水中的铁离子含量保持在或者高于1.5mg/l。所投加的铁离子与污水中的砷离子的比例不得少于20:1,就可以使其去除率达到80%-95%。
『伍』 煤矿为什么会有地下水处理
一、 概述
煤炭在我国能源结构中占70%以上,煤炭开采过程中排放大量废水,若不经处理直接排放,势必对环境造成严重污染,同时造成水资源的大量浪费,无法实现循环经济的目标。据统计我国40%的矿区严重缺水,已制约了煤炭生产的发展。西北矿区多处于山区,水资源更为缺乏,地表水又多为间歇性河流,枯洪水季节流量相当悬殊,常年流量稀释能力差,排入河流的污水造成严重污染。因此,开发、管理、利用好煤矿水资源,对煤炭工业可持续发展具有重要意义。
1、煤废水污染严重
据包括10多位院士在内的专家学者鉴定通过的一项课题研究表明,山西每年挖5亿吨煤,使12亿立方米的水资源受到破坏。这相当于山西省整个引黄河水入晋工程的总引水量。专家呼吁,应当从技术、人才、资金投入和经营机制等多方面解决这一世纪难题,帮助山西省等煤炭主产区摆脱“产煤致旱、因煤致渴”的困扰。
这项关于山西省煤炭产业可持续发展的研究表明,山西省采煤造成严重的水资源破坏,加剧了水资源短缺问题。这项课题研究表明,山西每挖1吨煤损耗2.48吨的水资源。每年挖5亿吨煤,使12亿立方米的水资源受到破坏。这相当于山西省整个引黄工程的总引水量。因此,这对于山西这个人均水资源量仅占全国平均水平不到五分之一的地区来说是个非常严重的问题。
目前,由于煤炭开采对地下水系破坏非常严重。据统计,山西采煤对水资源的破坏面积已达20352平方公里,占全省总面积的13%。山西省大部分农村人畜吃水靠煤系裂隙水,而煤矿开采恰好破坏了该层段的含水层。据统计,全省由于采煤排水引起矿区水位下降,导致泉水流量下降或断流,使近600万人及几十万头大牲畜饮水严重困难。
2、煤炭采掘业废水治理技术问题
99%的采煤项目废水没有进行治理,从主观上应该说是环保监管不力。从客观上说是我们环保部门对采煤项目废水治理技术持谨慎态度。采煤废水治理技术多如牛毛,那种技术最适用、工艺最成熟、操作管理最方便、投资最省、运行费用最低,一直是我们环保部门在寻求的。由于采煤废水复杂多变,在同一矿井废水中,同时含有铁、锰等重金属,硫、氟、氯等非金属及有机污染物和悬浮物,有的矿井废水呈弱酸性(如织金县珠藏、凤凰山等),再就是即使是同一矿井,所采层不同,废水性质也不同,甚至是差别很大。这就给煤矿废水治理技术的选用带来很大的困难。通常情况是某一技术只能有效处理某一污染物,不可能把所有超标的污染物都处理好。一个煤矿不可能投入很多资金对污染物进行单项处理,这就是采煤废水治理在技术上的难点。有的业主自行修了一两个池子,把矿井废水往池子一放,就是对废水进行处理了。事实上不是这样简单,可能连悬浮物也处理不了,金属和非金属就更不可能处理了。
3、煤矿废水处理要求
1.1煤矿废水包括矿井涌水、煤场和矸石场淋溶废水等。在进行处理前,应先委托地区环境监测站进行监测,以监测资料作为废水处理工程设计的依据。DFMC煤矿废水治理技术和成套设备是目前经实践证明的实用技术,50万吨以下、小时涌水量50m3以下的煤矿可采用此技术和设备。对于酸性煤矿废水还需新增设备和药剂。煤矿废水经处理达标后尽可能循环使用,循环使用率不低于50%,经处理后排放的废水列为总量控制指标进行考核。
1.2新建煤矿必须执行“三同时”规定,试产三个月必须申请地区环保局验收,验收达标的发给排污许可证,不达标的停产治理。
1.3原有煤矿分期分批进行治理,2005年50%左右的原有煤矿治理完工并通过达标验收。列入家2005年治理计划的煤矿不治理的,依法予以处罚;治理不达标的,停产治理。治理计划由各县市环保局商煤炭局提出,报地区环保局综合平衡后以治理计划下达执行。
表1 某A煤矿废水处理监测结果 单位:mg/l
指标 排放
标准 处理前
浓度 超标倍数(倍) 处理后
浓度 比排放标准低(%) 悬浮物 70 258 2.7 11.5 83.6 铁 1 2.58 1.6 0.68 32 硫化物 1 2.8 1.8 0.5 50 COD 100 281.9 1.8 7 93 锰 2 0.13 未超标 0.1 —
表2某B煤矿废水处理监测结果单位:mg/ l
指标 排放
标准 处理前
浓度 超标 倍数 (倍) 处理后
浓度 比排放标准低(%) 悬浮物 70 318 3.5 4.5 93.6 铁 1 2.28 1.3 0.74 26 硫化物 1 3.21 2.2 0.5 50 COD 100 228.4 1.3 18.8 81.2 锰 2 0.37 未超标 0.18 — 1.4、煤矿废水中铁含量高,如浓度大于100mg/l,其处理设备投资和运行费用将要增加。因为铁含量过高,要达到1mg/l的排放标准,一级除铁是不行的,必须三至四级除铁。
1.5、酸度高的煤矿废水应使达标(6~9)。
1.6、煤矿要对煤场、矸石场进行硬化处理,建导流沟,把因大气降水产生的这一部分淋溶水引入废水处理系统进行处理。
1.7、 预防事故和自然因素引起的非正常排放
为预防因降暴雨致使废水次理池溢流,工程设计必须考虑废水处理池有足够的容积。为防止事故性排放,必须建事故调节池。四、煤矿生活废水处理要求洗煤厂和煤矿生活废水处理采用深圳开发研制的微型生活废水处理装置进行处理。生活废水经处理达标后可排放。五、煤矿废水治理技术选用
实践证明是可行的 DFMC煤矿废水治理技术和成套设备可选用。未经试点的技术只能试点,不能推广。经试点并由A地区环境监测站监测、提出监测报告,从治理效果、投资、运行费用等全面评价后由地区环保局决定是否推广。
二、废水主要处理技术
我国煤矿矿井水处理技术起始于上世纪70年代末,大多污水治理工作都只停留在为排放而治理。然而回用才是当今污水治理发展的必然趋势,将防治污染和回用结合起来,既可缓解水源供需矛盾,又可减轻地表水体受到污染。现国内使用的处理技术主要有:沉淀、混凝沉淀、混凝沉淀过滤等。处理后直接排放的矿井水,通常采用沉淀或混凝沉淀处理技术;处理后作为生产用水或其它用水的,通常采用混凝沉淀过滤处理技术;处理后作为生活用水,过滤后必须再经过除酚等对人体有害物质及消毒处理;有些含悬浮物的矿井水含盐量较高 ,处理后作为生活饮用水还必须在净化后再经过淡化处理。三、矿井水处理回用的条件
1、矿井废水的产生及特点
煤矿矿井废水包括:煤炭开采过程中地下地质性涌渗水到巷道为安全生产而排出的自然地下水,井下采煤生产过程中洒水、降尘、灭火灌浆、消防及液压设备产生的含煤尘废水。因此,它既具有地下水特征,但又受到人为污染。矿井废水的特性取决于成煤的地质环境和煤系低层的矿物化学成分,其中井田水文地质条件及充水因素对于矿井开采过程矿井废水的水质、水量有决定性的影响。因此,对矿井废水处理要考虑开采过程中水质、水量的变化。某矿区M煤矿矿井废水水质取矿井正常排水时井口水样,结果见表1。
M煤矿矿井废水污染物监测表
表1 单位:mg/L
序号 监测项目 日均值浓度范围 序号 监测项目 日均值浓度范围 1 肉眼可见物 微粒悬浮物 9 总氮 5.600~5.854 2 PH值 8.41~8.55 10 砷(ng/L) 3.4~5.2 3 CODcr 66.4~131.7 11 总磷 0.085~0.104 4 硫化物 1.09~1.67 12 粪大肠菌 260~393 5 悬浮物 360~500 13 铜 0.0207~0.0294 6 酚 0.006~0.051 14 铅 -- 7 BOD5 14.10~24.73 15 镉 -- 8 LAS 0.198~0.220 16 锌 0.0381~0.0407
通过网络调查和资料查找,收集了多年来某矿区有关矿井水和地下水的化验数据资料,以及环境监测站监测数据(表1)综合分析,该煤矿矿井废水含煤泥为主要悬浮物,有机物略有超标,粪大肠菌群超标,挥发酚超标。
2、矿井废水回用途径
煤矿矿井水处理后可作生产用水或生活用水,矿井生产用水主要是井下采掘设备液压用水、消防降尘洒水,生活用水主要是冲厕、洗浴水以及深度处理后用于饮用水。水质标准分别为:
a、防尘洒水《煤矿工业矿井设计规范》(GB50215-94)
SS≤150mg/L,粒径d<0.3mm;PH值为6~9;大肠菌群≤3个/L。
b、空压机、液压支柱用水水质SS≤10~200mg/L,粒径d <0.15mm;硬度(碳酸盐)2~7mg/L;pH值为6.5~9;浊度<20。
c、矿井洗浴水水质达到《地表水环境质量标准》(GB3838-2002)的Ⅲ类水体标准。
d、中水水质达到《生活杂用水水质标准》(CJ/T 48-1999)。
5、生活饮用水达到《生活饮用水卫生标准》(GB5749-85)。
四、处理工艺
从上表可知,M煤矿矿井废水处理工程的设计处理能力为800~1000m3/d,处理后作为生产和生活用水,采用混凝反应、过滤、活性炭吸附及消毒工艺,流程见图1。
图1矿井废水处理工艺流程
矿井废水由井下排水泵提升至灌浆水池,部分用于黄泥灌浆,其余废水自流进入曝气池,气浮除油后进入斜板沉淀池进行初步沉淀,由提升泵提升进入混凝沉淀设备,同时加入混凝剂,经过斜管沉淀后,将絮状物沉淀到底部而被去除,清水从上部溢流出水自流进入砂滤罐,出水自流进入清水池,清水池前投加二氧化氯进行杀菌消毒。砂滤罐的反冲冼水自流进入污泥池,上清液自流进入曝气池,以提高矿井废水资源的利用率。出水若用作生活用水,则砂滤罐出水进入活性炭吸附装置处理后流入清水池用作生活用水。
五、主要处理单元
1、预沉池曝气
矿井废水中含有少量的有机物,通过曝气接触氧化去除废水中的有机物。另外,井下液压支柱等设备产生少量油类,通过气浮除油,使废水中油类达标。
2、混凝沉淀
煤矿矿井水主要污染物为悬浮物,处理悬浮物主要采用混凝沉淀法,用铝盐或铁盐做混凝剂,混凝剂混合方式采用管道混合器混合。混凝沉淀装置采用倒喇叭口作为反应区,水流在反应区中流速逐渐降低,使废水和混凝剂药液的反应在反应器中逐渐全部完成。完全反应的废水流出反应区后开始形成混凝状物质,经过布水区进入斜管填料,由于斜管填料采用PVC六角峰窝状填料,利用多层多格浅层沉淀,提高了沉淀效率。将絮状物沉淀到底部而被去除,清水从上部溢流排出。
3、砂滤净化
矿井废水经混凝沉淀后,水中还含有较小颗粒的悬浮物和胶体,利用砂滤设备将悬浮颗粒和胶体截留在滤料的表面和内部空隙中,它是混凝沉淀装置的后处理过程,同时也是活性炭吸附深度处理过程的预处理。砂滤罐为重力式无阀滤池,采用自动虹吸原理达到反冲洗,不需要人工单独管理,操作简便,管理和维护方便。砂滤罐通常采用不同等级的石英砂多层滤料。
4、活性炭吸附
该煤矿矿井废水主要含有挥发酚,酚类属于高毒物质,它可以通过皮肤、粘膜、口腔进入人体内,低浓度可使细胞蛋白变性,高浓度可使蛋白质沉淀。长期饮用被酚污染的水源,会引起蛋白质变性和凝固,引起头晕、出疹、贫血及各种神经症状,甚至中毒。处理中水用作生活饮用水,必须用活性炭吸附装置处理。活性炭的比表面积可达800~2000m2/g,具有很强的吸附能力。该装置采用连续式固定床吸附操作方式,活性炭吸附剂总厚度达3.5m,废水从上向下过滤,过滤速度在4~15m/h,接触时间一般不大于30~60min。随着运行时间的推移,活性炭吸附了大量的吸附质,达到饱和丧失吸附能力,活性炭需更换或再生。
5、消毒
废水中含有一定的病菌、大肠菌群,处理后回用于洗浴时,若不经过消毒,对人体皮肤伤害严重。所以矿井废水处理后作为生活用水必须经过消毒处理,本工艺采用二氧化氯消毒,现场用盐酸和氯酸钠反应产生二氧化氯,二氧化氯无毒、稳定、高效、杀菌能力是氯的5倍以上。
六、处理工艺特点
1、以上可知A煤矿矿井废水处理工程是根据矿井水水质特点确定工艺技术参数,采用一次提升到混凝沉淀装置,再自流进入后续各处理构筑物,出水水质稳定可靠,动力设备较少,能耗较低。
2、采用混凝沉淀装置与砂滤罐相结合的工艺技术,主要处理构筑物采用组合式钢结构,具有占地面积小、使用寿命长、工程投资省、工艺简单、操作管理方便、运行成本低等特点。砂滤罐设计采用重力式无阀滤池,反冲洗完全自动,操作管理方便。
3、该煤矿矿井废水处理系统实现了自动加药、自动反冲洗的全过程监控,包括电控系统、上位监控系统和仪表检测系统。仪表检测系统包括加药流量、处理流量 、水池液位和加药箱液位、进水和出水浊度等连续自动检测。
『陆』 HZHJSZ00119 水质 铁的测定EDTA滴定法,
HZHJSZ---------杭州环境水质
“HZHJSZ00119 水质铁的测定 EDTA滴定法”介绍:
HZ-HJ-SZ-0119
水质铁的测定EDTA 滴定法
1 范围
本方法适用于炼铁矿山电镀酸洗等废水中铁的测定测定铁的适宜含量为5~20mg
在测定条件下铜铝离子含量较高大于5.0mg 时产生正干扰其它多数离子对本方
法没有影响
2 原理
水样经酸分解使其中铁全部溶解并将亚铁氧化成高铁用氨水调节至pH2 左右用
磺基水扬酸作指示剂用EDTA 络合物滴定法测定样品中的铁含量
3 试剂
3.1 硝酸
3.2 硫酸
3.3 盐酸
3.4 1+1 氨水
3.5 精密pH 试纸
3.6 磺基水扬酸溶液50g/L
3.7 六次甲基四胺溶液300g/L
3.8 铁标准溶液称取4.822g 硫酸高铁铵[FeNH4(S04) 12H20]溶于水中加1.0mL 硫酸
移入1000mL 容量瓶中加水至标线混匀此溶液的浓度为0.010mol/L
3.9 0.01mol/L EDTA 标准滴定溶液:称取3.723g 二水合乙二胺四乙酸二钠盐溶于水中稀释
至1000 mL 贮于聚乙烯瓶中按下法标定
标定吸取20.00mL 铁标准溶液置锥形瓶中加水至100mL 用精密pH 试纸指示滴
加1+1 氨水调至pH2 左右在电热板上加热试液至60 左右加磺基水扬酸溶液3.6 2mL
用EDTA 标准滴定溶液滴定至深紫红色变浅放慢滴定速度至紫红色消失而呈淡黄色为终
点记下消耗EDTA 标准滴定溶液的毫升数(V0) 计算EDTA 标准滴定溶液的准确浓度
c Na2-EDTA =0.010mol/L 20.00/ V0
4 仪器
25 或50mL 酸式滴定管
5 试样制备
如水样清澈且不含有机物或络合剂则可取适量水样(合铁量约为5~20mg) 于锥形瓶中
加水至约100mL 加硝酸5mL 加热煮沸至剩余溶液约为70mL 使Fe2+全部氧化为Fe3+
冷却加水至100mL
如水样混浊或有沉淀或含有机物则分取适量混匀水样置锥形瓶中加硫酸3mL 硝
酸5mL 徐徐加热消解至冒三氧化硫白烟试样应呈透明状否则再加适量硝酸继续加热消
解得透明溶液为止冷却加水至100mL
往上述处理过的水样中滴加1+1 氨水调节至pH2 左右(用精密pH 试纸检验)
6 操作步骤
将调节好pH 的试液加热至60 加磺基水扬酸溶液3.6 2mL 摇匀用EDTA 标
准滴定溶液滴定至深紫红色变浅放慢滴定速度至紫色消失而呈现淡黄色为终点记录消
耗EDTA 标准滴定溶液的毫升数V2)
7 结果计算
c 铁Fe,mg/L = c 55.847 1000 V1/ V2
式中V1 滴定所消耗EDTA 标准滴定溶液体积(mL)
1
\x0c
V2 水样体积(mL)
EDTA 标准滴定溶液的摩尔浓度(mol/L)
55.847 (Fe)的摩尔质量(g/mol)
8 精密度和准确度
11 个实验室分别测定含5~20mg 铁的标准样品相对标准偏差不超过1.2% 相对误差不
超过0.4% 单个实验室测定实际废水样的精密度和回收率见表1
表1 测定实际废水样的精密度和准确度
实验室废水名称六次重复测定结果相对标准偏差加标回收率
编号mL/L
1 炼铁废水11.2 7.4 97.3
2 钢厂排水153.6 0.25 101.0
3 化工厂排水9.4 1.1 96.5
4 电镀车间997.4 0.21 99.7
5 铁矿废水7268.2 0.2 100.6
6 冷轧钢废水594.3 0.1 101.2
7 机械厂电镀合金废水376.1 0.3 97.6
注意事项
(1) 含悬浮颗粒物或有机物多的样品应适当增加酸量进行消解消解过程中要防止暴沸和蒸干否
则会使结果偏低
(2) 水样中若含铜镍干扰离子应在预处理溶液中滴加1+1 氨水至刚产生混浊再滴加1+1 盐酸
至溶液澄清加2g 氯化铵滴加六次甲基四胺溶液3.7 至出现混浊再过量8mL 在水浴上加热至80
并保持15min 使Fe(OH)3 沉淀絮凝放冷用中速滤纸过滤
用1+1 盐酸10mL 将滤纸上沉淀溶解返回烧杯中用热水洗滤纸洗液并入烧杯中必要时再用少量
1+1 盐酸洗涤滤纸以使铁完全溶解
冷却后溶液定容至200mL 分取适量调节pH 后再进行滴定操作
(3) 用EDTA 标准滴定溶液滴定铁离子的适宜pH 值为1.2.0 既可排除重金属离子的干扰又适宜
于磺基水扬酸指示终点pH 值过低使滴定终点不敏锐pH 值过高将产生氢氧化铁沉淀而影响滴定
(4) 由于铁离子与EDTA 络合作用较慢因此滴定时试液应保持在60 左右在接近终点时应缓慢滴
定并剧烈振摇使其加速反应否则将导致测定结果偏高
9 参考文献
水和废水监测分析方法编委会编水和废水监测分析方法第三版pp.182~184
中国环境科学出版社北京1997
2