A. 工业循环水处理作用有哪些
下面小来编为您解答工源业循环水处理只要作用:
工业循环水处理主要作用
1、降低悬浮物(浊度)。否则,随着系统运行,悬浮物升高,将加剧沉积等一系列问题。
2、除油。特别是轧钢、连铸等含油的浊循环。油份高,又是微生物滋生,又是堵塞喷嘴等等。
B. 循环水冷却塔白色水垢形成原因是什么如何彻底清除
由于抄冷却塔长期暴露在阳光和空气中,导致大量的藻类以及生物粘泥的生成,它们的新陈代谢物和分泌物致使生一层生物粘泥垢;同时循环冷却水系统在运行过程中,不断蒸发浓缩,形成白色的水垢。要彻底清除冷却塔中的白色水垢就要清除冷却塔中的藻类和生物黏泥,可以为冷却塔增添DCW次氯酸发生器,使次氯酸溶液投加到循环水中,从而清除冷却塔中的藻类和生物黏泥,并抑制其再生,彻底解决白色水垢的形成问题。
C. 阻止循环冷却水系统结垢有哪些方法
循环冷却水结垢处理方案 一、循环冷却水系统: 冷却塔中的水由循环水泵送至生产线,冷却动力设备及电器设备,吸收热量后送回冷却塔,保证生产线的正常工作。 二、目前循环水系统存在的问题及危害 冷却水在不断的循环过程中被蒸发浓缩,水中的各种杂质含量不断升高,从而对冷却水系统中的管道及设备造成危害。目前从冷却塔中观察已发现有硅酸钙结垢现象,证明设备内也有不同程度的结垢问题。 硅酸钙、硫酸钙结垢用酸洗法是清除不掉的,目前其他生产行业冷却水系统结垢不能有效清除就是这种原因。 冷却水系统的结垢使设备导热率下降,被冷却设备不能得到充分的冷却,导致设备工作效率减弱、功率下降,增加能源消耗。不及时处理会影响生产质量和设备的使用寿命,严重的可造成动力和电器设备损坏。 目前普遍用的加药法、化学清洗法从根本上解决不了生产系统的结垢问题。如采用加药处理必须建一个大的蓄水池、一个过滤池或二次处理池。要想节约用水还要一个庞大的回收池以保证水的再生利用。这样就要投入大量的资金和后期管理,又要占用大片的土地面积。 企业冷却循环水处理常用方法 1、钠离子交换器:用交换树脂、将水中的钙、镁离子基本处理掉,处理后的水再进入循环系统,完全可以彻底解决循环系统结垢问题,现在已广泛应用。 2、化学处理方法: 1)、加药:使用阻垢剂、杀生剂(灭藻剂)。该方法能阻止结垢,对已经结垢的设备需先清洗。费用高,用后污染大、占地大、需人工管理、排水量大。 2)、使用硅磷晶:该方法能减少结垢量,设备还会结垢,结垢后垢质坚硬不好处理。 3、电子水处理器: 1)、静电水处理器:其方法防垢能阻垢不能除垢,并吸附重金属离子,两年须清洗一下电极。 2)、超声波水处理器:利用声波除垢,缺点处理距离短,效果弱,除垢不彻底。 3)、普通电子水处理器:只能除碳酸钙;由于信号没有达到程度,显效时间长,半年才有效果;大块掉垢,会在管道或阀门等部位产生阻塞;杀菌效果差;不能防腐、防锈。
D. 电化学水处理的弊端有哪些主要
电凝聚来作为废水处理的一自种有效手段,很早就得到了应用,但由于其在实际应用中单位电耗和铁耗过大,使电凝聚法的发展及应用受到了限制.另外,电凝聚过程中,电解一段时间后,阳极极板会发生钝化现象.钝化时电极表面附着一层氧化物保护膜.检测电极电位可发现,电极电位偏离正常电化学反应电极电位而变正电位.表现为阳极溶出停止,电解槽只有氧化、还原和浮上作用,电凝聚作用消失,液面浮着大量的泡沫.这样就使电流效率降低,从而延缓电解进程.
E. 电磁除垢设备,能够解决循环水的根本问题吗
循环水在来运行过程中容易自结垢腐蚀影响换热效率降低设备使用寿命,滋生菌藻污染水质。电磁除垢设备可以改变水中离子性质,可以让成垢离子形成絮状的文石晶体而不是以方解石的形态析出。水垢中容易滋生细菌,电磁场会破会细胞壁杀死细菌。电磁除垢仪的工作原理就是这样的,希望能给你带来帮助。
F. 工业循环水系统的主要危害是什么,会造成什么影响
工业循环冷却水系统的连续运行,水的浓缩而导致水中各种离子浓度增大,相应的腐蚀、结垢等问题亦随之发生。当补充水为工业新水时,由于钙、镁离子较多,如不进行水质稳定处理,会造成设备内部的结垢,降低换热效率,严重时还会堵塞管路,带来安全隐患;循环水系统为开路循环,水中溶解氧充分,溶氧腐蚀很容易进行,氯离子、硫酸根离子等也会对设备、管路等造成腐蚀;同时由于水中含有足够的有机物和无机物,水温达到25~35℃时,这些因素给微生物的生长繁殖提供了适宜的条件,微生物既能造成污垢沉积,又能造成腐蚀,在
敞开式循环冷却水系统中,水垢、腐蚀和微生物危害习惯称为三大危害。
1、沉积物的形成
水系统的传热面与管壁上形成的水垢和污垢,称为沉积物,其形成通常有以下三种来源:水生沉积物,即悬浮固体物(如泥沙、尘土、细菌尸体、有机物等)因水流速度过低(小于1m/s)而沉积于系统中;外界的污染,如树叶、羽毛、包装袋等异物飘入系统中而沉积;水形成沉积物,即溶存固体物因温度变化等因素,在系统中沉淀或结晶形成,通常将此类沉积物称之为水垢。水形成沉积物的种类与成因如下。
1)碳酸钙(CaCO3)
Ca2++2HCO3-→CaCO3↓+H2O+CO2↑
在大部分的冷却水中都含有高浓度的重碳酸钙,其溶解度相当低,很容易在热交换器表面上形成碳酸钙沉淀。碳酸钙、碳酸氢钙、氯化钙、镁化合物及硫酸钙的溶解度如下表所示。
常见难溶物质溶度表
名称 分子式 溶解度(以CaCO3计)/mg·L-1
在0℃ 在100℃
重碳酸钙 Ca(HCO3)2 1620 分解
碳酸钙 CaCO3 15 13
氯化钙 CaCl2 336 000 554 000
硫酸钙 CaSO4 1 290 1 250
重碳酸镁 Ca(HCO3)2 37 100 分解
碳酸镁 MgCO3 101 75
氯化镁 MgCl2 362 000 443 000
硫酸镁 MgSO4 170 000 356.000
碳酸盐溶解在水中达到饱和状态时,存在下列动态平衡:
Ca(HCO3)2=Ca2++2HCO3-
HCO3-=H++CO32-
CaCO3=Ca2++ CO32-
朗格利尔(Langlier)根据上述平衡关系,提出了饱和pH和饱和指数的概念,用以判断碳酸钙垢在水中是否会析出。
朗格利尔指出:
当L.S.I.>0时,碳酸钙会析出,这种水属于结垢型水;
当L.S.I.=0时,碳酸钙不会析出,原有的碳酸钙也不会被溶解,这种水属于稳定型水;
当L.S.I.<0时,原来附着在换热面上的碳酸钙会被溶解,使碳钢金属表裸露在水中而腐蚀,这种水属于腐蚀型水。
雷兹纳(Ryznar)提出了稳定指数(R.S.I.)来进行碳酸钙析出的判断法,雷兹纳通过实验指出:
当(R.S.I.)=[2pHs-pH]<6 结垢
当(R.S.I.)=[2pHs-pH]=6 既不腐蚀也不结垢
当(R.S.I.)=[2pHs-pH]>6 腐蚀
帕科拉兹(Puckorius)认为水的总碱度比水的实际测定pH能更正确地反映出冷却水的腐蚀和结垢倾向,他认为将稳定指数中水的实际pH改为平衡pH(pHeq)将更切合实际生产。pHeq按下式计算:
pHeq=1.465lgM+4.54
式中:M—循环冷却水的总碱度
2)硫酸钙(CaSO4)
硫酸钙的溶解度比碳酸钙约高出100倍,故硫酸钙垢的形成机会较碳酸钙垢少,但是一旦硫酸钙垢沉积物形成,不容易将其清除。
通常情况是控制钙离子浓度与硫酸钙离子浓度(mg/L)的乘积不超过500000,即[Ca2+]×[SO42-]小于500000,则硫酸钙的沉积物形成的机会很少。
3)氧化铁
腐蚀的产物或水中含有的溶铁在系统中氧化而形成氢氧化铁或氧化铁絮体,进而形成各种铁的难溶氧化物或者其他难溶化合物。
Fe2++2OH-→Fe(OH)2
4Fe(OH)2+O2+2H2O→4Fe(OH)3
2Fe(OH)3→Fe2O3+3H2O
4)氧化硅
水中硅能与镁、钙形成不溶性的硅酸盐沉积物。
Mg2++SiO2+H2O→MgSiO3↓+2H+
Ca2++SiO2+H2O→CaSiO3↓+2H+
在冷却水系统中,硅含量通常控制在200 mg·L-1以下。
2、腐蚀的形成
由于和周围介质相作用,使材料(通常是金属)遭受破坏或使材料性能恶化的过程称为腐蚀。
腐蚀是一种化学或电化学过程,水中金属腐蚀类型有均匀腐蚀、点蚀、电偶腐蚀、缝隙腐蚀、应力腐蚀、微生物腐蚀及泡蚀、磨蚀等。最常见的包括均匀腐蚀、电偶腐蚀和微生物腐蚀、垢下腐蚀等。
1)均匀腐蚀
均匀腐蚀的特征是化学反应发生在整个暴露表面或相当大的面积上,腐蚀以均匀速度进行,金属越来越薄。循环水在中性或碱性条件下运行,引起均匀腐蚀的主要原因是溶解氧的阴极去极化作用。钢铁中的铁元素和碳元素构成简单的原电池反应。
在阳极,铁失去电子成为铁离子进入溶液:
Fe→Fe2++2e-(阳极反应)
电子从阳极的铁流向阴极碳,在阴极,溶解氧在碳上得到电子生成氢氧根离子:
O2+2H2O+4e-→4OH-(阴极反应)
在水中,阴极、阳极的产物结合生成氢氧化亚铁沉淀:
Fe2++2OH-→Fe(OH)2
溶解氧向金属表面输送使得腐蚀过程得以持续,这是决定腐蚀速度的一步,溶解氧还使得氢氧化亚铁进一步氧化为二次产物氢氧化铁:
4 Fe(OH)2+O2+2H2O→4Fe(OH)3
由于腐蚀产物的阻挡,水中溶解氧达到这个腐蚀点的速度减慢,形成腐蚀点四周的氧浓度大于腐蚀点的氧浓度,使得腐蚀点四周成为阴极,腐蚀点本身成为阳极,腐蚀继续以氧浓差梯度腐蚀的方式进行。此时,腐蚀产生的亚铁离子通过疏松的二次产物层向外扩散,当它遇到水中的OH-或者O2时,又产生新的二次产物,积累在原有的二次产物层中,因此二次产物层越积越厚,形成鼓包,鼓包下面越腐蚀越深,形成陷坑。
2)电偶腐蚀
电偶腐蚀又称双金属腐蚀,当两种不同的金属浸在导电性水溶液中,两种金属之间通常存在电位差。如果这两种金属互相接触或用导线连接,则电位差会驱使电子在他们之间流动,形成原电池。以铜材质和碳钢材质接触为例,电极反应如下:
阳极(Fe):Fe→Fe2++2e-
阴极(Cu):Cu2++2e-→Cu
与不接触(导电)时相比,电位较低的金属在接触(导电)后腐蚀速度通常会显著增加,而电位较高的金属在接触后腐蚀速度将下降。
3)其他因素
由于各种原因在金属表面形成的粘泥的沉积,会产生垢下腐蚀,某些微生物的新陈代谢作用(如硫酸盐细菌等)也会影响电化学腐蚀过程,促进腐蚀加速。
3、微生物危害的产生
循环冷却水系统中微生物的种类和数量相当多,危害很大。主要类型包括好氧异养菌、硫酸盐还原菌、铁细菌、藻类、真菌、原生动物等。其造成的危害在循环冷却水系统中是很严重的,与水垢、非微生物的电化学腐蚀比起来,其危害更胜一筹。微生物带给系统的危害不外乎黏附和腐蚀,表现出来时往往和水垢、其他腐蚀的危害混和在一起,对于腐蚀和黏泥附着也不能严格分开。
1)微生物的腐蚀
微生物对金属的腐蚀途径大致包括以下几种:1、产生腐蚀性物质,如好氧菌产生的有机或无机酸;2、造成氧浓差电池,如铁细菌附着在金属表面,氧化亚铁离子生成高价的铁化合物沉积在金属表面形成结瘤,造成局部氧浓度下降;3、阴极或阳极的去极化作用加速腐蚀过程。
2)微生物黏泥与污垢沉积
微生物群体及其分泌物会形成胶黏状物,这些黏泥很容易附着在设备上,造成沉积物的危害。实际上,系统中的沉积物很少是单一的微生物黏泥,而是以微生物黏泥为主,也含有一部分淤泥、水垢和腐蚀产物。
这些黏泥污垢的危害很大。由于其黏附特性,在水中起到架桥、絮凝的作用,使难溶性盐类的悬浮晶粒长大,进而沉降在设备上;黏泥附着造成垢下腐蚀;黏泥使水冷器的污垢热阻值增加,换热器效率大大降低;黏泥附着部位的金属无法接触缓蚀阻垢剂等等。
G. 电化学水处理怎么除垢的只用电吗
不对,不只是用电,电解除垢是利用电与化学能相互转化的产物,也内叫EST电化学水处理,也有叫容EST电解除垢的,当然,要想完成这一过程,必须给机器先通电,然后才能产生化学反应的动力,所以说,通电外部因素,化学反应是内部因素。上海亨祥宁科技希望能帮到你!
H. 冷却塔循环水除垢、防垢有什么好的办法
使用辽宁抄星力电化学除垢设备袭,该设备是引进以色列技术研发生产的。设备主要有阴极板和阳极板(专利)组成,安装在循环水管道的旁路上,其工作原理是利用电化学法氧化和还原循环水中的成垢物质,使其定向生成在电极板上,定期处理。在电解过程中阳极板主要生成次氯酸HCLO3等强氧化物质,氧化循环水中的有机物和无机物起到杀菌除藻的作用;阴极板主要生成氢氧根离子(OH-)碳酸根离子(CO3-)当循环水中的钙镁离子经过该区域时产生还原反应,生成碳酸钙,氢氧化镁,硅酸钙等附着在阴极板上,达到一定厚度即可清理,排除循环水体系外,从而达到很好的杀菌除藻,除垢防垢的效果。使用星力电化学定向除垢设备无需添加缓蚀剂,阻垢剂和杀菌剂,可以减少循环水的污水排放,同时也可以提高循环水的浓缩倍数,节约用水20%-40% 。
I. 循环水系统中存在哪些危害
污垢的沉积严重影响热交换的正常进行,消耗和浪费能量,严重时使换热设备阻塞,使换热设备效率下降,系统阻力增大,能耗增大,性能大幅下降。