『壹』 苯-甲苯混合物分离精馏塔设计
第一章 概 述 1.1精馏塔的简单介绍 精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。有板式塔与填料塔两种主要类型。根据操作方式又可分为连续精馏塔与间歇精馏塔。蒸气由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸气中转移,蒸气中的难挥发(高沸点)组分不断地向下降液中转移,蒸气愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。由塔顶上升的蒸气进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸气返回塔中,另一部分液体作为釜残液取出。
1.2本设计的目的和意义 通过本次课程设计,培养学生多方位、综合地分析考察工程问题并独立解决工程实际问题的能力。主要体现在以下几个方面:
(1)资料、文献、数据的查阅、收集、整理和分析能力。要科学、合理、有创新地完成一项工程设计,往往需要各种数据和相关资料。因此,资料、文献和数据的查找、收集是工程设计必不可少的基础工作。
(2)工程的设计计算能力和综合评价的能力。为了使设计合理要进行大量的工艺计算和设备设计计算。本设计包括塔板结构和附属设备的结构计算。
(3)工程设计表达能力。工程设计完成后,往往要交付他人实施或与他人交流,因此,在工程设计和完成过程中,都必须将设计理念、理想、设计过程和结果用文字、图纸和表格的形式表达出来。只有完整、流畅、正确地表达出来的工程设计的内容,才可能被他人理解、接受,顺利付诸实施。
通过本设计不仅可以进一步巩固学生所学的相关啊知识,提高学生学以致用的综合能力,尤其对精馏、流体力学等课程更加熟悉,同时还可以培养学生尊重科学、注重实践和学习严禁、作风踏实的品格。
第二章 设计计算 2.1确定设计方案 本设计任务是分离苯-甲苯混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用中间泡点进料,将苯和甲苯混合液经原料预热器加热至泡点后送入精馏塔。塔顶上升蒸汽采用全凝器冷凝后,一部分作为回流,其余为塔顶产品,经冷却器冷却后送至贮槽。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2倍。塔釜采用间接蒸汽加热,塔底产品冷却后送至储罐。
2.2精馏塔的物料衡算 1.原料及塔顶、塔底产品的摩尔分率
苯的摩尔质量 MA=78.11 kg/kmol
甲苯的摩尔质量 MA=92.13 kg/kmol
xF = =0.541
xD = =0.992
xW = =0.012
2.原料液及塔顶、塔底产品的平均摩尔质量
MF=0.541×78.11+(1-0.541)×92.13=84.55 kg/kmol
MD=0.992×78.11+(1-0.992)×92.13=78.22 kg/kmol
MW=0.012×78.11+(1-0.012)×92.13=91.96 kg/kmol
3.物料衡算
原料处理量 F= =131.41 kmol/h
总物料衡算 D+W=131.41
苯物料衡算 0.992D+0.012W=131.41×0.541
联立解得 D=70.93 kmol/h
W=60.48 kmol/h
2.3塔板数的确定 常压下苯-甲苯的气液平衡与温度关系
温度t
110.6
106.1
102.2
98.6
95.2
92.1
89.4
86.8
84.4
82.3
81.2
80.2
x(摩尔分数)
y
0
0
0.088
0.212
0.2
0.37
0.3
0.5
0.397
0.618
0.489
0.71
0.592
0.789
0.7
0.853
0.803
0.914
0.903
0.957
0.95
0.979
1.0
1.0
1.理论塔板数NT的求取
苯-甲苯属理想物系,可采用图解法求理论塔板数。
①由上表查得苯-甲苯物系的气液平衡数据,绘出下面x-y图
②求最小回流比及操作回流比。
采用作图法求最小回流比。在上图中对角线上,子点e(0.542,0.542)做垂线ef即为进料线(q线),该线于平衡线的交点坐标为
yq=0.756 xq=0.542
故最小回流比为
Rmin=1.103
取操作回流比为
R=2Rmin=2.206
③求精馏塔气、液相负荷
L=RD=156.47 kmol/h
V=(R+1)D=234.47 kmol/h
L′=L+F=289.94 kmol/h
V′=V=234.47 kmol/h
④求操作线方程
精馏段操作线方程为
y= x+ XD=0.667x+0.301
提馏段操作线方程为
y′= ’- Xw =1.237x’-0.003
5图解法求理论塔板层数
采用图解法求理论踏板层数,如上图所示。求解结果为
总理论塔板层数 NT=12.5
进料板位置 NF=6
2.实际塔板层数的求取
精馏段实际塔板层数 N精=6/0.56≈11
提留段实际塔板层数 N提=6.5/0.56≈12
2.4精馏塔工艺条件的计算 1.操作压力计算
塔顶操作压力 PD=101.3+4=105.3 kPa
每层塔板压降 ΔP=0.7 kPa
进料板压力 PF=112.3 kPa
精馏段平均压力 Pm=108.8 kPa
2.平均摩尔质量计算
塔顶平均摩尔质量计算
由xD=y1=0.992,查平衡曲线,得
x1=0.956
MVDm=0.992×78.11+(1-0.992)92.13=78.22 kg/kmol
MLDm=0.956×78.11+(1-0.956)92.13=79.66 kg/kmol
进料板平均摩尔质量计算
由图解理论板,得
yF=0.720
查平衡曲线,得
xF=0.497
MVFm=0.720×78.11+(1-0.720)92.13=82.04 kg/kmol
MLFm=0.497×78.11+(1-0.497)92.13=85.16 kg/kmol
精馏段平均摩尔质量
MVm=(78.22+82.04)/2=80.13 kg/kmol
MLm=(79.66+85.16)/2=82.41 kg/kmol
3.平均密度计算
(1)气相平均密度计算
由理想气体状态方程计算,即
рVm= =2.88 kg/m3
(2)液相平均密度的计算
液相平均密度计算依下式计算,即
1/рVm=∑ai/рi
塔顶液相平均密度的计算
由tD=82.1℃,查手册得
рA=812.7 kg/m3 рB=807.9 kg/m3
рLDm= =812.6kg/m3
进料板的平均密度计算
由tF=99.5℃,查手册得
рA=793.1 kg/m3 рB=790.8 kg/m3
进料板液相的质量分率
aA=0.456
рLFm= =791.8 kg/m3
精馏段液相平均密度为
рLm=(812.6+791.8)/2=802.2 kg/m3
2.5精馏塔塔体工艺尺寸计算 1.塔径的计算
精馏段的气、液相体积流率
Vs= =1.812 m3/s
Ls= =0.0045 m3/s
由 umax=C
=0.0413
取板间距HT=0.40 m,板上液层高度hL=0.06 m,则
HT-hL=0.40-0.06=0.34 m
查资料可得 C20=0.075
C= C20 =0.0753
Umax =0.0753 =1.254 m/s
取安全系数为0.7,则空塔气速为
u=0.7 umax=0.878 m/s
D= =1.66 m
按标准塔径圆整后为 D=1.5 m
塔截面积为
AT=2.16 ㎡
实际空塔气速为
u=0.839 m/s
2.精馏塔的有效高度计算
精馏段有效高度为
Z精=(N精—1)HT=4 m
提馏段有效高度为
Z提=(N提—1)HT=4.4 m
在进料板上开一人孔,其高度为0.8 m
故精馏塔的有效高度为
Z=Z精+Z提+0.8=9.2 m
2.6塔板主要工艺尺寸的计算 1.溢流装置的计算
因塔径D= 1.5m,可选用单溢流弓形降液管,采用凹形受液盘。各项计算如下:
(1)堰长lW
取 lW=0.66D=0.99 m
(2)溢流堰高度hW
由 hW=hL-hOW
选取平直堰,堰上液层高度hOW,近似的取E=1得
hOW= E =0.019 m
取板上清液层高度 hL=0.06 m
故 hW=0.06-0.019=0.041 m
(3)弓形降液管宽度Wd和截面积Af
由 lW/D=0.66 得
Af/AT=0.0722 Wd/D=0.124
故 Af=0.198 ㎡
Wd=0.186 m
验算液体在降液管中停留的时间
θ= =17.6 s>5 s
故降液管设计合理。
2.7筛板流体力学的验算 1.液面落差
对于筛板塔,液面落差很小,且塔径和液流量不是很大,故可忽略液面落差的影响。
2.液沫夹带
液沫夹带量eV计算,即
eV= ( ) =0.042 kg<0.1 kg
hf=2.5 =0.15 m
故在本设计中液沫夹带量eV在允许范围内。
3.漏液
对筛板塔,漏液点气速u0,min计算,即
u0,min=4.4
=6.0276 m/s
实际孔速
u0= Vs/A0=16.23 m/s>u0,min
稳定系数为
K=u0 /u0,min=2.692>1.5
故在本设计中无明显漏液。
第三章 设计结果汇总
序号 项目 数值
1 平均温度 ,℃ 90.8
2 平均压力Pm,kPa 108.8
3 气相流量Vs (m3/s) 0.872
4 液相流量Ls (m3/s) 0.0022
5 实际塔板数 23
6 有效段高度Z,m 9.2
7 塔径,m 1.0
8 板间距,m 0.4
9 溢流形式 单溢流
10 降液管形式 弓形
11 堰长,m 0.66
12 堰高,m 0.051
13 板上层液高度,m 0.06
14 堰上层液高度,m 0.009
15 空塔气速,m/s 1.111
16 液沫夹带eV,(kg液/kg气) 0.042
17 稳定系数 2.69
18 筛孔直径,m 0.005
19 孔中心距,m 0.015
20 筛孔直径,m 0.005
『贰』 精馏塔带控制点的流程图解释说明
你要的基础:P代表压力,L代表液位,T代表温度,F代表流量
1,以塔顶为例版,PE-1011检测到塔顶压力信号权,变送至DCS,与设置参数进行比较后,送出调节信号到PV-1012。以此图来看,当压力高于某值时,开大PV-1012。目的是保持塔顶压力的稳定。
2,复杂点的串控,以再沸器控制为例,主调为温度,副调为流量。FE-1011检测流量,变送至DCS,与设置参数进行比较后,送出调节信号到TV-1011。
TE-1011检测到灵敏板温度升高,变送至DCS,与设置参数进行比较后,结果作为FRQC-1011的设定值,再与FE-1011的测定值进行比较,送出调节信号给FV-1011。
以此图,当FE-1011升高时,DCS送出信号使FV-1011关小;当TE-1011升高时,送出信号使FV-1011关小。
『叁』 常减压装置工艺流程图
常减压装置是常压蒸馏和减压蒸馏两个装置的总称,因为两个装置通常在一起,故称为常减压装置。主要包括三个工序:原油的脱盐、脱水;常压蒸馏;减压蒸馏。以下是我为大家整理的关于,给大家作为参考,欢迎阅读!
常减压装置的主要装置
1、电脱盐罐 其主要部件为原油分配器与电级板。
原油分配器的作用是使从底部进入的原油通过分配器后能够均匀地垂直向上流动,目前一般采用低速槽型分配器。
电极板一般有水平和垂直两种形式。交流电脱盐罐常采用水平电极板,交直流脱盐罐则采用垂直电极板。水平电极板往往为两至三层。
2、防爆高阻抗变压器 变压器是电脱盐装置的关键装置。
3、混合设施。 油、水、破乳剂进脱盐罐前应充分混合,使水和破乳剂在原油中尽量分散到合适的浓度。一般来说,分散细,脱盐率高;但分散过细时可形成稳定乳化液反而使脱盐率下降。脱盐装置多用静态混合器与可调差压的混合阀串联来达到上述目的。
工艺流程:炼油厂多采用二级脱盐工艺,图:1-1 所在地址
常压蒸馏原理:
精馏又称分馏,它是在精馏塔内同时进行的液体多次部分汽化和汽体多次部分冷凝的过程。
原油之所以能够利用分馏的方法进行分离,其根本原因在于原油内部的各组分的沸点不同。
在原油加工过程中,野汪把原油加热到360~370℃左右进入常压分馏塔,在汽化段进行部分汽化,其中汽油、煤油、轻柴油、重柴油这些较低沸点的馏分优先汽化成为气体,而蜡油、渣油仍为液体。
减压蒸馏原理:
液体沸腾必要条件是蒸汽压必须等于外界压力。
降低外界压力就等效于降低液体的沸点。压力愈小,沸点降的愈低。如果蒸馏过程的压力低于大气压以下进行,这种过程称为减压蒸馏。
常减压装置的主要装置为: 塔 和 炉。
塔是整个装置的工艺过程的核心,原油在分馏塔中通过传质传热实现分馏作用,最终将原油分离成不同组分的产品。最常见的常减压装置流程为三段气化流程或称为“两炉三塔流程”,常减压中的塔包括:初馏塔或闪蒸塔、常压塔、减压塔。
a、蒸馏塔的结构:
塔体:塔体是由直圆柱型桶体,高度在35~40米左右,材质一般为A3R或16MnR,对于处理高含硫原油的装置,塔内壁还有不锈钢衬里。
塔体封头:一般为椭圆形或半圆形。
塔底支座:塔底支座要求有一定高度嫌明,以保证塔底泵有足够的灌注压头。
塔板或填料:是塔内介质接触的载体,传质过程的三大要素之一。
开口及管嘴:是将塔体和其它部件连线起来的部件,一般由不同口径的无缝钢管加上法兰和塔体焊接而成。
人孔:是进入塔内安装检修和检查塔内装置状况之用,一般为直径450~500的圆型或椭圆型孔。
进料口:由于进料气速高,流体的冲刷很大,为减小塔体内所受损伤。同时为使气、液分布和缓冲的作用。进料处一般有较大的空间,以利于气液充分分离。
液体分布器:使回流液体在填料上方均匀分布,常减压装置应用较多的是管孔式液体分布器和喷淋型液体分布器。
气体分布器:气体分布器一般应用在汽提蒸汽入塔处,目的是使蒸汽均匀分布。
破沫网:在减压塔进料上方,一般都装有破沫网,破沫网由丝网或其它材料组成,当带液滴的气体经过破沫网时,液滴与破沫网相撞,附着在破沫网上的液滴不断积聚,达到一定体积时下落
集油箱:主要作用是收集液体供抽出或再分配。集油箱将填料分成若干个气相连续液相分开的简单塔,它靠外部打入液体建立塔的回流。
塔底防漏器:为防止塔底液体流出时,产生旋涡将油气卷入,使泵抽空。塔底装有防漏器。它还可以阻挡塔内杂质,防止其阻塞管线和进入泵体内。
外部保温层:一般用集温温砖砌成,并用螺丝固定,外包薄铁皮或铝皮,保温层起隔热和保温作用。
b、加热炉:一般为管式加热炉,其作用为:是利用燃料在炉膛内燃烧时产生的高温火焰与烟气颂者仔作为热源,加热炉中高速流动的物料,使其达到后续工艺过程所要求的温度。
管式加热炉一般由辐射室、对流室、余热回收系统、燃烧及通风系统五部分组成。
通常包括钢结构、炉管、炉墙、燃烧器、孔类配件等。
辐射室:辐射室是加热炉进行热交换的主要场所,其热负荷占全炉的70~80%。
辐射室内的炉管,通过火焰或高温烟气进行传热,以辐射为主,故又称辐射管。它直接受火焰辐射冲刷,温度高,所以其材料要具有足够的高温强度和高温化学稳定性。
对流室:对流室是辐射室排出的高温烟气进行对流传热来加热物料。烟气以较高的速度冲刷炉管管壁,进行有效的对流传热其热负荷占全炉的20~30%。对流室一般布置在辐射室之上,有的单独放在地面。为了提高传热效果,多采用钉头管和翅片管。
余热回收系统:余热回收系统用以回收加热炉的排烟余热。
以靠预热燃烧空气来回收,使回收的热量再次返回到炉中
是采用另外的系统回收热量。前者称为空气预热方式,后者通用水回收称为废热锅炉方式。
燃烧及通风系统:通风系统的作用是把燃烧用空气汇入燃烧器,将废烟气引出炉子。
它分为自然通风和强制通风两种方式。前者依靠烟囱本身的抽力,后者使用风机。
过去,绝大多数炉子都采用自然通风方式,烟囱安装在炉顶。
随着炉子的结构复杂化,炉内烟气侧阻力增大,加之提高加热炉的热效率的需要,采用强制通风方式日趋普。
『肆』 制作精馏塔装配图时,怎样确定绘图比例
制作精馏塔装配图时,确定绘图比例:
回流比为塔顶回流量与塔顶产品量之比,是精馏操作中的一个重要工艺参数。在进料组成、进料状态、操作压力和分离要求一定的情况下,随着回流比的增大,操作费增加,但所需塔板数减少。
设备费降低,因此,在精馏装置的设计中,综合设备费和操作费的考虑,取总费用(设备费和操作费之和)最低时的回流比,即为最佳回流比。
塔板的分类
板式塔是一种应用极为广泛的气液传质设备,它由一个通常呈圆柱形的壳体及其中按一定间距水平设置的若干塔板所组成。板式塔正常工作时,液体在重力作用下自上而下通过各层塔板后由塔底排出;气体在压差推动下,经均布在塔板上的开孔由下而上穿过各层塔板后由塔顶排出,在每块塔板上皆储有一定的液体,气体穿过板上液层时,两相接触进行传质。
『伍』 如何绘制精馏塔装置图
精馏塔的装置图必须满足两个条件:1、塔顶有冷凝回流;2、塔釜有再沸器。另外有中间进料,塔顶有轻产品出料,塔底釜液作为重产品出料。画个示意图即可,主要是要体现出精馏的必要条件。
『陆』 精馏塔工艺流程图
精馏塔工艺流程图如下:
https://img0..com/it/u=1330462134,971306626&fm=253&fmt=auto&app=138&f=JPEG?w=961&h=500精馏分馏塔的工作原理是:在有限的空间内,尽可能的增大液相混合物的热交换面积,一般用于精馏分馏的混合物为有机共沸物,共沸物从反应釜内首先受热上升至分馏段,沸点低的继续上升,因为塔顶在受到低沸点物的传热后温度和低沸点物一致,所以低沸点物被分馏出来,而较蚂搜带高漏带沸点物因为没有达到相应的沸点,故会受冷却后回流至反应釜内或分馏柱下半部分,待低沸点物被完全馏闷芦出后,较高沸点物相继被分馏,然后是高沸点物的馏出,最后反应釜底部是残渣。『柒』 乙醇生产工艺流程图
工业上玉米制造酒精的流程是:
玉米——粉碎——蒸煮(糊化)——糖化(加糖化酶)——发酵(加酵母菌种)——蒸馏塔(蒸馏)——精馏塔(精馏)——酒精
酵母菌将糖发酵成酒精的过程不是简单的化学反应,其机理至今仍莫衷一是。
『捌』 什么是精馏塔设计条件图、生产工艺流程图有样板吗
条件图就是设备图外加条件备注就行了,就是把精馏塔,再沸器,冷凝器,还有其他换热器、管道用CAD画出来,直到得到馏分,没升级,不能传图片。
『玖』 苯乙烯生产工艺流程图
通过飞秒检测发现由苯及乙烯发生烷基化反应得到粗乙苯,进入乙苯分离塔将重组分二乙苯,三乙苯及焦油从塔釜回收循环,塔顶得到苯与乙苯混合物,进入乙苯精馏塔,塔顶得到的苯进行回收,在烷基化反应塔中再次进行反应。
在精馏塔中制得的乙苯,进入乙苯脱氢反应器,得到谨慎苯乙烯粗产品及其他杂质。进入乙苯/苯乙烯分离塔,将粗苯乙烯从塔灶晌段底进入苯乙烯蒸馏塔,隐誉通过苯乙烯蒸馏塔,得到符合产品要求的精制苯乙烯,塔底有焦油等杂质排出。乙苯/苯乙烯分离塔塔顶得到的是粗乙苯,进入甲苯/乙苯分离塔,可以从其塔底得到较高纯度的乙苯,通过循环回收乙苯,让乙苯重新进入脱氢反应器。甲苯/乙苯塔塔顶得到甲苯,进入苯/甲苯塔进行分离,塔顶得到苯,塔底得到甲苯。 如下图:
『拾』 空分精馏塔的工艺原理是什么样的
空分精馏原理如下:
由本分离工艺可确保得到高纯度的产专品属,同时还可得到较好的产量。空气精馏由氧气-氮气的气液相交换组成,液体与上升的O2-N2混合物逆流相遇。故而精馏塔板(例如,多孔塔盘)主要被用于该类交换。由于氮气的沸点较低,故而达到平衡时,直接位于液体混合物(液态空气)上方的蒸汽中的N2浓度比液体中的N2浓度较高。蒸汽和液体馏分分别经过精馏塔盘,力图在接触时通过交换氧气和氮气来维持平衡:该过程同时还包括热交换(氧气的冷凝,氮气的汽化)。于是上升中的气体混合物的氮气浓度越来越高,下降液体中的氧浓度越来越高。