㈠ 生猪养殖废水处理需要多少吸纳地
一头猪每日排放的粪尿大约为6公斤,一年下来,粪尿总量可以达到2.5吨。如果采用冲洗式清粪,一头猪每日的污水排放量约为30公斤,一年的污水排放量则超过10吨。
养殖场的污水排放处理需要一定的吸纳地,其面积和容积的具体需求,需要依据所采用的处理方式的日处理量来决定。比如,如果选择厌氧消化处理,那么就需要考虑消化池的体积。再如,若采用土地处理系统,就需要计算土壤的吸纳能力。处理面积和容积的确定,直接关系到处理效果和成本。
对于不同的处理方式,吸纳地的面积和容积有着不同的要求。例如,在使用氧化塘处理时,氧化塘的面积和容积需根据进水量和处理效率来计算。而在使用人工湿地处理时,湿地的面积和容积则取决于污染物负荷和净化效率。因此,在规划养殖场的污水排放处理系统时,必须充分考虑这些因素。
吸纳地的大小不仅影响处理效果,还关系到环境影响和土地利用。如果吸纳地面积不足,可能会导致污水排放不及时,进而造成环境污染。同时,合理的吸纳地规划还可以减少处理成本,提高资源利用效率。因此,在设计养殖场污水排放处理系统时,必须综合考虑吸纳地的需求。
此外,还需要注意的是,吸纳地的选择应考虑周边环境和土地利用情况。例如,选择适宜的地点进行污水灌溉,可以将污水转化为肥料,实现资源化利用。同时,吸纳地的选择还应避免对地下水和地表水造成污染,确保生态安全。
㈡ 屠宰场一头猪用水量多少斤
屠宰场一头猪用水量多少斤?
180--200
㈢ 养猪场排出的粪便的成分以及对人和牲畜的危害
1. 猪场粪便污染
根据试验资料分析,每头猪每天大约产生5.5升排泄物(不包括冲洗圈舍的废水),每年大约排泄9.53公斤的氮。一个万头猪场(按中猪计)每年至少向猪场周围排放1.26万吨的粪便。由于猪对饲料中氮的吸收率很低,大量的氮随粪便被排出体外后,在土壤中累积,超过其单位面积生态环境再循环需求。而且通过雨水的冲刷会造成地下水源和地表水源的污染。粪便中含有大量对环境造成严重污染的物质。
2. 猪场污水
由于我国畜禽养殖企业长期以来片面追求经济效益,环保意识极差,对粪便污水管理落后,致使大量的粪便随冲洗水直接流失,甚至有的将粪便直接排入河流中,严重污染了大江大河的水质。猪场排放的粪尿污水中的生化指标极高,其中COD(化学耗氧量)和BOD(生物耗氧量)远远超过国家标准。高浓度的有机污水排入江河湖泊中,造成水质不断恶化,其中污水中高浓度的氮、磷是造成水体富营养化的重要原因,使藻类过度生长,从而导致鱼类的大量死亡,严重威胁水产业的发展。畜禽粪便污染物不仅污染了地表水,使地表水中的硝酸盐含量超出允许范围(50mg/L),其有毒、有害成分还易进入到地下水中,严重污染地下水。一旦污染了地下水,极难治理恢复,将造成较持久性的污染。
3. 猪场恶臭及氨
粪便的臭味是指粪便中含有的或在贮存过程中释放出来的挥发性成分。由于规模化猪场对粪便没有进行有效处理,相当部分的猪场散发出非常难闻的气味,严重地污染了周围居民的生活环境。目前已有160种挥发性成分从粪中鉴定出来。在粪尿中还发现80多种含氮化合物,其中有10种与恶臭味有关。降低粪中氮的排出会降低粪中的挥发性物质,从而减少粪便的臭味。另外,粪尿在发酵时会产生氨气、二氧化硫、二氧化氮、胺及氨基酸衍生物等。尽管氨气与粪臭味之间相关不大,但大量研究表明,环境氨气浓度过高会影响动物生产性能和健康状况,动物采食量和日增重下降,肺炎发生率上升,性成熟推迟。因此人们仍积极采取措施减少氨气的排放量。
㈣ 猪场采取干清粪则一头猪一天大概产生多少废水
夏季1.8m3/100头,冬季1.2。三级发酵的池子可以是连在一起也可以是三个独立的,沼气池设置三相分离器是将沼气密闭收集,沼液露出排放,如果不设三相分离器就要整个池子密闭。
㈤ 屠宰废水的处理概况,排放概况,处理方法(SBR法)
用SBR法处理屠宰废水
http://www.chinaenvironment.com 2008-1-16 中国环保网
吉林柳河华龙集团公司宰鸡厂位于吉林柳河县,屠宰废水排放量为360m3/d,该厂总排口的废水COD为1300~1700mg/L,SS约500mg/L,pH值>9.0。废水中含大量的油血,但鸡毛有回收设施。
柳河华龙公司决定该废水处理工程分两期完成,一期治理规模为120m3/d,达标后再进行二期工程的设计,本工程为一期。
1 工艺流程
采用以SBR为主体的处理工艺,其流程如图1。
1.1 隔油沉淀池
兼具隔油、沉淀、调节三重作用,地下式,钢混结构,废水重力流入,加盖保温且可防止臭味散逸。双廊道式:2×(2.5 m×12.0 m×2.5 m),设计规模兼顾二期工程,于第二廊道中部设挡板隔油,挡板位置:水下0.5 m,水上0.1 m,可有效隔除鸡油。该池盖板设三处人孔,可定期清除表层浮油等杂物。廊道末端设潜水泵,将废水经格栅泵入SBR池,廊道前端下部设潜污泵,将沉淀污泥等泵入污泥浓缩池。
1.2 格栅
尺寸:1.0 m×1.0 m,栅隙:5 mm,用以截留大的颗粒物质,设于处理间内。
1.3 SBR池
尺寸为6.0 m×4.0 m×5.5 m,钢结构,有效水深为4.5 m,最大滗水深度为1.75 m。下部进水,以便于快速混合。滗水器为虹吸式,位于进水口对侧。排泥管位于距底平面0.5 m处,穿孔管排泥。采用罗茨风机曝气,气水比为15:1。曝气头采用膜片式曝气器,服务面积为0.8m2。
1.4 浓缩池
直径为2.0 m,高为3.0 m,钢结构。SBR池的剩余污泥靠重力流入,隔油沉淀池的污泥用潜污泵泵入。静止沉淀后,上清液返回隔油沉淀池,浓缩后污泥重力流入附近煤场,暂掺煤烧掉,待二期工程投产后,再进行脱水处置。不另设置贮泥池。
控制柜可自动和手动控制污水泵、污泥泵、水位控制器、虹吸式滗水器、罗茨鼓风机等的启闭,并可自动或手动控制SBR系统的各个运行时段。
2 处理效果
2.1 工程调试
采用间歇进水、非限制性曝气方式,曝气:6 h,沉淀:1 h,排水:1 h。取吉化公司污水厂回流污泥约4 m3打入SBR池,同时启动污水泵使SBR池达到设计水位,曝气后不断观察SBR池混合液及澄清液现象,3d内澄清液内含细碎悬浮物,5 d后消失,同时混合液由灰色转褐色,7 d后为明显褐色。静沉时出现明显污泥层,上清液澄清,视为培养驯化结束。
2.2 运行效果
本系统从试运行至今,已历时3年多时间,期间泥水分离状况良好,污泥层界面非常清晰,出水清澈,瓶装条件下与市售纯净水比较竟难于区分。整个系统运行也一直非常稳定,未发生过故障。当地环保部门曾进行了若干次测定,其结果如表1所示。
表1 处理系统的进、出水水质监测情况 mg/L 时间 指标 进水 隔油池出水 出水 去除率(%)
1998年7月6日 CODCr 1658 896 58 96.5
BOD5 761.5 416.5 16.5 97.8
SS 570 87 0
NH3-N 15.41 44.14 2.60 83.1
1998年7月10日 CODCr 1300 73 94.4
999年3月27日 CODCr 1420 729 67 65.3
1999年3月28日 CODCr 1352 702 58 95.7
1999年3月29日 CODCr 1463 720 38 97.4
999年3月30日 CODCr 1569 841 62 96.0
1999年4月1日 CODCr 1611 832 62 96.2
1999年4月2日 CODCr 1705 922 75 95.6
2000年1月8日 CODCr 1652 63 96.2
BOD5 990 25 97.5
SS 621 28 95.5
从表中数据可见,宰鸡废水经本系统处理,COD去除率为94.4%~97.5%,大多在95%以上,出水COD均低于75 mg/L;BOD去除率为97.5%以上;SS去除率为95.5%以上;NH3-N去除率为83.1%。运行表明,pH值为9.60的碱性废水进入隔油沉淀池后,其出水pH值降至6.96,产生酸化作用,这可能也是隔油沉淀池去除率高的一个原因。而此过程中,NH3-N明显升高,证实了确已发生生化反应。
3 经验与体会
①对宰鸡废水,以8 h为一周期,藉助本系统就可获得良好且稳定的处理效果。
②将隔油、沉淀、调节三功能集于一池,不仅可节省占地和投资,且可获得良好的运行效果。
③对北方的宰鸡废水,细格栅一定要置于隔油池后。否则,其栅隙将为易凝固的鸡油堵塞,严重时运行10 min就可全部堵死,废水无法通过。
第一章 概述
1.1. 项目概述
1.1.1. 项目名称、地点
项目名称:某县定点屠宰场废水治理项目
项目地点:某县水东
1.1.2. 项目概况
屠宰过程中将产生一定量的废水,废水主要来自屠宰后清洗、解体冲洗、内脏清洗和地面冲洗以及牲畜粪便废水等废水。废水中含有大量的有机物质,主要成分有:动物粪便、血液、动物内脏杂物、畜毛、碎皮肉和油脂等有机物,属于高浓度有机废水。废水呈褐红色,具有较强的腥臭味。这些废水中的脂肪、蛋白质等物质不经过处理,直接排入水体,将对其周围水体造成严重富营养化,严重破坏水体的自尽能力,造成水体发黑变臭,影响环境和农业灌溉。信丰县定点屠宰场为了正常生产和持续发展,保护周围水体环境,非常重视废水污染环境问题,决心对废水进行治理,并委托南昌中冠环境工程有限公司制订治理方案。南昌中冠环境工程有限公司在得知信丰县定点屠宰场废水需要治理信息后到屠宰场了解情况。针对该屠宰场废水性质和排放要求,南昌中冠环境工程有限公司从降低废水处理工程造价和运行成本目标出发,采用先进废水治理技术和设备。本着此原则拟定了本治理方案文件,供企业和有关部门领导审议。
1.1.3. 项目范围
主要包括从治理工程的进水口至出水口的工艺、构筑物、设备、电气、仪表等的设计、图纸、工程报价、运行费用分析等技术文件等。
1.2. 设计依据
1.2.1. 编制依据
信丰县定点屠宰场提供的资料和数据;
《中华人民共和国环境保护法》 (1989年12月)
《中华人民共和国水污染防治法》 (1984年5月)
《中华人民共和国水污染防治实施细则》 (1989年7月)
《肉类加工工业水污染物排放标准》 (GB13457-1992)
《污水综合排放标准》 (GB8978-1996)
《室外排水设计规范》 (GBJ14-87(1997版))
其余各专业规范等
同类行业同规模水质资料;
1.2.2. 设计规范、标准
(1)J14-87《室外排水设计规范》(修订本)
(2)GB8978-2001《污水综合排放标准》
(3)GB50069-2002《给水排水工程结构设计规范》
(4)GB50010-2002《混凝土结构设计规范》
(5)GB50052-95《工业与民用供配电系统设计规范》
(6) GB50062-92《电力装置的继电保护和自动装置设计规范》
(7) GB50054-95《低压配电装置及线路设计规范》
1.2.3. 设计水量、水质
设计水量:根据某县定点屠宰场提供数据,每屠宰一头生猪的用水量为0.4吨左右,现在排放废水量不超过80t/d,为了考虑到废水的波动性以及可持续发展设计废水量为100t/d。
水质:由于甲方未提供水质数据,参照同行业内废水的水质特性做参考,确定设计废水水质如下:
项目 废水水质(mg/L)
CODcr 2500
BOD 1000
SS 1500
NH3-N 30
pH 7--8
油脂 300
总P 18
大肠菌群 36x1012(个/100ml)
表中单位均以mg/l计,PH除外。
1.2.4. 污水排放标准
表二 国家一级排放标准
项目 废水水质(mg/L)
CODcr 100
BOD 20
SS 70
色度 50
pH 6-9
NH3-N 15
动植油 15
大肠菌群数(个/L) 5000
表中单位均以mg/l计,PH除外。
第二章 污水处理设计原则
2.1. 污水处理系统设计原则
认真贯彻国家关于环境保护工作的方针和政策,使设计符合国家的有关法规、规范、标准。
综合考虑废水水质、水量的特征,选用的工艺流程技术先进、稳妥可靠、经济合理、运转灵活、安全适用。
污水处理系统平面布置力求紧凑,减少占地和投资。
妥善处置污水处理过程中产生的污泥和其它栅渣、沉淀物,避免造成二次污染。
污水处理过程中的自动控制,力求管理方便、安全可靠、经济实用。
高程布置上应尽量采用立体布局,充分利用地下空间。平面布置上要紧凑,以节省用地。
严格按照厂方界定条件进行设计,适应项目实际情况要求。
2.2泥处理系统设计原则
系统产生的污泥经浓缩后运输至垃圾填埋场处理。
工艺设计尽量减少系统污泥产生。
第三章 污水处理系统工艺
3.1废水属性分析及工艺路线的确定:
屠宰废水含有大量的污血、油块和油脂、毛、肉屑、骨屑、内脏杂物、未消化的食物和粪便等污染物,带有令人不适的血红色和使人厌恶的血腥味。
屠宰废水是一种高浓度有机污染废水,成分复杂。屠宰废水具有以下特点:
1、具有一定血红色,主要是由猪血造成;
2、具有血腥味,主要是由猪血和蛋白质分解造成;
3、含有大量的悬浮物,主要由猪毛、肉屑、骨屑、内脏杂物、未消化的食化和粪便等形成;
4、含有较高动物油脂;
5、含有大量大肠杆菌。
根据废水特点及处理出水要求,该废水处理工艺采用物化+生化处理工艺是必需的。废水CODcr与色度较高,废水中油脂浓度超过40mg/l时,油脂粘附于生物膜表面,阻断废水与生物膜的接触,使生化去除效率下降;废水中含有的大量猪毛、肉屑、骨屑、内脏杂物、未消化的食化和粪便等也不易生化,因此该废水必需采取必要的预处理及物化处理,尽量降低进入生物处理构筑物的悬浮物和油脂含量,再进行生化处理,确保生化处理的正常运行。南昌中冠环境工程有限公司工程师到信丰县定点屠宰场收集数据,根据现场情况,屠宰场已经具备了前端化粪池,经化粪池出水废水呈现黑色并且带有部分油脂,但所含悬浮物较少。屠宰废水除了浓度高,色度高外,还有胺氮,总磷超标比较难处理,因此在设计过程中应该考虑到它们的去除。因为屠宰场屠宰主要集中在夜间,在废水的排放特点、废水的属性、以及现在有构筑物的前提下,现拟定以下工艺:
拟定污水处理工艺流程:
污水线路
污泥线路
3.2废水工艺流程简介:
由于屠宰废水中含有一定量的大块漂浮物(血污、毛皮、杂物 染
物等),因此先用格栅予以拦截下来,以保证后续设备的正常运行,此设施屠宰场现在已经具有。因为屠宰废水中含有血污、油脂等大分子有机物存在,直接进入好氧将很难降解,因此格栅出水进入化粪池。屠宰场现有化粪池能够起到一定的处理效果,但现有出水浓度依然很高并且夹带部分油脂,为了减轻后续处理设施的负荷,因此考虑在前端加一座隔油池以去除油脂。屠宰场因为工作时间的因素,它的排水周期跟其它废水排放周期不同,它主要集中在夜间排放,因此必须设置一个较大的调节池来调节水质水量以保证整套设施的正常运行,减轻对后续设施带来的冲击负荷,废水经调节池收集然后通过泵泵入后续处理设施。废水经过前端化粪池处理后,废水中依然含有大部分大分子有机污染物,因此需要进一步对其降解为小分子物质,为后续好氧生化做准备,并且考虑到废水中氨氮和总磷的超标,因此必须设施好氧—缺氧的交替运行环境来达到硝化—反硝化的交替运行来达到脱氮除磷的效果,此处通过设置水解酸化池将后续好氧处理出水部分回流至水解酸化池来实现。废水经过水解酸化池后进入好氧池,此处将好氧池分为两段,它的好处在于在不同的好氧段,微生物根据环境不同而呈现空间的分布,具备针对性,有着更好的去除效果。废水经过前端各个生化处理设施处理后,有机污染负荷很大程度得到降解。但废水中色度依然难以达标,为了对色度的去除,并同时考虑对COD的降低和氨氮及总磷的降低,因此此处设置混凝沉淀池并且投加针对性的药剂。沉淀池出水,进入消毒池,然后最终达标排放。
3.3污染物指标去除措施及去除率预测
本方案中主要污染物的去除措施如下:
CODcr/BOD5的去除:主要通化粪池、水解酸化、好氧等生物降解法达到去除CODcr/BOD5的目的。
SS的去除:主要通过前端现有的设施沉淀达到去除SS的目的。
NH3-N的去除:主要通过生化时的消化及反消化作用达到去除NH3-N的目的。但由于本工程NH3-N含量相对较高,在进水水质偏高及温度偏低时出水的NH3-N含量会略高于排放标准,此时超标部分通过化学来去除。因此在生化池后设置混凝沉淀池,剩余的氨氮通过投加MgCl2和NaH2PO4, 生成难溶复盐MgNH4PO4•6HzO(简称MAP)结晶,通过重力沉淀,使之从废水中分离。从而最终保证了出水的氨氮常年达到去除的目的。
动植物油的去除:主要通过隔油池达到去除动植物油的目的,并且部分通过厌氧降解的方法去除。
大肠杆菌群的去除:通过后续消毒池消毒去除。
各单元处理效率预测一览表(单位:mg/L)
项目 进水COD
mg/l 去除效率
% 进水BOD
mg/l 去除效率
% 进水SS
mg/l 去除效率
%
格栅 2500 1000 300
化粪池 2500 35 1000 30 300 80
隔油池 1625 10 700 5 60
调节池 1463 5 665
兼氧池 1390 30 665 25
好氧Ⅰ 973 70 499 85
好氧Ⅱ 292 65 75 80
混沉池 102 20 15
消毒池 82 10
出水 74
标准 100 20 70
第四章 污水处理系统构筑物、设备
4.1格栅、化粪池
为防止毛皮、碎肉、内脏杂物等大颗粒杂质进入后续设施沉积在其后设置粗、细两格栅,以保证后续设备的正常运行。栅渣定期清除,作垃圾处理。化粪池即是简易的厌氧装置,它是在厌氧的条件下通过厌氧菌或者兼性菌的作用将污水或者污泥中的有机物分解成为CH4和CO2,使有机物得到降解,污泥得到稳定的过程,此工程中它能起到降低污染负荷并分解大分子无染物的作用。本工程中利用屠宰场原有设施。
4.2隔油池
虽然前端设置了化粪池,但出水中仍然含有油脂物质,因此此处增设隔油池。隔油池此处采用折流式简易结构,该池的设置主要是强化预处理的作用,其功能主要是隔除水中的浮油、浮渣,减轻后续处理负荷。
因为屠宰废水集中排水主要夜间,按照加工8小时,废水量为总排水量的80%为例,则平均每小时排水为10立方,在晚间最大流量时隔油沉淀池设计停留时间HRT=1.7h,有效容积V有效=18m3(L×W×H=4.0m×1.0m×4.5m,有效水深4.3m),采用钢筋混凝土结构。因为前端具备化粪池,进水中含渣量很少,因此不专门配置排污泵。
4.3调节池
由于排水的周期性与水质的不均匀性,来自各时的水质、水量均不一样,一般高峰流量为平均处理量的2~8倍,并且屠宰场主要在夜间工作,因此为保证后续处理设施的正常运行和达到设计的出水水质,同时调节水量和均化水质,所以设置一座调节池。
调节池设计停留时间HRT=12h,有效容积V有效=50m3(L×W×H=4m×3m×4.5m,有效水深4.2m),采用钢筋混凝土结构,半地埋式结构。污水由一台潜污泵泵入至水解酸化池中。潜污泵型号WQ10-15-1.5,流量Q=10m3/h,扬程H=15mH2O,功率N=1.5kW。
4.4生化处理部分
生化处理采用A2/O/O法处理工艺。由于废水中有机物浓度较高,且含有大量大分子污染物,直接采用好氧处理会使处理效率偏低。生化处理前段采用厌氧处理工艺,利用厌氧反应可使屠宰废水中大分子难降解有机物转化为水分子易降解的有机物,出水的可生化性能得到改善,这使得好氧处理部分的停留时间小于传统处理工艺。与此同时,悬浮物被水解为可溶性物质,使污泥得到稳定处理。结合现场情况以及降低一次性投资成本,因为本工程中化粪池容积较大,因此不专门设置厌氧池,但考虑到硝化反硝化运行的条件,后续增加一个水解酸化池。
调节池出水泵入水解酸化池内,通过无机氧化物中的氧替代分子氧进行生物氧化作用,进一步将有机物分解,并且后续沉淀的污泥及部分好氧出水通过回流进入前端水解酸化池,近一步通过反硝化作用去除氨氮。
利用活性污泥法处理肉类加工废水在技术上很成熟,国内外应用普遍,都取得较理想的效果。
活性污泥法是由曝气池、沉淀池、污泥回流和剩余污泥排除系统所组成,此工程中为了提高处理效果,我们将采用活性污泥和生物接触氧化法组合使用。前端水解酸化池出水进入曝气池,通过曝气设备充入空气,空气中的氧溶解入污水使活性污泥混合液产生好氧代谢反应。曝气设备不仅传递氧气进入混合液,且使混合液得到足够的搅拌而呈悬浮状态。这样,污水中的有机物、氧气同微生物能充分接触反应,在微生物的新陈代谢功能的作用下,污水中有机污染物得到去除,污水得到净化。
由于污水的生化性比较好,采用成熟的活性污泥和生物接触氧化组合的生化方法处理较合理。该工艺具有容积负荷高,耐冲击负荷能力强,不易产生污泥膨胀,运行稳定,操作管理方便,运行费用低等优点。水中呈溶解态、胶体态的有机成份在此能得到最大程度的降解。
★A2/O/O工艺具有如下特点:
(1)、具有多种净化功能,可有效去除有机污染物。
(2)、对冲击负荷有较强的适应能力,出水水质好且稳定,动力消耗相对较低。
(3)、操作简单、运行方便、易于维护管理。
(4)、污泥产生量少,污泥颗粒大,易于沉淀。
好氧池中采用弹性填料,其比表面积大,水流特性优越,不易堵塞,表面易挂膜,有利于提高生物膜的活性与生物量。好氧池采用罗茨曝气机,并且在池底安装微孔曝气头,它能够有较高的氧传递效率,曝气均匀,并且使污水在池内不断循环,确保污水与生物膜充分接触。型号为NSR50,排出压力49KP,进气量为2.43m3/min。
曝气处理后硝化液回流至前端水解酸化池内进一步脱氮,在缺氧菌的作用下,使污水中的硝酸盐和亚硝酸盐还原成N2和H20,曝气池是一种活性污泥法和生物膜法组合的生物处理装置,通过低噪音的罗茨鼓风机提供氧源,通过放置填料,鼓风曝气,设回流系统,对、氮BOD5、磷的去除有显著的效果。
该系统的脱氮原理:
污水中的氨氮(HN3—N)95%以上是以NH4+形色存在,经鼓风曝气,首先有亚硝酸菌将氨氮转化为亚硝酸盐:
(亚硝酸菌)
NH4++1.5O2 NO2-+2H++H2O
然后再由硝酸菌将亚硝酸盐转化为硝酸盐:
硝酸菌
NO2+0.5O2 NO3-
总的反应为:
NH4-+2O2 NO3+2H++H2O
以上反应在好氧段内进行,在水解酸化段,硝酸盐和亚硝酸盐通过兼氧微生物或厌氧微生物(如产碱杆菌、假单胞菌、无色杆菌等)进行反硝化脱氮,反消化菌利用NO3中的氧(又称为化合态氧或硝态氧),继续分解代谢有机污染物,去除BOD5,同时将NO3中的氮转化为氮气N2 ,这个过程可用下式表示:
反消化菌
NO3-+有机物 N2 +N2O+OH
该系统的除磷原理:
厌氧段、水解酸化段占优势的非丝状储磷菌把储存的聚磷酸盐进行分解,并提供能量,大量吸附水中的BOD5,并释放出正磷酸盐,使厌氧段的BOD5下降,含磷量上升。污水进入好氧段后,好氧微生物利用氧化分解获得的能动量,大量吸收状况释放的正磷和原水中的磷,完成磷的过渡积累,从而达到去除BOD5和除磷的目的。
厌氧池:厌氧池用现有的化粪池代替,不增加新的设施。
水解酸化池:设计停留时间HRT=8.0有效容积V有效=33.6m3(L×W×H=4.0m×2.0m×4.5m,有效水深4.0m),采用钢筋混凝土结构。
配套设施: 弹性填料 填料架 布水管
一段好氧池:设计停留时间11.5h,有效容积为V有效=48m3 (L×W×H=4.0m×3.0m×4.5m,有效水深4.0m),采用钢筋混凝土结构。
配套设施: 弹性填料 填料架 曝气头 曝气支架 曝气机
二段好氧池: 设计停留时间11.5h,有效容积为V有效=48m3 (L×W×H=4.0m×3.0m×4.5m,有效水深4.0m),采用钢筋混凝土结构。
配套设施: 弹性填料 填料架 曝气头 曝气支架 曝气机
㈥ 养殖废水应该采用哪种方式处理,养殖废水排放标准
固液分离:无论采用什么措施来处理畜禽养殖场的废水,固液分离都是不可或缺的环节,具体步骤一般包括筛滤、离心、过滤、浮除、沉降、沉淀等。厌氧处理:厌氧技术是畜禽养殖场粪污处理中不可缺少的关键技术,废水经过厌氧消化处理可实现无害化,同时还能生成沼气和有机肥料。好氧处理:分为天然好氧处理和人工好氧处理。
一、养殖废水应该采用哪种方式处理
1、固液分离
(1)无论畜禽养殖场中的废水采用什么系统或综合措施进行处理,首先都必须进行固液分离环节。
(2)一般养殖场排放出来的废水中固体悬浮物含量会很高,最高可达160000mg/L,相应的有机物含量也会很高,通过固液分离可使液体部分的污染物负荷量大大降低。
(3)通过固液分离可防止较大的固体物进入后续处理环节,避免设备的堵塞损坏等。此外,在厌氧消化处理前进行固液分离也能增加厌氧消化运转的可靠性,减小厌氧反应器的尺寸及所需的停留时间,降低设施的投资并提高COD的去除效率。
(4)固液分离技术一般包括筛滤、离心、过滤、浮除、沉降、沉淀、絮凝等工序。目前,我国已有成熟的固液分离技术和相应的设备,设备类型主要有筛网式、卧式离心机、压滤机以及水力旋流器、旋转锥形筛和离心盘式分离机等。
2、厌氧处理
(1)厌氧技术是畜禽养殖场粪污处理中不可缺少的关键技术,因为养殖业废水属于高有机物浓度、高N、P含量和高有害微生物数量的“三高”废水。
(2)对于养殖场这种高浓度的有机废水,采用厌氧消化工艺可在较低的运行成本下有效地去除大量的可溶性有机物,COD去除率可达85%-90%,且能杀死传染病菌,有利于养殖场的防疫。
(3)如果直接采用好氧工艺处理固液分离后的养殖业废水,虽然一次性投资可节省20%,但由于其消耗的动力大,电力流水消耗是厌氧处理的10倍以上,因此长期的运行费用将给养殖场带来沉重的经济负担。
(4)目前用于处理养殖场粪污的厌氧工艺不少,其中较为常用的有以下几种:厌氧滤器(AF)、上流式厌氧污泥床(UASB)、复合厌氧反应器(UASB+AF)、两段厌氧消化法和升流式污泥床反应器(USR)等。
(5)近年来,厌氧消化即沼气发酵技术已被广泛地应用于各大养殖场的废物处理中,到2002年底,我国畜禽养殖场大中型沼气工程数量已达到2000余处,是世界上拥有沼气装置数量最多的国家之一。
(6)虽然我国的沼气工程建设成功率仅为85%,但这一技术不失为解决畜禽粪便污水的无害化和资源化问题的最有效的技术方案。
(7)畜禽粪便和养殖场产生的废水都是有价值的资源,经过厌氧消化处理既可实现无害化,同时还能够回收沼气和有机肥料,因此沼气工程建设将是中小型养殖场粪便污水治理的最佳选择。
3、好氧处理
(1)好氧处理是指利用好氧微生物来处理养殖废水的一种工艺。好氧生物处理法可分为天然好氧处理和人工好氧处理两大类。
(2)天然好氧生物处理法是利用天然的水体和土壤中的微生物来净化废水,亦称自然生物处理法,主要有水体净化和土壤净化两种。前者主要有氧化塘(好氧塘、兼性塘、厌氧塘)和养殖塘等,后者主要有土地处理(慢速渗滤、快速法滤、地面漫流)和人工湿地等。
(3)自然生物处理法不仅基建费用低,动力消耗少,该法对难生化降解的有机物、氮磷等营养物和细菌的去除率也高于常规的二级处理,部分可达到三级处理的效果。此外,在一定条件下,该法配合污水灌溉可实现污水资源化利用。但该法所需的占地面积大,且处理效果易受季节影响。如果养殖场规模小且附近有废弃的沟塘和滩涂可供利用时,应尽量选择该方法以节约投资和处理费用。
(4)人工好氧生物处理是采取人工强化供氧以提高好氧微生物活力的废水处理方法。该方法主要有活性污泥法、 生物滤池、生物转盘、生物接触氧化法、序批式活性污泥法(SBR)、厌氧/好氧(A/O)及氧化沟法等。
(5)就处理效果而言,接触氧化法和生物转盘的处理效果要比活性污泥法好,虽然生物滤池的处理效果也不错,但易于出现滤池堵塞现象。
(6)氧化沟、SBR和A/O工艺均属于改进的活性污泥法。氧化沟出水水质好、产生泥量少,也可对污水进行脱氮处理,但其处理的BOD负荷小、占地面积大、运行费用高。
(7)SBR法自动化控制程度高,能够深度处理污水,缺点是BOD负荷较小,一次性投资大。
(8)A/O体是一种兼有去除BOD和脱氮双重作用的活性污泥处理工艺,投资虽然偏大,但经该法处理后的水易于达标排放。
(9)对于那些养殖规模大、废水产生量多且有较强经济能力的养殖场可选择A/O法,而对于中等规模的养殖场可选择接触氧化和生物转盘等好氧处理工艺。
二、养殖废水排放标准
我国颁布的《畜禽养殖业污染物排放标准》(GB18596—2001 )文件中,针对养殖废水排放标准要求如下。
1 、畜禽养殖废水不得排入敏感水域和有特殊功能的水域。排放去向应该符合国家和地方的有关规定。
2 、标准适用规模范围内的畜禽养殖业的水污染物排放分别执行下表1、表2和表3的规定。
(1)表1:集约化畜禽养殖废水水冲工艺最高允许排水量
种类
猪 (m 3/百头·天)
鸡 (m 3/千只·天)
牛 (m 3/百头·天)
季节
冬季
夏季
冬季
夏季
冬季
夏季
标准值
2.5
3.5
0.8
1.2
20
30
注:养殖废水排放标准最高允许排放量的单位中,百头、千只均指存栏数。春、秋季养殖废水排放标准最高允许排放量按冬、夏两季的平均值计算。
(2)表2:集约化畜禽养殖业干清粪工艺最高允许排水量
种类
猪 (m 3/百头·天)
鸡 (m 3/千只·天)
牛 (m 3/百头·天)
季节
冬季
夏季
冬季
夏季
冬季
夏季
标准值
1.2
1.8
0.5
0.7
17
20
注:养殖废水排放标准最高允许排放量的单位中,百头、千只均指存栏数。春、秋季养殖废水排放标准最高允许排放量按冬、夏两季的平均值计算。
(3)表3:集约化畜禽养殖业水污染物最高允许日均排放浓度
控制项目
五日生化需氧量(mg/l)
化学需 氧量(mg/l)
悬浮物(mg/l)
氨氮(mg/l)
总磷(以P计)(mg/l)
粪大肠菌群数(个/ml)
蛔虫卵(个/l)
标准值
150
400
200
80
8.0
10000
2.0