1. 怎样去除废水中的磷
磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到0.5mg/l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。x0dx0a 化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异。x0dx0a FeCl3+K3PO4→FePO4↓+3KCl 式1x0dx0a 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。x0dx0a 在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。另一方面,随着沉析物的增加及较小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。x0dx0a 根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙(熟石灰)。许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物。出于经济原因,用于磷沉析的金属盐药剂主要是Fe3+、Al3+和Fe2+盐和石灰。这些药剂是以溶液和悬浮液状态使用的。二价铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用。Fe2+在实际中为了能被氧化常投加到曝气沉砂池或采用同步沉析工艺投加到曝气池中,其效果同使用Fe3+一样,反应式如式2、3。x0dx0a Al3++PO43-→AlPO4↓pH=6~7 式2x0dx0a Fe3++PO43-→FePO4↓pH=5~5.5 式3x0dx0a 与沉析反应相竞争的反应是金属离子与OH的反应,所以对于各种不同的金属盐产品应注意的是金属的离子量,反应式如式4、5。x0dx0a Al3++3OH-→Al(OH)3↓ 式4x0dx0a Fe3++3OH-→Fe(OH)3 式5x0dx0a 金属氢氧化物会形成大块的絮凝体,这对于沉析产物的絮凝是有利的,同时还会吸附胶体状的物质、细微悬浮颗粒。需要注意的是有机物在以化学除磷为目的化学沉析反应中的沉析去除是次要的,但在分离时有机性胶体以及悬浮物的凝结在絮凝体中则是决定性的过程。x0dx0a 沉析效果是受PH值影响的,金属磷酸盐的溶解性同样也受PH的影响。对于铁盐最佳PH值范围为5.0~5.5,对于铝盐为6.0~7.0,因为在以上PH值范围内FePO4或AIPO4的溶解性最小。另外使用金属盐药剂会给污水和污泥处理还会带来益处,比如会降低污泥的污泥指数,有利于沼气脱硫等。x0dx0a 由于金属盐药剂的投加会使污水处理厂出水中的Cl-或SO2-4离子含量增加。如果沉析药剂溶液中另外含有酸的话,则需特别加以注意。x0dx0a 投加金属盐药剂后相应会降低污水的碱度,这也许会对净化产生不利影响。当在同步沉析工艺中使用硫酸铁时,必须考虑对硝化反应的影响。x0dx0a 另外,如果污水处理厂污泥用于农业,使用金属盐药剂除磷时必须考虑铝或者铁负荷对农业的影响。x0dx0a 除了金属盐药剂外,氢氧化钙也用作沉析药剂。在沉折过程中,对于不溶解性的磷酸钙的形成起主要作用的不是Ca2+,而是OH-离子,因为随着pH值的提高,磷酸钙的溶解性降低,采用Ca(OH)2除磷要求的pH值为8.5以上。磷酸钙的形成是按反应式6进行的:x0dx0a 5Ca2++3po43-+OH-→Ca5(PO4)3OH↓ pH ≥8.5 式6x0dx0a 但在pH值为8.5到10.5的范围内除了会产生磷酸钙沉析外,还会产生碳酸钙,这也许会导致在池壁或渠、管壁上结垢,反应式如式7。x0dx0a Ca2++CO32-→CaCO3 式7x0dx0a与钙进行磷酸盐沉析的反应除了受到PH值的影响,另外还受到碳酸氢根浓度(碱度)的影响。在一定的PH值惰况下,钙的投加量是与碱度成正比的。x0dx0a 对于软或中硬的污水,采用钙沉析时,为了达到所要求的PH值所需要的钙量是很少的,具有强缓冲能力的污水相反则要求较大的钙投加量。x0dx0a 化学沉析工艺是按沉析药剂的投加地点来区分的,实际中常采用的有:前沉析、同步沉析和后沉析或在生物处理之后加絮凝过滤。x0dx0a (1)前沉析x0dx0a 前沉析工艺的特点是沉析药剂投加在沉砂池中,或者初次沉淀池的进水渠(管)中,或者文丘里渠(利用涡流)中。其一般需要设置产生涡流的装置或者供给能量以满足混合的需要。相应产生的沉析产物(大块状的絮凝体)则在一次沉淀池中通过沉淀而被分离。如果生物段采用的是生物滤池,则不允许使Fe2+药剂,以防止对填料产生危害(产生黄锈)。x0dx0a 前沉析工艺(如图2所示)特别适合于现有污水处理厂的改建(增加化学除磷措施),因为通过这一工艺步骤不仅可以去除磷,而且可以减少生物处理设施的负荷。常用的沉析药剂主要是生灰和金属盐药剂。经前沉析后剩余磷酸盐的含量为1.5-2.5mg/1,完全能满足后续生物处理对磷的需要。 x0dx0a (2)同步沉析x0dx0a 同步沉析是使用最广泛的化学除磷工艺,在国外约占所有化学除磷工艺的50%。其工艺是将沉析药剂投加在曝气池出水或二次沉淀池进水中,个别情况也有将药剂投加在曝气池进水或回流污泥渠(管)中。目前很多污水厂都采用,如广州大坦沙污水处理厂三期就是采用的同步沉析,加药对活性污泥的影响比较小。x0dx0a (3)后沉析x0dx0a 后沉析是将沉析、絮凝以及被絮凝物质的分离在一个与生物设施相分离的设施中进行,因而也就有二段法工艺的说法。一般将沉析药剂投加到二次沉淀池后的一个混合池(M池)中,并在其后设置絮凝池(F池)和沉淀池(或气浮池)。x0dx0a 对于要求不严的受纳水体,在后沉析工艺中可采用石灰乳液药剂,但必须对出水PH值加以控制,比如采用沼气中的CO2进行中和。x0dx0a 采用气浮池可以比沉淀池更好地去除悬浮物和总磷,但因为需恒定供应空气而运转费用较高。x0dx0a希望对你能有所帮助。
2. 污水处理中的有机磷怎么去除
对于有机磷的去除而言,目前常用的方法就是Fenton氧化反应,但是当有机磷废水中有机磷的含量降低至5-8mg/L时,很难进一步降低,所以可采用特种磷去除设备搭配SPT-P5特种磷去除剂进行处理。
3. 污水处理除磷剂有哪些
工业废水除磷,主要采用生物除磷和化学除磷。 1、生物除磷是通过活性污泥产生挥发性的有机酸作为聚磷菌生长所需的营养物质,促进活性污泥的生长、繁殖。这种方法还能将难以进行物化处理的有机磷与偏磷转化为能采用化学处理的正磷。不过,这种方式会使磷残留于生物体内,而微生物在境转换后很可能会重新释放出来。 2、化学除磷剂除磷法能够比较快速地处理污水中的正磷,适应性比较强,但是它相对地会降低污泥浓度、增加水中的污泥量,出现金属物质影响,产生颜色等。
生活污水处理除磷用什么?可以用除磷剂处理
除磷剂是一种将除磷与絮凝相结合的无机高分子复配絮凝剂,能快速中和水中胶体微粒表面的负电荷,又能在离子间起架桥、吸附、网捕作用,与重金属捕捉剂等配套使用,能更好的发挥去除重金属的协同作用。除磷絮凝剂铁盐含量和盐基度较高,这使它除了快速与水中形形色色的杂质相互作用外,同时经过电中和、水解、沉淀、络合、等多相反应,以及颗粒碰撞、絮团粘附、微涡旋推动等动态作用,从而使产品具有除磷净化的能力。
广 州 希 洁 回答希望对你有用!
4. 除磷设备有哪些,工作原理是怎样的
污水处理设备除磷的工艺有哪些?权鼎结合多年的在污水处理领域的经验,总结出以下几点污水处理设备除磷的工艺。生物除磷工艺优点:表现出除磷效果好,并能改进污泥沉降性能,减少活性污泥膨胀现象等。下面列举几个常用工艺。
1、A2/O工艺
A2/O工艺是在 A/O工艺的基础上增加了一个缺氧阶段,使好氧区中的混合液回流至缺氧区使之反硝化脱氮,从而使除磷和脱氮相结合。缩小了曝气区的体积。、
但是由于存在内循环,系统排放的剩余污泥中只有少部分经历了完整放磷吸磷过程,其余基本上未经厌氧状态而直接由缺氧区进入好氧区,这对于系统除磷是不利的。而且为了降低回流污泥中的硝酸盐,必须提高混合液回流量,从而增加电耗。
2、Phostrip工艺
该工艺把生物法和化学除磷法结合在一起,将一部分回流污泥 (约为进水流量的 10%~20%)分流到厌氧池除磷,污泥在厌氧池中通常停留 8~12 h,聚磷菌则在厌氧池中进行磷的释放,脱磷后的污泥回流到曝气池中继续吸磷。含磷上清液进入化学沉淀池,投加石灰生成沉淀。它除磷效率可达 90%以上,处理出水含磷量可低于1mg·L-1,对进水水质波动的适应性较强,较少受进水 BOD 的影响,加之大部分磷以石灰污泥的形式沉淀去除,因此污泥处理不像高磷剩余污泥那样复杂。
3、氧化沟工艺
氧化沟工艺由于其特殊的运行方式,在空间上形成了缺氧、好氧的交替变化,达到了硝化、反硝化和生物除磷的目的。其可在低负荷和较长的泥龄条件下运行,由于无需回流,比一般工艺节能 10%~20%。若水量大或负荷高,则工艺占地面会很大。
所有的生物除磷系统都有以下几个特点:保证厌氧区真正处于厌氧状态,既不存在游离态的溶解氧,也不存在硝酸根等结合态氧,如通过改变污泥回流方式和路径以避免硝酸根进入厌氧区,而防止厌氧区的反硝化作用,对聚磷菌厌氧释放磷的竞争抑制作用;保证厌氧区进水中易生物降解有机物的含量,以使聚磷菌能在与其它细菌对食料的争夺中占优势,如可在进水中加入初沉污泥酸性发酵液等。
微点环保简述生物除磷的基本原理是利用一种被称为聚磷菌(也称为除磷菌、磷细菌等)的细菌在厌氧条件下能充分释放其细胞体内的聚合磷酸盐(该过程称为厌氧释磷);而在好氧条件下又能超过其生理需要从水中吸收磷(该过程称为好氧吸磷),并将其转化为细胞体内的聚合磷酸盐,从而形成富含磷的生物污泥,通过沉淀从系统中排出这种富磷污泥,达到从废水中除磷的效果。
①在厌氧区内的释磷过程,在没有溶解氧和硝态氮存在的厌氧条件下,兼性细菌通过发酵作用将溶解性BOD转化为挥发性有机酸(VFA),聚磷菌吸收VFA并进入细胞内,同化合成为胞内碳源的储存物——聚-β-羟基丁酸盐(PHB),所需的能量来源于聚磷菌将其细胞内的有机态磷转化为无机态磷的反应,并导致磷酸盐的释放。
5. [高温度工业废水强化生物除磷工艺研究] 除磷工艺
高温度工业废水强化生物除磷工艺研究 强化生物除磷(EBPR)是目前应用最为广泛的生物除磷工艺. 该工艺利用聚磷菌(PAO)在厌氧条件下将储存于体内的聚磷酸盐(Poly-P)水解获取能量, 用以吸收水中的挥发性脂肪酸(VFA), 并以聚羟基烷酸酯(PHAs)的形式储存在细胞内; 在好氧条件下PAO 以储存于细胞内的PHAs 作为碳源和能源, 吸收水中的磷并将其合成为Poly-P 进行细胞增殖, 最终通过排除富磷污泥达到污水除磷的目的. 在EBPR 系统中, 还存在与PAO 代谢机制相知岩似的聚糖菌(GAO), 在厌氧条件下GAO 与PAO 竞争基质(VFA), 但在好氧条件下并不摄取磷, 因此, 如何提高PAO 的活性和强化其与GAO 对基质的竞争能力是保证EBPR 工艺稳定运行的重要内容. 有研究表明, 影响EBPR 系统稳定运行的因素主要有碳源、pH 、温度、DO 等, 其中, 温度的影响一直存在争议. 一般认为, 当温度低于20℃时, 有利于PAO 的竞争, 从而提升EBPR 系统的性能; 当温度高于20℃时, GAO 占据竞争优势, 导致污泥中PAO 的份额逐渐减少, 除磷效率逐渐降低, 甚至EBPR 系统的崩溃. 然而, 最新的研究表明, EBPR系统在高温条件下仍可高效除磷. Freitas等在SBR 中采用短期循环(厌氧20 min, 好氧10 min, 静置1 min) 实现了30℃高温条件下EBPR 的稳定运行. Winkler等利用PAO 颗粒污泥与GAO 颗粒污泥密度的差异, 通过排除污泥床上部密度较小的GAO, 在USB 反应器内富集可以适应高温的PAO, 在30℃条件下实现了较好的除磷效果. Ong 等研究表明, 在28~32℃的条件下, 长期运行的EBPR 反应器可以实现95%的磷的去除率, qPCR 检测结果表明污泥中的PAO 为Accumulibacter 的亚种Clade IIF. 但是目前关于温度对EBPR 系统中PAO 的活性以及与GAO 关于基质的竞争能力的影响尚无定论, 因此需要开展相同试验条件下不同温度对PAO 与GAO 之间的竞争影响研究, 尤其是高温条件下对其竞争过程的具体研究显得更加重要.
为了更好地理解高温厅搜条件下EBPR 系统中PAOHT 的活性及基质竞争的影响, 本研究以实验室中30℃高温条件下长期运行的具有较好除磷功能的SBR 反应器中的污泥为对象, 结合FISH 技术, 探讨15~30℃(基于南方全搭伏御年污水温度范围约为10~30℃) 温度条件下高温聚磷菌(PAOHT)的释磷、吸磷以及乙酸吸收速率, 以期为温度变化幅度较大的地区和接收较高温度工业废水的生物除磷系统的稳定运行提供依据.
1 材料与方法1.1 污泥来源
试验污泥取自实验室30℃高温条件下长期运行(430 d)的SBR 反应器[15].该反应器采用A/O方式运行, 每天6个周期, 每个周期为4 h, 其中, 进水7 min, 厌氧1 h, 好氧2 h, 沉淀40 min, 排水10 min, 闲置3 min. 控制水力停留时间(HRT)为8 h, 污泥停留时间(SRT)为8 d. 反应器温度一直维持在30℃. 进水COD(乙酸) 浓度为300 mg ·L-1, 磷(PO43--P)浓度10 mg·L-1, 而出水磷(PO43--P)始终小于0.1 mg·L-1, 磷的去除率高达99%以上. 反应器中的悬浮固体(SS)和挥发性悬浮固体(VSS)浓度分别稳定在2.36 g ·L-1和1.63 g ·L-1, 运行高效稳定.
1.2 活性污泥释磷吸磷速率测定
活性污泥释磷吸磷速率测定采用间歇试验法. 试验装置见图 1.试验开始前, 先采用经脱氧处理的自来水对污泥进行陶洗, 然后将其倒入反应瓶中, 加入配制好的基质溶液(与SBR 反应器进水水质保持一致), 反应瓶底部置有磁力转子保证完全混合状态, 反应过程中
的温度利用水浴槽进行控制. 在厌氧阶段, 通入氮气隔绝空气, 确保反应瓶处于厌氧状态; 在好氧阶段, 以60 L·h-1的速率通入空气, 保证混合液中的溶解氧(DO)大于2 mg·L-1. 在不同反应时间点取样, 测定相应的磷及乙酸浓度, 试验结束时测定混合液的SS 和VSS, 用于计算厌氧释磷速率[以P/VSS计, mg·(g·h)-1, 下同]、好氧吸磷速率[以P/VSS计, mg ·(g·h)-1, 下同]和乙酸吸收速率[以HAc/VSS计, mg·(g·h)-1, 下同].
1. 氮气瓶; 2. 曝气机; 3. 进水管; 4. 取样管; 5. 排气管; 6. 磁力搅拌器; 7. 转子; 8. 反应瓶;
9. 温度计; 10.水浴槽
图 1 间歇试验装置示意
1.3 分析方法
磷(PO43--P)采用钼锑抗分光光度法; 悬浮固体(SS)和挥发性悬浮固体(VSS)采用重量法; 化学需氧量(COD)采用重铬酸钾法; pH采用玻璃电极法. 挥发性脂肪酸(VFAs)采用气相色谱法(型号:安捷伦6890N), 检测器为氢火焰离子(FID)检测器, 色谱柱型号为DB-FFAP.
1.4 FISH分析方法
样品预处理:取好氧末污泥混合液离去上清液, 加入1 mL 的1×PBS 缓冲溶液重悬, 重复操作两次后, 加入1 mL的4%的多聚甲醛溶液重悬, 置于4℃条件下固定2 h, 然后离去上清液, 加入1×PBS 缓冲溶液离心, 重复3次, 以洗去多余的多聚甲醛溶液, 分别加入0.5 mL的1×PBS 缓冲溶液和无水乙醇, 摇匀置于-20℃下保存.
脱水和杂交:将涂好的载玻片放置于培养箱中干燥, 干燥好的载玻片依次放于75%、95%、100%的乙醇溶液中脱水3 min, 取出后风干. 将事先配好的杂交缓冲液和探针使用液以体积比8:1的比例混合, 避光, 涂于载玻片的样品上, 将载玻片迅速移回到杂交管中, 于46℃条件下杂交2~4 h, 杂交完成后取出载玻片进行洗脱处理并立即风干封片.
样品观测及分析方法:采用激光共聚焦显微镜(德国莱卡SP8) 观察样品和图像采集, 用Image-ProPlus 6.0软件对所采集的图像进行统计分析, 从而确定样品中PAO 、GAO 和EUB 所占比例.
有关荧光探针和杂交的详细操作参见文献.
2 结果与讨论2.1 试验污泥的活性
图 2为试验污泥在30℃下的活性测定结果. 该污泥在厌氧段的最大释磷速率为239.46 mg ·(g·h)-1, 好氧段的最大吸磷速率为79.90 mg·(g·h)-1, 厌氧段的乙酸吸收速率为357.47 mg·(g·h)-1, 对应的吸收单位乙酸释磷量(ΔP/ΔHAc) 为0.628. 说明该污泥中的聚磷菌在高温下具有较好的释磷、吸磷以及对基质的吸收能力.
图 2 试验污泥30℃时厌氧释磷、乙酸吸收及好氧吸磷的变化
Brdjanovic 等关于温度对生物除磷的影响性研究表明, 在30℃时其污泥最大释磷速率为68 mg ·(g·h)-1, 好氧最大吸磷速率为57 mg ·(g·h)-1, 乙酸吸收速率为180 mg ·(g·h)-1, ΔP/ΔHAc 为0.376. 相较之下, 本研究的试验污泥在30℃高温条件下运行长达一年多, 有更好的释磷和吸磷能力, 属于已经适应高温的PAO, ΔP/ΔHAc 的值达到了0.628, 即每吸收1 mol 的乙酸, 释放0.628 mol 的磷, 这也就进一步表明了PAO 为试验污泥中的优势菌群, 且具有更强的基质竞争能力.
2.2 试验污泥中聚磷菌及其份额
图 3为利用目前普遍采用的PAOMIX 探针对试验活性污泥的FISH 检测结果. 从中可见, 试验污泥中的聚磷菌属于Accumulibacter. He 等采用宏基因分析对12个具有除磷功能的城市污水处理厂污泥种群结构进行测定, 结果表明Accumulibacter 下存在5个亚种, 分别为clade Ⅰ、ⅡA 、ⅡB 、ⅡC 和ⅡD, 不同的污水处理厂由于水质和运行条件不同存在着不同种属的PAO. Ong等[14]研究了高温条件下(28~32℃) 以乙酸为基质的EBPR 系统除磷效率, 结果表明, 即使温度高达32℃, EBPR仍获得了较好的处理效果, 利用qPCR 技术分析得出, 污泥中聚磷菌的优势菌属为Accumulibacter 的亚种clade IIF.而Peterson 等发现
Accumulibacter 的不同亚种具有不同的生态生理学特性. 由此说明本系统出现的适应高温的聚磷菌为Accumulibacter 的亚种.
图 3 试验活性污泥中微生物的群落结构
6. 污水中去除磷的重要性
污水处理中去除磷是非常重要的环节,因为废水中的氮和磷能够与微生物反应生产对生物有害的物质,还有就是氮与磷发生反应的过程中,需要消耗大量的氧气,使水体氧气浓度大幅度下降,水中的鱼虾等生存受到严重影响,而现在可以完全解决难题的就是青岛弘国环境工程技术公司了,推出的物化BFMS技术、生化EBR技术及DW型叠螺式污泥脱水机,大中型企业得到了广泛的应用。
7. BAF污水处理优缺点
BAF污水处理的优点:
1、出水水质好;
2、占地面积小,基建投资省;
3、不产生臭气、环境质量高;
4、运行费用低;
5、抗冲击负荷能力强,无污泥膨胀问题,耐低温;
6、易挂膜,启动快;
7、模块化结构,便于后期改、扩建;
8、采用自动化控制,易于管理。
BAF污水处理的缺点:
对进水水质要求较高,需要进行混凝沉淀预处理;脱氮除磷能力相比传统工艺有所欠缺,脱氮方面需要设置DN池,运行过程中需要投加碳源,除磷方面需要在预处理过程投加化学除磷药剂,药剂成本高;曝气生物滤池由于滤料粒径较小,往往会发生滤料堵塞,若长期反冲洗不到位,会导致滤料板结而无法运行;需配备反冲洗系统,运行上对自动化的要求较高。
参考链接:
BAF_网络
http://ke..com/view/70727.htm#3_2
8. 污水处理厂处理污水的流程
污水处理厂处理污水的流程如下图:
1、生物除磷
在经济发展过程中,我国的主要河流和湖泊由于受磷污染,富营养化严重,国家环保局为控制磷污染,对磷排放制定了比较严格的标准。化学强化生物除磷污水处理工艺以除去污水中有机污染物和各种形态的磷为主,此污水处理工艺将化学除磷和生物除磷一体化,通过厌氧消化生物系统中活性污泥产生挥发性有机酸,作为聚磷菌生长的基质或称之为营养物,使聚磷菌在活性污泥中选择性增殖,并将其回流到生物系统中,使生物污水处理系统工作在高效除磷状态;同时污泥在厌氧条件下产生的磷释放,通过化学除磷消除。这是一种高效市政污水处理工艺技术,满足了我国现阶段,为解决水体富营养化,需要在常规二级污水处理基础上进一步除磷的要求。
2、循环间隙
我国经济发展水平各地相差较大,经济发展滞后的城市还不能拿出很多资金用于污水治理,因此,怎样利用有限的资金,降低环境污染,是很多城市政府面临的问题。在污水处理方面,直到不久前,一些城市还采用一级或一级强化处理工艺技术,出水达不到国家二级排放标准对除去有机污染物的要求。循环间歇曝气工艺充分发挥高负荷氧化沟处理效率高的优点,又充分利用序批式活性污泥污水处理工艺出水好的特点,保证了系统出水达到国家污水排放一级标准在除去有机污染物方面的要求。在投资和运行费用上比通常以除去有机污染物为主的二级生物污水处理系统降低30%左右,是适合我国现阶段污水处理要求的工艺技术。
3、旋转接触
旋转接触氧化污水处理工艺技术是在生物转盘技术基础上,结合生物接触氧化技术优点发展起来的新一代好氧生物膜处理技术。旋转接触氧化污水处理工艺技术和成套设备提供了一种简单和可靠的污水处理方法。整个污水处理系统中的转轴是唯一的转动部分,一旦机器出了故障,一般机械人员都可以进行维修。系统生物量会根据有机负荷的变化而自动补偿。附在转盘上的微生物是有生命的,当污水中的有机物增加时,微生物随之增加,相反,当污水中的有机物减少时,微生物随之减少。所以这污水处理系统的工作效果不容易受到流量和负荷的突然变化和停电的影响。运行费用低,只有其他曝气污水处理系统耗电的八分之一到三分之一。占地面积仅相当常规活性污泥法一半。由于生物系统中生长的微生物种类多,能够高效处理各种难降解工业污水。
9. 含磷废水怎么处理
含磷废水的四种处理方法:吸附法、离子交换法、化学沉淀法及膜分离方法。
1、吸附法
吸附法除磷的作用机理:在废水吸附除磷过程中,主要关注于正磷酸盐。受磷酸的电离平衡制约,正磷酸盐在水体中电离,同时生成H3P04、H2P04、HP04和P04。吸附除磷的实际过程既包括物理吸附,又包括化学吸附。
2、离子交换法。
该方法是利用强碱性阴离子交换树脂,与废水中的磷酸根阴离子进行交换反应,将磷酸根阴离子置换到交换剂上予以除去的方法。离子交换树脂脱除P4O3的交换容量比较稳定,其再生后交换容量也比较稳定。但离子交换树脂的价格较高,树脂再生时需用酸、碱或食盐,运行费用较高
3、化学沉淀法
化学法即投加除磷剂,投加除磷剂后,污水中进行的不仅是沉析反应,同时还发生着化学絮凝作用,即形成的细小的非溶解状的固体物互相粘结成较大形状的絮凝体,通过固液分离,得到净化的污水和固液浓缩物(化学污泥),达到化学除磷的目的。
4、膜分离方法。
液膜分离法是一种新型的、类似溶剂萃取的膜分离技术。液膜法通常是将按一定比例配制的有机溶剂(有机相)同膜内试剂混合制成乳液微滴,微滴表面形成一层极薄的(l~10μm)液膜,膜内为内相试剂。
在混合柱内,将此表面积极大的乳液微滴与废水接触,水中待除的金属离子便通过选择性渗透、萃取、吸附等穿过液膜,进入内相试剂进行化学反应,废水中的金属离子因而得到分离去除。
(9)废水除磷机扩展阅读:
含磷废水的危害:磷化工在加工生产中都要产生大量的含有磷、氟、硫、氯、砷、碱、铀等有毒有害物质的废水。黄磷生产中要产生黄磷污水,其黄磷污水中含有50~390 mg/L浓度的黄磷,黄磷是一种剧毒物质,进入人体对肝脏等器官危害极大。
长期饮用含磷的水可使人的骨质疏松,发生下颌骨坏死等病变。黄磷污水中还含有68~270 mg/L的氟化物,经过处理后可降至15~40 mg/L,但仍高于国家规定的10 mg/L的排放标准。