『壹』 表面活性剂的使用原理及应用
表面活性剂 就是通过降低反应物质表面的活化能,促进物质表面活化的一种活化剂。一类能降低液体表面张力的试剂.通常在分子内含有一个疏水基团和一个亲水基团,如去垢剂、乳化剂、消泡剂等.
表面活性剂 的原理
表面活性剂 的工作原理就是一个火柴棍结构的模式,表面活性剂的结构类似一根火柴棍,火柴头就是亲水端,火柴杆就是亲油端.亲油端插入油污分子内部,相似相容;亲水端跟水分子结合形成胶束团.这样,再经过机械摩擦运动,就将油污分子疏松开来,拉进水中,从而达到膨化、溶解、扩散、洗涤油污的目的.
表面活性剂本身就是单质,单一化合物,不存在主要成分的说法!但是表面活性剂有很多种类,大类划分为阴离子型、非离子型、阳离子型和两性离子型等等,至少有好几百种.
表面活性剂的应用洗衣粉的主要成分是表面活性剂.
表面活性剂 由于具有润湿或抗粘、乳化或破乳、起泡或消泡以及增溶、分散、洗涤、防腐、抗静电等一系列物理化学作用及相应的实际应用,成为一类灵活多样、用途广泛的精细化工产品. 表面活性剂 除了在日常生活中作为洗涤剂,其他应用几乎可以覆盖所有的精细化工领域.
1.增溶
要求:C>CMC ( HLB13~18) 临界胶束浓度(CMC):表面活性剂分子缔合形成胶束的最低浓度.当其浓度高于CMC值时,表面活性剂的排列成球状、棒状、束状、层状/板状等结构.增溶体系为热力学平衡体系; CMC越低、缔合数越大,增溶量(MAC)就越高; 温度对增溶的影响:温度影响胶束的形成,影响增溶质的溶解,影响表面活性剂的溶解度 Krafft点:离子型表面活性剂的溶解度随温度增加而急剧增大这一温度称为Krafft点,Krafft点越高,其临界胶束浓度越小 昙点:对于聚氧乙烯型非离子表面活性剂,温度升高到一定程度时,溶解度急剧下降并析出,溶液出现混浊,这一现象称为起昙,此温度称为昙点.在聚氧乙烯链相同时,碳氢链越长,浊点越低;在碳氢链相同时,聚氧乙烯链越长则浊点越高.
2.乳化作用
亲水亲油平衡值(HLB):表面活性剂分子中亲水和亲油基团对油或水的综合亲合力.根据经验,将表面活性剂的HLB值范围限定在0-40,非离子型的HLB值在0-20.混合加和性:HLB=(HLBa Wa+HLBb /Wb) / (Wa+Wb) 理论计算:HLB=∑(亲水基团HLB值)+∑(亲油基团HLB)-7 HLB:3-8 W /O型乳化剂:Span;二价皂 HLB:8-16 O/W型乳化剂:Tween;一价皂
3.润湿作用
要求:HLB:7-9.使用表面活性剂可以控制液、固之间的润湿程度.农药行业中在粒剂及供喷粉用的粉剂中,有的也含有一定量的 表面活性剂 ,其目的是为了提高药剂在受药表面的附着性和沉积量,提高有效成分在有水分条件下的释放速度和扩展面积,提高防病、治病效果.在化妆品行业中,做为乳化剂是乳霜、乳液、洁面、卸妆等护肤产品中不可或缺的成分.
4.助悬作用
在农药行业,可湿性粉剂、乳油及浓乳剂都需要有一定量的 表面活性剂 ,如可湿性粉剂中原药多为有机化合物,具有憎水性,只有在 表面活性剂 存在的条件下,降低水的表面张力,药粒才有可能被水所润湿,形成水悬液;
5.起泡和消泡作用
表面活性剂在医药行业也有广泛应用.在药剂中,一些挥发油脂溶性纤维素、甾体激素等许多难溶性药物利用表面活性剂的增溶作用可形成透明溶液及增加浓度;药剂制备过程中,它是不可缺少的乳化剂、润湿剂、助悬剂、起泡剂和消泡剂等.
6.消毒、杀菌
在医药行业中可作为杀菌剂和消毒剂使用,其杀菌和消毒作用归结于它们与细菌生物膜蛋白质的强烈相互作用使之变性或失去功能,这些消毒剂在水中都有比较大的溶解度,根据使用浓度,可用于手术前皮肤消毒、伤口或粘膜消毒、器械消毒和环境消毒;
7.抗硬水性
甜菜碱 表面活性剂 对钙、镁离子均表现出非常好的稳定性,即自身对钙、镁硬离子的耐受能力以及对钙皂的分散力.在使用过程中防止钙皂的沉淀,提高使用效果.
8.增粘性及增泡性
表面活性剂 有对改变溶液体系的作用,增大粘度变稠或增大体系的泡沫,在一些特除的清洗、开采行业有广泛的应用.
9.去垢、洗涤作用
去除油脂污垢是一个比较复杂的过程,它与上面提到的润湿、起泡等作用均有关.最后要说明的是, 表面活性剂 起作用,并不单单是因为某一方面的作用,很多情况下是多种因素共同作用.如在造纸工业中可以用作蒸煮剂、废纸脱墨剂、施胶剂、树脂障碍控制剂、消泡剂、柔软剂、抗静电剂、阻垢剂、软化剂、除油剂、杀菌灭藻剂、缓蚀剂等.
『贰』 表面活性济的分类,作用及洗涤去垢作用原理
表面活性剂原理简述
1、表面活性
在恒温恒压下,纯液体因只有一种分子,其表面张力是一恒定值。
对于溶液,由于至少存在两种或两种以上的分子,因此其表面张力会随溶质的浓度变化而变化。
物质的水溶液其表面张力随浓度的变化可分为三种类型。
第一类是表面张力随其溶质浓度的增加略有上升,且往往近于直线(曲线A)
水溶液的表面张力与溶质浓度的几种典型关系
第二类是表面张力随溶质浓度增加而逐渐下降,在浓度很稀时,下降较快,随浓度增加下降变慢(曲线B)。
第三类是在溶液浓度稀时,溶液的表面张力随溶质浓度的增加急剧下降,当溶液的浓度增加到一定值后,溶液的表面张力就不再下降了(曲线C)。
如果A物质能降低B物质的表面张力,通常可以说A物质(溶质)对B物质(溶剂)有表面活性。若A物质不仅不能使B物质的表面张力降低,甚至使其升高,那么A物质对B物质则无表面活性。由于水是最重要的溶剂,因此表面活性往往是对水而言。
图中曲线A中的溶质对于水无表面活性,称之为非表面活性物质。曲线B和C的溶质对水有表面活性,被称为表面活性物质。而对于曲线C中的溶质在很低浓度时就能明显地降低水的表面张力,此类物质称之为表面活性剂。而曲线B中的溶质只能称为表面活性物质而不能称为表面活性剂。
2、表面活性剂的结构特点
不论表面活性剂属于何种类型,都是由性质不同的两部分组成。—部分是由疏水亲油的碳氢链组成的非极性基团,另一部分为亲水疏油的极性基。这两部分分别处于表面活性剂分子的两端。为不对称的分子结构。
两亲分子示意图
表面活性剂分子在其水溶液中很容易被吸附于气-水(或油-水)界面上形成独特的定向排列的单分子膜。
表面活性剂在溶液中超过某一特定浓度时(界面吸附达饱和)可通过碳氢键的疏水作用(Hydrophobic
Interaction)或“疏水效应”缔合成胶团。
表面活性剂在其溶液表面的定向吸附和在溶液内部形成胶团
表面活性剂分类与结构 か鶏群l'A*
表面活性剂的种类很多,分类方法也有多种,如根据用途可将表面活性剂分为润湿剂、渗透剂、乳化剂、分散剂、柔软剂、抗静电剂、洗涤剂等。比较常见的是根据表面活性剂在水溶液中的电离特性而将其分为阴离子、阳离子、两性离子以及非离子四大类的分类方法。 y5U⊿ 2�?
一、阴离子表面活性剂 ?lt;~箾队?l
将在水中电离后起表面活性作用的部分带负电荷的表面活性剂称为阴离子表面活性剂。从结构上把阴离子表面活性剂分为脂肪酸盐、磺酸盐、硫酸酯盐和磷酸酯盐四大类。 辨溺xJ閍?
1.脂肪酸盐(RCOO-M+) 炧mM $ z?
是亲水基为羧基的阴离子表面活性剂,包括高级脂肪酸的钾、钠、铵盐以及三乙醇铵盐。在水中电离后起表面活性作用的部分是脂肪酸根阴离子。如: R9$寜�_
电离 乞`?? 鮯
RCOONa ——>RCOO-+Na+ ?Uy扶ffI?
脂肪酸盐表面活性剂是历史上开发最早的阴离子表面活性剂,也是重要的洗涤剂,目前仍是皮肤清洁剂的重要品种。 ?诐o $??
(1)肥皂是最常见的脂肪酸盐阴离子表面活性剂 肥皂的主要性能特点是它的水溶液的pH在0.9~9.8,呈弱碱性,它有良好的润湿、发泡、去污等作用而被广泛用作洗涤剂。 w姇&7??v
肥皂的缺点是耐硬水性能差,在硬水中使用肥皂不仅洗涤力差,同时生成的钙皂污垢在酸水中悬浮并且粘附在衣物上很难去除。肥皂与硬水中的钙、镁等离子反应生成皂垢,不但增加肥皂的耗费,而且粘结在衣物上产生的斑点会使衣物发硬。含有皂垢的布在印染加工时会造造成染色不匀。 sy 杈?'
肥皂在pH低于?的酸性介质中会转变成不溶于水的游离脂肪酸,会使皂液变混浊并粘附在衣物上不易被除去。因此肥皂只能在中性和碱性介质中使用。通常使用肥皂时常配合加人适量纯碱以保持皂液pH在10左右,其目的为防止肥皂水解和提高洗涤效果。注意在去除酸性污垢或在酸性媒液中不能使用肥皂。 昿祒 阍|+
软脂酸盐和硬脂酸盐水溶性差,要充分发挥它们的洗涤能力往往需要在较高温度条件下使用,而含有不饱和键的油酸盐比较适合在较低温度的洗涤场合。以上的高碳脂肪酸盐由于在水中溶解度太低,但油溶性好,所以适合作掺水干洗溶剂中的表面活性剂(变性皂),脂肪酸的有机胺盐和二乙醇胺、三乙醇胺盐大多表现为油溶性的,常用作乳化剂、润湿剂,如三乙醇胺肥皂常在有机溶剂中作乳化剂。 骸L?lt; qpn,
(2)亲油基通过牛间键与羧基相连的羧酸盐(雷米邦A) 脂肪酸盐除了常见的月巴皂外,还有这种形式的羧酸盐,如用多肽混合物与脂肪酰氯发生缩合反应制成的N—烷酰基多肽。其中用油酰氯与脱脂皮屑等废蛋白的水解产物缩合制成的表面活性剂,商品名为雷米邦A (Lamepon A),国内商品名为613洗涤剂,化学名称为N—油酰基多缩氨基酸钠(或N—油酰基多肽)。其合成反应式为: VL屶抣幚 ?
0 惪棠-�)
油酰氯 多缩氨基酸钠 雷米邦A $ ? 芐??
(其中R'、R”是含有1~6个碳原子的烃基) B倲t?闽"f
雷米邦A在毛纺、丝绸、合成纤维及印染工业等纺织部门常做洗涤剂、乳化剂、扩散剂,也可做金属清洗剂和皮肤清洁剂,由于它结构中的多肽部分化学结构与蛋白质相似,对皮肤刺 、激性低,可形成良好的保护胶体,因此也适用于头发用品和香波中或用于护肤香脂中。用它洗涤丝、毛等蛋白质类纤维织品,有洗后柔软、富有光泽、弹性的优点。它有很强的乳化力,如22份雷米邦A可乳化1000份植物油。并且它对钙皂有很强的分散力。它在中性和碱性介质中稳定,在碱性介质中去污力更佳。但在pH值小于5的介质中会以沉淀形式析出。由于它的吸湿力强,通常不制成粉状产品,商售为黄棕色粘稠状液体产品,活性物含量为32%~40%。 そm?Q?l"
制造雷米邦A的多肤部分的原料来自皮屑、蚕蛹、猪毛、鸡毛、骨胶、豆饼、菜籽饼等蛋白质下脚料,经水解后得到水解蛋白液。油酰氯与水解蛋白液中的多缩氨基酸钠缩合即得到雷米邦A。 M ~}冮I瞤7
2.磺酸盐(R—SO-3M+) 3葵� 乌诀
把在水中电离后生成起表面活性作用阴离子为磺酸根(R--S03)者称为磺酸盐型阴离子表面活性剂,包括烷基苯磺酸盐、α-烯烃磺酸盐、烷基磺酸盐、α-磺基单羧酸酯、脂肪酸磺烷基酯、琥珀酸酯磺酸盐、烷基萘磺酸盐、石油磺酸盐、木质素磺酸盐、烷基甘油醚磺酸盐等多种类型,其中比较重要和常用作洗涤剂的有下列几种。 ?;夑 裥埀
(1)烷基苯磺酸钠(LAS或ABS) 烷基苯磺酸钠通常是一种黄色油状液体,通式为CnH2n+1HC6H4SO3Na,其疏水基为烷基苯基,亲水基为磺酸基。 艌憙嵴?0?
其早期产品为四聚丙烯苯磺酸钠(ABS),曲于烷基部分带有支链,所以生物降解性差,60年代各国相继改为生产以正构烷烃为原料的直链烷基苯磺酸钠(LAS)。烷基苯磺酸盐不是纯化合物;烷基组成部分不完全相同,因此烷基苯磺酸盐性质受烷基部分碳原子数、烷基链支化度、苯环在烷基链的位置、磺酸基在苯环上的位置及数目以及磺酸盐反离子种类影响而发生很大变化。 "夬 0R㎏_
烷基苯磺酸盐是阴离子表面活性剂中最重要的一种品种,也是中国合成洗涤剂的主要活性成分。烷基苯磺酸钠去污力强、起泡力和泡沫稳定性以及化学稳定性好、而且原料来源充足、生产成本低,在民用和工业用清洗剂中有着广泛的用途。 tBAS��?
①支链烷基苯磺酸盐(ABS) 当高级烯烃(如十二碳烯)与苯发生反应时,生成支链烷基苯,再与浓硫酸发生磺化反应,得到支链型烷基苯磺酸,与碱(NaOH)中和后得到支链型烷基苯磺酸钠盐,其中十二烷基苯磺酸钠是最常见的产品。 朇嶆?P%M}
十二烷基苯磺酸钠是一种性能优良的合成阴离子表面活性剂,它比肥皂更易溶于水,是一种黄色油状液体。易起泡由于它的泡沫粘度低所以泡沫易于消失。它有很好的脱脂能力并有很好的降低水的表面张力和润湿、渗透和乳化的性能。它的化学性质稳定,在酸性或碱性介质中以及加热条件下都不会分解。与次氯酸钠过氧化物等氧化剂混合使用也不会分解。它可以用烷基苯经过磺化反应制备,原料来源充足,成本低,制造工艺成熟,产品纯度高。因此自1936年由美国国家苯胺公司开始生产烷基苯磺酸钠以来,迄今历经60多年一直受到使用者的欢迎和生产者的重视,成为消费量最大的民用洗涤剂,在工业清洗中也得到广泛应用。 愎~万'<??
其不足之处是用它洗过的纤维手感不好。皮肤与它长时间接触会受到刺激。它易在洗涤物体表面形成吸附膜残留在物体上,这种吸附膜在低温下不易被水冲洗去除。它起泡性好,因此在不希望产生泡沫的情况下又是不受欢迎的。 瓯3T?铜?
十二烷基苯磺酸钠特别容易与其他物质产生协同作用(把两种物质混合后能产生比原来各自性能更好的使用效果叫协同作用),因此它常与非离子表面活性剂和无机助洗剂复配使用,以提高去污效果。 ?晀艎 曫a
它在硬水中不会像肥皂那样生成钙皂沉淀,但生成的烷基苯磺酸钙不易溶于水,只能分散在水中使它的洗涤能力降低。使用时如果与三聚磷酸钠等络合剂复配,把钙、镁离子络合,就可以在硬水中使用而不影响它的洗涤效果。 h艂 �g箛?
支链结构的烷基苯磺酸钠由于难被微生物降解,对环境污染严重,所以从60年代中期,逐渐被直链烷基苯磺酸钠代替。 晰&缋儊=宕
②直链烷基苯磺酸钠(LAS) 直链烷基苯磺酸盐是由直链烷烃与苯在特殊催化剂作用下合成直链烷基苯,再经过磺化,中和反应制得的。典型代表结构为(对位)直链十二烷基苯磺酸钠,它的性能与支链烷基苯磺酸钠相同,其优点是易于被微生物降解,从环境保护角度看是性能更优良的产品。目前使用的烷基苯磺酸钠已全部是直链烷基结构的了。 A t岖?�
(2)α-烯烃磺酸盐(AOS) 是α-烯烃与SO3在适当条件下反应,然后中和、水解得到的具有表面活性阴离子的混合物,成分较复杂,随工艺条件和投料量不同成分有变化。其主要成分是烯基磺酸盐(R--CH==CH--(CH2)—pSOaNa)、羟烷基磺酸盐(RCH--(CH20)—pSO3Na)和少量二磺酸盐(R'—CH=CH—CH-(CH2)-SO3Na)或R'—CH—(CH2)—xCH—(CH2)—ySO3Na。其商品名为。—烯烃磺酸盐,缩写AOS。 靽-f ??
α—烯烃磺酸盐是一种性能优良的洗涤剂,尤其是在硬水中和有肥皂存在时具有很好的起泡力和优良的去污力。由于它的毒性低对皮肤刺激性小以及性能温和的优点,在家庭和工业、清洗中均有广泛的用途。常用作个人保护、卫生用品、手洗餐具清洗剂、重垢衣物洗涤剂、毛羽,毛清洗剂、洗衣用合成皂、液体皂以及家庭用和工业用硬表面清洗剂的主要成分。 虁{菕 ?
(3)烷基磺酸盐(AS和SAS) 烷基磺酸盐的通式为RSO3M(M为碱金属或碱土金属),R为C12~C20范围的烷基,其中以十六烷基磺酸盐性能最好。其中正构烷基在、引发剂作用下与SO2、O2反应得到的磺酸盐,分为伯烷基磺酸盐(AS)和仲烷基磺酸盐(SAS)两类。其中仲烷基磺酸盐结构式为R--CH--R',缩写名称为SAS,国内商品名为601洗涤剂,是一种具,有很好水溶性、润湿力、除油力的洗涤剂。烷基碳原子一般为C14~C18,以C15~C16去污方最强。其去污能力与直链烷基苯磺酸(LAS)相似,发泡力稍低,是配制重垢液体洗涤剂的主要原料。它的毒性和对皮肤的刺激性都比iLAS低,生物降解性好。使用时常与醇醚硫酸(AES),α—烯基磺酸盐(AOS)复配,以弥补SAS在硬水中泡沫性差的缺点。可做个人卫生盥洗制品、各种洗衣物以及硬表面清洗剂。 俣#t惞 ?
(4)α—磺基单羧酸及其衍生物(MES) 它们的结构式为CH2一COOR', (R为长链烃基或金属离子)。α-磺基单羧酸本身不具有表面活性,但通过酯化或酰胺化生成的衍生物具有表面活性,如CH2—C--OC12H25等。其中以脂肪酸甲酯为原料经磺化中和后得到的商品称为α-磺基脂肪酸甲酯,简称MES,通式为R--CH--COOCH3 。 -&� -R??
MES是近年来开发生产的一种由天然油脂为原料的阴离子表面活性剂。它有良好的生物降解性,有利于环境保护,使用安全而且去污力强。其去污力随水硬度增加下降较少,因此在硬水中有很好的去污力,如在洗衣粉配方中用MES取代蚝LAS则在低浓度高硬度水中的去污力明显高于只用LAS的配方。它还是优良的钙皂分散剂,它与肥皂配合使用可弥补肥皂不耐硬水会形成皂垢的缺点,因此它是液体皂的主要成分。MES起泡能力好。它对碱性蛋白酶、碱性脂肪酶的活性影响小,适合配制加酶洗衣粉。它对油污有很强的加溶能力,而且毒性低安全性好,因此是一种应用前景良好的新品种。但应防止其在碱性介质中水解失效。 >i J@F卢漥
(5)脂肪酸磺烷基酯(1geponA)和脂肪酸磺烷基酰胺(1gepon T) 商品名为伊捷邦A(1gepon A,洗净剂210)的阴离子表面活性剂典型代表物是油酰氧基乙磺酸钠 b?夆W a鸻
CH3(CH2)7CH=CH--(CH2)7—C—O CH2SO3Na。商品名为伊捷邦f(1gepon T又称FX洗涤剂,胰加漂T,万能皂,洗涤之王,209洗涤剂)的阴离子表面活性剂的典型代表物是N—油酰基N-甲基牛磺酸钠,其分子式为CH3(CH2)7CH-=CH(CH2)7C-CH2CH2SO3N。 熬?-x趘?
Igepon A是由羟乙基磺酸钠与脂肪酸或脂肪酰氯反应生成的: ?? n^??
R一C—Cl+HOCH2CH2— SO3Na——>O CH2CH2SO3Na+HCl 其通式为R1—C--O R2S03M。 '甲撋.40珄
Igepon T是由N—甲基牛磺酸钠与脂肪酸或脂肪酰氯反应生成的: 5綨賖J骂?
R—C—c1+HN一CH2CH2S03Na—>Rc—CH2CH2SO3Na+HCl 通式为R1c—N—R3SO3M 歝�栖殎�
当改变通式中R1、R2、R3、M四个可变因素时,表面活性剂的乳化、泡沫、润湿、洗涤性能会发生相应改变。 *耥锝_ 呎?
脂肪酸磺烷基酯(1gepon A)和脂肪酸磺烷基酰胺(1gepon T)最初是做纺织助剂使用的,特别是Igepon T系列产品具有对硬水不敏感、有良好去污能力、润湿力和对纤维柔软作用,并可在酸性介质中使用,所以在纺织工业中有广泛用途。其中N—油酰基—N甲基牛磺酸钠是最重要的一种,用于粗羊毛、合成纤维以及染色布料的清洗,而且对纤维有很好的柔软作用。磺烷基酯和磺烷基酰胺两类产品是重垢精细纺织品洗涤剂,手洗、机洗餐具洗涤剂,各种香波、泡沫浴,香皂的重要配方成分。通常用的是椰子油脂肪酸和牛油脂肪酸的磺烷基酯或磺烷基酰胺。其物理性质及表面活性见表7—7和表,7—8。 .胕@�I坊8
表7-7 脂肪酸磺烷基酯和磺烷基酰胺的物理性质 犫-?桙 檴
?�塼坤麧
①在35℃测定。 v穠?篞 ?
②克拉夫特点(KrafftP。int)。离子型表面活性剂在温度较低时溶解度很小,但随温度升高而逐渐增加,当到达某二特定温度时,溶解度急剧陡升,把该温度称为临界溶解温度(又称克拉夫特点)以rk表示。 U 箤so Y
(6)石油磺酸盐 是由天然石油馏分或化工反应所得高碳烃副产物经磺化、中和得到的,是多种烃磺化产物的混合物。石油磺酸盐主要用作发动机润滑油的清洁分散剂及起分污泥,保持金属部件清洁,降低酸性抑制锈蚀的作用。作这种用途的石油磺酸盐约占总产量60%。石油磺酸盐配制的金属清洗剂可有效地去除金属部件上的油污。 kK頪台?;?
(7)其他磺酸盐型阴离子表面活性剂 包括以下几种。 ?黠 ?滥�
表7-8 脂肪酸磺烷基酯和磺烷基酰胺的表面活性 裑j6簬 p
① 在35℃测定。 隒?lt;?@8 W
①琥珀酸酯磺酸盐 按结构分为琥珀酸单酯磺酸盐和双酯磺酸盐。 ?h� �4
AerosolOT(渗透剂OT)是最早问世的一种琥珀酸双酯磺酸盐,是优良的工业用润湿剂渗透剂。它是由脂肪醇聚氧乙烯醚和脂肪酸单乙醇酰胺与马来酸酐生成的单酯经磺化得到的产品。它性能温和对皮肤、眼睛刺激性低、袍沫性优良,在个人保护用品中应用日益广泛。因原料充分、生产成本低并不产生三废,近年来得到很大发展。 J&?? 珔
AerosolOT化学名称为琥珀酸二异辛酯磺酸钠。 % L峯#袂(?
②烷基萘磺酸盐 典型产品如二丁基萘磺酸钠,俗称拉开粉,是纺织印染行业常用的一种渗透剂、乳化剂。 瘝?慠j,&'
另有烷基萘磺酸盐的甲醛缩合物,商品名称为分散剂NNO。 秓 ?韢v砸
③木质素磺酸盐 是造纸工业中亚硫酸法制浆过程中废水的主要化学成分。它的结构相当复杂,一般认为它是含有愈创木基丙基、紫丁香 佴1B收}w堻
基丙基和对羟苯基丙基的多聚物磺酸盐,相对分子质量200~10000,是以非石油化学制造的表面活性剂中重要的一类。由于价格低,具有低泡性,主要用作固体分散剂、O/W型乳状液的乳化剂,染料、农药、水泥等悬浮液的分散剂,可加在石油钻井泥浆配方中控制钻井泥浆的流动性,还可作矿石浮选剂或水处理剂。 玝泖 �d?
④烷基甘油醚磺酸盐(AGS) 其通式为ROCH2--CH—CH2SO-3M+,它具有良好的水溶性, OH对酸碱稳定是有效的润湿剂,泡沫剂和分散剂,但由于价格高,使应用和发展受到限制。 �m? H贲?
另外,磺酸盐型阴离子表面活性剂还有,净洗剂LS(净洗剂MA),化学名称为对甲氧基脂肪酰胺基苯磺酸钠,结构为 是一种有优良净洗、发泡、对钙皂分散能力好的表面活性剂,易溶于水,耐酸碱和硬水,可作羊毛和蚕丝的洗涤剂。 9w踨磍犃襶
3.硫酸酯盐 0e缯}桖�K
硫酸是一种二元酸与醇类发生酯化反应时可以生成硫酸单酯和硫酸双酯。硫酸单酯和碱中和生成的盐叫硫酸酯盐。 �7?j 庒?
ROH+HOSO2--OH===RO--SO2--OH+H2O ;r6哚/耆
(醇) (硫酸) (硫酸单酯) �醴0?E ?
RO--S02—OH+NaOH=RO--SO2--ONa+H20 @匮\ z袿诫
(硫酸酯盐) G ?徲)??
R0一S02—0Na一般写成R—OSO3Na形式,有的书上写成RSO4Na并简称为烷基硫酸酯盐。它与磺酸盐结构的区别在于硫酸酯盐中的硫原子不与烃基中的碳原子直接相连。它们性质上的最大区别在于硫酸酯盐在酸性条件下可以发生水解: y鑗瑭X#?処
闵捵萈R豮?
軃'H⒄韨K?
硫酸酯盐型阴离子表面活性剂主要有脂肪醇硫酸酯盐(又称伯烷基硫酸酯盐)和仲烷基硫酸酯盐两类。 6?諚姑�f
(1)脂肪醇硫酸(酯)盐(FAS或AS) 脂肪醇硫酸盐的通式为:ROS0-3M+,R为烷基,M+为钠、钾、铵、乙醇胺基等阳离子,又名伯烷基硫酸盐,英文简写为FAS或AS①。 ?▔?雎_
FAS是肥皂之后出现的最早阴离子表面活性剂,是由椰子油氢解生成的C12~C14脂肪醇与硫酸酯化并中和制得。它有合适的溶解性、泡沫性和去污性。大量应用于洁齿剂、香波、泡沫浴和化妆品中,也是轻垢、重垢洗涤剂、地毯清洗剂、硬表面清洗剂配方中的重要组分。’如月桂基硫酸钠(C12H25OSO3Na),商品名为K12的洗涤剂在洁齿剂中有润湿、起泡和洗涤的作用;而月桂基硫酸酯的重金属盐有杀灭真菌和细菌的作用;用牛脂和椰子油制成的钠肥皂与烷基硫酸酯的钠、钾盐配制成的富脂香皂泡沫丰富、细腻,还能防止皂钙的生成;高碳脂肪醇硫酸盐与两性离子表面活性剂复配制成的块状洗涤剂有良好的研磨性和物理性能,并具有调理作用。 ?m屺f斁)
高碳脂肪醇硫酸盐可用作工业清洁剂、柔软平滑剂、纺织油剂组分、乳液聚合用乳化剂等。它们的铵盐和三乙醇胺盐用于香波和溶剂中。 繴g锍??%
商品名为阴离子洗涤剂ASEA的表面活性剂成分为脂肪醇硫酸酯单乙醇胺盐,结构为 ROS03NHaCH2CH20H。 i麙�?
(2)仲烷基硫酸盐(Teep01) 它是由。—烯烃与硫酸反应生成的仲烷基硫酸酯,经中和后得到的产品,通式为R厂CH—o—SOaN,,商品名为梯波尔(Teep01)。 躛恝8Z磐s&
与伯烷基硫酸(酯)盐不同,其硫酸酯盐部分一(O—SO3Na)是与烷基链上的仲碳原子相连,烷基链的碳原子数为10~18。 ?O]禡摗痼
梯波尔(Teep01)与FAS相似,也是一种性能良好的表面活性剂,但由于结构上的差异,它的溶解性和润湿性更好。因制成粉状产品易吸潮结块,一般制成液体或浆状洗涤剂。 鱃?歚�?
(3)脂肪醇聚氧乙烯醚硫酸酯盐(AES) 脂肪醇聚氧乙烯醚是一种非离.子表面活性剂,与硫酸酯化、中和得到硫酸酯盐(AES)。实际上AES是非离子—阴离子型两性混合表面活性剂,一般也将它归在阴离子型硫酸酯盐表面活性剂中。 >?&橩閖 $
脂肪醇聚氧乙烯醚硫酸酯盐,简称醇醚硫酸盐(AES)。由于它的溶解性能、抗硬水性能、 ?蒕?o犗
①AS可以是alk9nesul{。n9te,烷基磺酸盐,也可以是alkancswlfatc伯烷基硫酸酯盐的缩写,此处为后者。 褴L盀N,J寪
起泡性;润湿力均比脂肪醇硫酸盐(AS)好且刺激性低,因此常作为AS的替代晶广泛应用于香波、浴用品、剃须膏等盥洗卫生用品中,也是轻垢、重垢洗涤剂、地毯清洗剂、硬表面清洗剂的重要组分。 g c 7p嗘
(4)脂肪酸衍生物的硫酸酯盐 这类物质的通式为R一CXR'OSO-3M+ (X为氧原子、--N、-N、R',为烷基、亚烷基、羟烷基、烷氧基)。这类产品有良好的润湿性和乳化性,通常用润湿剂。如用硫酸处理含有羟基或不饱和键的油脂或脂肪酸酯,中和后得到的产品为油脂或脂肪酸酯的硫酸酯盐。其中有代表性的是用蓖麻油酸化、中和得到的土耳其红油(因适合做土耳其红染料的匀染助剂而得名)。 ?c}鰕 遽J
(5)不饱和醇的硫酸酯盐 当脂肪醇硫酸酯盐结构中脂肪醇部分是含有双键的不饱和醇时其性能有较大改变,如在低温时仍呈透明状,有较低表面张力和临界胶束浓度,有良好的润湿性能。其中油醇硫酸盐[CH3(CH2)7CH=CH(CH2)7一CH2OS3Na]是一种重要的不饱:和醇硫酸盐,它的起泡力好、去污力强并有良好的乳化能力和良好的钙皂分散力,是目前正在研制开发的新产品。 JH?u鉖榚
4.磷酸酯盐 ??m??i
烷基磷酸酯盐包括烷基磷酸单、双酯盐,也包括脂肪醇聚氧乙烯醚的磷酸单双酯盐和烷基酚聚氧乙烯醚的磷酸单、双酯盐。常见的是烷基磷酸单、双酯盐。 ^苯m?�^5
(1)烷基磷酸单、双酯盐(AP) 这是烷基醇与磷酸酯化、中和后的产物。磷酸是三元酸可与脂肪醇酯化生成单酯、双酯与三酯。形成单酯、双酯的产物中仍含有显酸性的氢离子可与碱中和生成盐。生成的烷基磷酸单、双酯盐具有表面活性。 ?K棔莗v
工业上从降低成本考虑,产物通常为单酯盐和双酯盐的混合物。从性能上看,烷基磷酸单酯盐的去污力差,烷基磷酸双酯盐稍好,其中又以二癸基磷酸双酯盐较好,但起泡性能差。由于具有降低纤维间静摩擦系数的作用,因此在纺织工业上常用作化纤产品的抗静电剂。 < 肾7WA苳?
(2)醇醚、酚醚的磷酸酯盐 这是非离子表面活性剂烷基醇聚氧乙烯醚、烷基酚聚氧乙烯醚与磷酸发生酯化反应,经中和后得到的产物。 \蟾 ?阂*?
它们实际上是非离子—阴离子型两性混合表面活性剂,但常归之于阴离子表面活性剂中,由于含有聚氧乙烯链段,具有一些非离子表面活性剂的性质,因此与烷基磷酸酯盐同类产品相比,去污、润湿性能都有所改进。烷基醇聚氧乙烯醚磷酸酯盐商品名为6503洗涤剂。 )s汉'? ?
二、阳离子表面活性剂 8??lt;0罾ё
阳离子表面活性剂在水溶液中电离时生成的表面活性离子带正电荷,其疏水基与阴离子表面活性剂相似。阳离子表面活性剂的亲水基离子中含有氮原子,根据氮原子在分子中的位置不同分为胺盐、季铵盐和杂环型三类。 �?鞵?!q
1.胺盐 �J??瑞?
胺盐是用酸中和烷基伯胺、仲胺、叔胺或乙醇胺得到的产物。根据胺的不同分为脂肪胺盐、乙醇胺盐和聚乙烯多胺盐。 5僖5窣l匔
(1)脂肪胺盐 脂肪胺盐是用盐酸、甲酸、乙酸中和烷基伯胺、仲胺和叔胺得到的产物,如: ?6 蔗盺?
60~70℃ "@ |V ?
C12H25NH2+CH3COOH========C12H25NH+3•CH3COO- l?(t鵩鴋?
(2)乙醇胺盐 是酸与一、二、三乙醇胺反应的产物,如 瘑i"禄l A
R—N(CH2CH20H)2+HCl===[R--NH(CH2CH20H)2]+C1- 亷>0w?N蠎
(二乙醇胺) 哸z郲 递xn
纺织工业中常用的柔软剂索罗明A也属于这一’类。如索罗明A的制法为: 憭8剬槁罂R
CH2CH20H CH2CH20H �寔睖? p
C17HasCOOHd-《CHaCH20H1C17HasCOOCH2CHzN二 —HCOOH, 亢懄^杜?|
CH2CH20H CH2CH20H KV/傺蘹p K
(三乙醇胺) }JQ 挍?
CH2CH20H iz 笛壔 圴
/ 橞钁#�諍b
C17H35COOCH2CH2N •HC00H(索罗明A) 旗h侯『�
\ *桔涓鲭礨
CH2CH20H t电 Ld9卍
(3)聚乙烯多胺盐 卤代烷与二乙三胺、三乙四胺反应可得到不同的N—烷基多胺,如: 蔪専- 翤獿
R—X+NH2CH2CH2NHCH2CH2NH2==R— NHCH2CH2NHCH2CH2NH2 啰驌 46顺?
(二乙三胺) (N—烷基二乙三胺) 茈�.>悇 ?
RNH2+n CH2—CH2==R—RH(CH2CH2NH).H 貈俹? 锔c
\/ W悯簴g UAU
N 溜 様 娵
H 秺� 4吘
(亚乙基亚胺) (N—烷基多乙多胺) 抬?鳃A&?
这些胺与酸反应得到聚乙烯多胺盐都是表面活性剂。 辁1蠾ぉ'?
胺盐型阳离子表面活性剂水溶性较小,在酸性介质中较稳定;在中性、碱性介质中会发生水解析出胺,通常只适合作纤维柔软剂,不适合作洗涤剂。 鵎?B揳?
2.季铵盐 饯�`韧??
季铵盐型阳离子表面活性剂通式为[ ]x-,式中R为C10~C18。长链烷基,Rl、R2、R3 一般是甲、乙基,也可以有一个是苄基或长链烷基,X是氯、溴、碘或其他阴离子基团:多数情况下是氯或溴。 It矗鸳緵?
季铵盐型阳离子表面
『叁』 除垢除锈用什么表面活性剂
缓蚀钝化预膜阻垢,正常情况下有分几大类:
非酸剂、酸剂、碱性剂、植酸剂、核酸剂、等等
缓蚀钝化预膜原理:1 缓蚀剂的分类
缓蚀剂的应用广泛,种类繁多,分类方法也较多,人们常常从不同的角度对缓蚀剂进行分类,常见的分类方法有:
1) 根据化学组成分类[1 ] . 按照构成缓蚀剂的物质是无机化合物还是有机化合物可分为无机缓蚀剂和有机缓蚀剂.
2) 根据所抑制的电极过程分类. 按照缓蚀剂在电化学腐蚀过程中抑制的电极反应是阳极反应还是阴极反应或两者兼而有之,缓蚀剂可分为阳极型缓蚀剂,阴极型缓蚀剂或混合型缓蚀剂.
一般来说,阳极型缓蚀剂使金属的腐蚀电位Ec向正的方向移动,阴极型缓蚀剂使金属的腐蚀电位Ec向负的方向移动; 而混合型缓蚀剂则对腐蚀电位Ec的影响较小,故腐蚀电位的移动很小或没有移动.
3) 根据所生成保护膜的类型分类[2 ] . 按照缓蚀剂在保护金属过程中所形成的保护膜的类型,缓蚀剂可以分为钝化膜型缓蚀剂、沉淀膜型缓蚀剂和吸附膜型缓蚀剂. 其中沉淀膜型缓蚀剂又分为水中离子型和金属离子型两种.
2 缓蚀剂在金属表面形成保护膜的机理分析
2. 1 钝化膜型缓蚀剂
钝化膜型缓蚀剂简称钝化剂,为无机强氧化剂[3 ] .如铬酸盐、亚硝酸盐、钼酸盐和钨酸盐等. 在反应中比较容易被还原的强氧化剂才能作钝化剂. 以铬酸盐为例,铬酸盐包括铬酸(H2CrO4) 和重铬酸(H2Cr2O7) 的可溶性盐,如Na2Cr2O7 、Na2CrO4 、K2Cr2O7 、(NH4) 2CrO4 等,
分子结构中铬为正六价. 铬酸盐和重铬酸盐可以以任何比例混合而不影响缓蚀效果,所以一般统称为铬酸盐.
铬酸盐有很强的氧化能力,发生氧化反应时Cr6 +还原为Cr3 + . 铬酸盐在较高浓度时是十分有效的阳极钝化剂. 铬酸盐对碳钢的钝化与碳钢在H2SO4 中的电位极化相似,钝化时铁表面发生的反应为:
Cr2O72 - + 8H+ + 6e →Cr2O3 + 4H2O
反应时被还原的铬酸盐以Cr2O3 的形态吸附在铁的表面和铁表面同时生成的Fe2O3 共同组成钝化膜,反应为:2Fe + 3H2O →Fe2O3 + 6H+ + 6e
用铬酸盐钝化的铁的表面那层钝化膜,充分脱水,结构致密,防腐性能好. 而其它缓蚀剂处理铁都无法得到这样的膜,甚至用KMnO4 强氧化剂也不能达到铬酸盐钝化铁的那种程度.
铬酸盐的优点是:它不仅对钢铁,而且对铜、锌、铝及其合金都能给予良好的保护;适用的pH 值范围很宽(pH = 6~11) ;缓蚀效果特别好,使用铬酸盐作缓蚀剂时,碳钢的腐蚀速度可低于0. 025 mm/ 年. 铬酸盐的缺点是:毒性大,环境保护部门对铬酸盐的排放有严格的要求;容易被还原而失效,不宜用于有还原性物质(例如硫化氢) 泄露的炼油厂的冷却系统中.
2. 2 沉淀膜型缓蚀剂
水中离子型缓蚀剂分析以聚磷酸盐为例,聚磷酸盐是目前使用最广泛、最经济的冷却水缓蚀剂之一. 除了具有良好的缓蚀性能外,聚磷酸盐还是优良的阻垢剂,可阻止水中碳酸钙和硫酸钙结垢. 最常用的聚磷酸盐是六偏磷酸钠和三聚磷酸钠. 它们是一些线形无机聚合物。聚磷酸盐具有强表面活性,其分子结构中的P O 基能容易提供电子对给具有空轨道的金属,牢牢地吸附在金属上. 聚磷酸盐的缓蚀、阻垢性能都和它的表面活性有关. 聚磷酸盐具有阳极极化和阴极极化双重缓蚀性能.
聚磷酸盐是一种非氧化型的钝化剂. 聚磷酸盐加入水中之后,很容易吸附在金属表面上,并且置换出吸附在金属表面的一部分H+ 和H2O 分子,降低了溶解氧和H+ 及H2O 反应的可能性. 而且,它使溶解氧更容易吸附在金属表面. 当足量的氧吸附在金属表面时,氧使金属表面钝化,所以,聚磷酸盐必须在溶解氧存在条件下才能表现出阳极极化的缓蚀性能. 聚磷酸盐和水中存在的二价金属离子如铁、钙、锌等结合,在金属表面形成一层沉积物膜,起阴极极化作用,抑制金属的腐蚀,所以聚磷酸盐又是阴极型缓蚀剂. 聚磷酸盐的表面活性使它具有清洗金属表面的能力. 在冷却水系统开工时可以用它对系统进行全面的清洗. 如果系统的污垢不严重,聚磷酸盐能逐渐的将污垢清洗出去. 逐渐建立完整的腐蚀控制,它对于控制点蚀和瘤状或结节状的腐蚀特别有效.
聚磷酸盐在碱性条件下,形成磷酸钙垢的危险很大. 使用聚磷酸盐时,如系统中只有钢铁材料,水中的pH值在5. 0~7. 0 为宜. 如系统中存在铜和铜合金,低pH值易使铜受到腐蚀,水中的pH 值应严格控制在6. 7~7. 0 或添加铜缓蚀剂并降低pH 值,以避免生成磷酸钙垢. pH 值高于8 ,不但会产生磷酸盐垢,同时也会发生局部的腐蚀. 还有磷酸盐含磷,是微生物生长繁殖的养料,在水中聚磷酸盐会被许多的微生物分解而降低缓蚀性能,也会局部腐蚀并造成微生物污染.
金属离子型缓蚀剂分析以铜缓蚀剂为例[4 ] ,当设备用铜和铜合金制造时,存在一种特殊的腐蚀问题:被腐蚀而产生的铜离子很容易和较活泼的金属,如铁和铝等发生如下反应:
Fe + Cu2 + →Cu + Fe2 +
2Al + 3Cu2 + →2Al3 + + 3Cu
铜离子经还原而生成的金属铜便沉积在活泼金属上面,铜作为阴极,活泼金属为阳极,构成腐蚀电池. 由于铜的电位较低(Eo氧化= - 0. 337 V) ,腐蚀电池的电动势很大,会使活泼金属受到严重的、穿透速度很快的腐蚀. 铜和铜合金产生的铜离子,还会被水带到很远的地方沉积下来而引起腐蚀. 将水中的铜离子浓度控制在0. 1 mg/ L 以下可以防止这种腐蚀,冷却水系统所使用
的缓蚀剂,大多数都能抑制铜受到腐蚀,但将水中的离子浓度控制在0. 1 mg/ L 以下,要在中性和碱性水中才能实现. 因此,使用有铜和铜合金材料的冷却水的pH值必须控制在6. 5 以上. 下面介绍几种重要的铜缓蚀剂:
1)β—疏基苯并噻唑(MBT) [5 ,6 ] (Mercaptobenzoth2iazole) ,其结构式为:
对于铜和铜合金,β—疏基苯并噻唑是一种特别优良的缓蚀剂,它在低浓度时(例如2 mg/ L) 就能将铜和铜合金的腐蚀速度降得很低. 铜的表面对β—疏基苯并噻唑有很强的化学吸附作用,吸附在铜表面的β—疏基苯并噻唑按一定的方式排列,将腐蚀物质隔开,并且阻止铜变为铜离子进入水中而引起腐蚀.β—疏基苯并噻唑对铜沉积在铁和铝等活泼金属上而引起的电偶腐蚀的抑制也很有效.β—疏基苯并噻唑的优点是: (1) 对铜和铜合金的腐蚀控制比较有效; (2) 用量少. 它的缺点是:易被氧化而失效,所以应避免和氧化剂型的缓蚀剂一起使用;对氯和氯胺很敏感,也易被它们氧化.
2) 1 ,2 ,3 —苯并三唑(BTA) (Benzotriazole) ,结构式为
1 ,2 ,3 —苯并三唑是一种很有效的铜和铜合金缓蚀剂.它对铜的缓蚀作用与MBT相似:铜的表面对苯并三唑或苯并三唑与铜离子的螯合物有强烈的化学吸附作用,在铜表面形成防腐屏幕,防止腐蚀性物质与铜接触,又阻止铜进入水中成为铜离子. 所以它不但能抑制金属基体上的铜溶解进入水中,而且还能使进入水中的铜离子钝化,防止铜在钢、铝、锌及镀锌铁等金属上的沉积和黄铜的脱锌. 此外,1 ,2 ,3 —苯并三唑对铁、镉、锌、锡也有缓蚀作用. 它的使用浓度比MBT 还低,只要1 mg/ L 就能建立对铜和铜合金的良好保护,使用时的pH 值范围为5. 5~10 ,浓度不必随pH 值而调整.1 ,2 ,3 —苯并三唑的抗氧化能力强,不会因加氯而遭到破坏. 虽然氯会与它生成不稳定的化合物,使它对铜的保护作用减弱.1 ,2 ,3 —苯并三唑的优点是:对铜和铜合金的缓蚀效果好;更能耐受氯的氧化作用. 它的缺点是价格较高.
3) 硫酸亚铁:硫酸亚铁是特别的缓蚀剂,常作为海水、其他咸水或直流冷却系统中的铜和铜合金的缓蚀剂. 用海水作冷却水的铜换热器,加以硫酸亚铁使铜管内壁生产一层含有铁化合物的保护膜,甚至可以厚达0. 0762 mm ,有效地抑制铜受到的腐蚀,特别是水流冲刷引起的腐蚀. 这一过程称为硫酸亚铁造膜处理.
硫酸亚铁的优点是:价格便宜,用量少;污染较轻.它的缺点是:造膜技术较为复杂;冷却水中含有硫化氢或其它还原性物质,且污染很严重时,硫酸亚铁造膜无效.
2. 3 吸附膜型缓蚀剂
吸附膜型缓蚀剂如有机胺、木质素类、葡萄糖酸盐等. 以有机胺为例,有机胺是用作冷却水系统的吸附膜剂,这种有机胺又称为膜胺,主要指C10~C20的链状脂肪族胺. 如C16 H33NH2 、(C16 H33 ) 2NH、C18 H37NH2 、(C18H37) 2NH. 它们制造容易,缓蚀性能较好,所以应用也较广. 胺及其衍生物也具有较好的缓蚀性能. 有机胺分子中的亲水基团为—NH2 和NH ,亲油基团为烷基. 有机胺投加到水中后,氨基(亲水基) 吸附在金属表面,烷基(亲油基) 朝外(腐蚀环境) . 金属表面都吸附了有机胺后,就形成一层吸附膜. 吸附膜中的烷基发挥遮蔽作用. 阻止水、氯离子和氧等腐蚀性物质和金属接触,起到防止金属腐蚀的作用. 由于氨基能稳固地吸附在金属表面,故可防止水流速对吸附膜的破坏作用. 有机胺能透过金属表面上已存在的腐蚀产物或污垢面而逐渐在金属表面形成保护膜. 因此,有机胺不仅可以用于比较清洁的系统. 而且可用在已运转一段时间且存在一些腐蚀和污垢的系统. 有机胺在渗透穿过腐蚀产物和污垢并在金属表面附着的过程中,能使这些污垢和腐蚀产物相互的结合松弛,与金属表面的粘聚力下降,使它们逐渐脱落而被水冲走. 由于有机胺有相当好的清洗金属表面的能力,所以在污垢比较多的系统中使用有机胺时,要逐渐加入,并慢慢增加其浓度,以免剥落下来的污垢太多,造成热交换器管子堵塞.
C16H33NH2 、(C16H33) 2NH、C18H2 ,NH2 、(C18H37) 2NH
等有机胺只要加2 %左右于冷却水中,就可均匀扩散到各个角落. 起始浓度由20 mg/ L~50 mg/ L 分批投入,待有机胺在金属表面形成单分子膜后,就消耗较少,只要补充损失量即可. 有机胺的膜相当牢固,成膜后在冷却水中维持几个mg/ L 即可,短时间停止投药或水中有机胺浓度降到零也不会引起多大变化,发现后及时投药就可以. 有机胺的缓蚀效果相当好. 在一般的冷却水系统使用,其缓蚀率可达90 %以上,经常受冲刷和侵蚀的区域约为50 %. 单独使用有机胺的防腐效果好,如再和其它缓蚀剂一起使用,防腐蚀效果则更佳. 但有机胺的防腐蚀性能受盐量的影响较大. 在含盐高的水中,单体胺的扩散较困难,防腐蚀能力下降,在海水中投加50 mg/ L 的胺对碳钢的缓蚀率仅有35 %~60 % ,增加胺的浓度至200 mg/ L ,缓蚀率也只有60 %
~80 %.
有机胺的优点是:缓蚀效果好;抗氯性能良好,加氯杀菌不会影响有机氨的防护作用. 它的缺点是:受盐量的影响较大;价格昂贵,处理费用高,经济上不合算.
『肆』 超强去油污表面活性剂
一、性能
系非离子表面活性剂改性的Gemini阳离子表面活性剂。具有优良的乳化版、分散性能,泡沫权丰富,易生物降解,耐酸、耐碱、耐氧化。
二、特点
具有优异的去除油污能力,使用时无需另加其它表面活性剂。常温除油,效果好,用量少。适合酸性清洗、中性清洗、碱性清洗。
三、技术指标
外 观
无色至黄色透明液体
活性物含量,%
≥99
pH值(1%溶液)
6±2
保质期
2年
四、用途
作为除油剂原料是当今世界一流产品,适用于去除各种机械油脂、天然油脂,可在酸性、中性、碱性条件下使用。广泛应用于各种工业及民用清洗剂、洗涤剂(如车辆清洗剂、发动机清洗剂、硬表面清洗剂、抽油烟机清洗剂、地毯清洗剂、金属清洗剂、玻璃清洗剂、大理石清洗剂等)。