导航:首页 > 蒸馏问题 > 蒸馏水发明者

蒸馏水发明者

发布时间:2022-05-03 08:20:51

㈠ 高中化学 自然科学问题

原子量测定的历史回顾

原子量的测定在化学发展的历史进程中,具有十分重要的地位。正如我国著名化学家傅鹰先生所说:“没有可靠的原子量,就不可能有可靠的分子式,就不可能了解化学反应的意义,就不可能有门捷列夫的周期表。没有周期表,则

现代化学的发展特别是无机化学的发展是不可想象的”[1],在已建立了科学的原子量基准,并且通过相当完善精密的原子量测定方法测得足够精确的原子量数值的今天,我们回顾一下化学科学发展进程中这段重要史实,对于深入研究化学发展规律,帮助我们正确理解和使用原子量,无疑是大有稗益的。

一、道尔顿的开山之功
英国著名的化学家道尔顿(J.Dalton,1766~1844)在提出原子论观点的同时,就为确定不同元素原子的相对重量作了努力。从而成为化学史上测定原子量的第一人,成为这一领域的拓荒者。在当时的历史条件下,要确定各种元素的相对重量并非易事。这首先要确立一个相对标准,既以谁为参照基准。其次要有准确的定量分布手段,并且要明确单质和化合物分子中元素原子的数目,这在当时对于大多数化合物是很难做到的。正是由于这个原因,道尔顿只能采用主观武断的方法规定不同元素的原子化合形成化合物的原子数目比。例如,他认为水是由1个氧原子和1个氢原子组成的。这祥,根据当时拉瓦锡(A .L. Lavoisier,1743~1794)对水的重量分析的结果,以他选择的氢原子的相对重量 为1做基准,算得氧原子相对重量为5.5。

1803年10月21日,道尔顿在曼彻斯特的 “文学和哲学学会”上阐述他的原子论观点时,第一次公布了6种元素的原子相对重量,但他没有宣布数据的实验根据。此后,他又先后于1808年、1810年、1827年在其著名的《化学哲学新体系》一书的第一、二卷中不断增加元素种类,使之最终增至37种,并对部分数值做了修正……。由于道尔顿以主观武断的方式确定物质的组成,因而所得的原子相对重量都与今天的原子量相差甚远。尽管如此,他的这项极富开性和科学性,使之一直沿用至今.更重要的是他的这项工作在当时为广大化学工作者找到了正 确的前迸方向,使得化学科学向系统化、理性化迈进了一步。正如恩格斯指出:“在化学中特别是由于道尔顿发现了原子量,现已达到各种结果都具有了秩序和相对的可靠性,已经能够有系统地、差不多是有计划地向还没有被征服的领域进攻,就象计划周密地围攻一个堡垒一样”〔4〕。

二、贝采里乌斯的非凡工作
道尔顿首创的确定元素原子相对重量的工作,在当时的欧洲科学界引起了普通的关注和反应。各国的化学家们在充分认识到确定原子量的重要性的同时,对于道尔顿所采用的方法和所得到的数值感到不满和怀疑。于是继他之后,许多人便纷纷投入测定原子量的行列中,使这项工作成为19世纪上半叶化学发展的一个重点。

在这其中,工作非凡,成绩斐然的是瑞典的化学大师贝采里乌斯(J.J.Berzelius, 1779~1848)。这位近代“化学大厦”的卓越建筑师,对近代化学的贡献涉及诸多方面。其中最为非凡的是他用了近二十年的时间,在极其简陋的实验室里测定了大约两千种化合物的化合量,并据此在1814~1826年的12年里连续发表了三张原子量表,所列元素多达49种〔5][6]。其中大部分原子量已接近现代原子量数值,这在当时的历史条件下是极其难能可贵的。

贝采里乌斯之所以能在长达近二十年的时间里孜孜不倦、专心致志地从事原子量的测定工作,是因为他高瞻远瞩地认识到这项工作的重要意义。他认为“这就是那时候化学研究最重要的任务”[4]。贝采里乌斯测定原子量的方法与道尔顿相似,但他的基准选定氧= 100。对于化合物组成,他也采用了最简单比的假定。与道尔顿不同的是,他在坚持自己亲自通过实验测定化含量的同时,时时注意吸取他人的科研成果。比如像盖·吕萨克(L,J.Gay.Lussac, 1778~1850)的气体反应体积简单比定律;杜隆(P.L.Dulong, 1785~1838)和培蒂(A,T,peiit,1791~1820)的原子热容定律以及他的学生米希尔里希(E.E. Miischerlich,1794~1863)的同晶型规律等。大约在1828年,贝采里乌斯结合原子热容定律和同晶型定律把他长期弄错的钾、钠。银的原子量纠正过来。正是由于他能够博采众长,持之以恒,才得出了比较准确的原子量,以自己的辛勤劳动为后来门捷列夫发现元素周期律开辟了道路,在化学发展史上写下了光辉的一页。

三、庚尼查罗的杰出贡献
在19世纪上半叶的五十多年里,从道尔顿到贝采里乌斯,虽然有很多人致力于原子量的测定,但由于对化合物中原子组成比的确定一直没有找到一个合理的解决办法,更主要的是当时对分子和原子的概念尚混淆不清,因而使原子量的测定长期处于极其混乱的状态,陷入了困境。这期间,尽管法国著名化学家杜马(J.B.A.Dumas,1800~1884)曾于1826年发明了简便的蒸气密度测定法,并曾试图利用这一方法,通过测定分子量计算原子量。但因为他虽然

有不同数目的原子”[4]。“他还指出:“……只要我们把分子与原子区别开来,只要我们把用以比较分子数目和重量的标志与用以推导原子量的标志不混为一谈,只要我们最后心中不固执这类成见:以为化合物的分子可以含不同数目的原子,而各种单质的分子却都只能含一个原子或相同数目的原子,那么,它(指阿佛加德罗分子理论,包括安培后来的观点)和已知事实就毫无矛盾之处”[2].康尼查罗正是在明确区分了原子和分子的基础上,通过测定分子量结合物质重量组成分析结果,提出了如下结论:当考虑一系列某一元素的化合物时,其中必然有一种或几种化合物中只含有一个原子的这种元素,那么在一系列该元素的重量值中,最小值就是该元素原子量的约值[2][4][7]。康尼查罗的上述工作,澄清了当时一些错误观点,统一了分歧意见,为原子—分子论的发展和确定扫除了障碍,使得原子—分子论整理成为一个协调的系统,从而大大地推进了原子景的测定工作。对此德国著各化学家迈尔(J.L.Meyer,1830~1895)给予极高的评价[3]。与前人相比,康尼查罗在原子量的测定上没有什么特殊的发现,但由于他决定性地论证了事实上只有一门化学学科和一套原子量,从而在化学发展的重要时刻做出了杰出贡献。

四、斯达与理查兹的卓越功绩
康尼查罗虽然使原子量测定工作步入正确轨道,但所得到的只是原子量的约值。欲使化学真正成为一门精确的科学,这显然是远远不够的。在通向精确的“真实”原子量的道路上还布满荆棘,困难重重。这首先在于测定标样的化合物必须可以提高到高纯度,在诸多化合物中,只有极少数化合物能满足这一要求。其次,必须有严密的实验手段,十分干净的实验环境和相当精密的分析设备。最后,还要有高超准确的实验操作技能,以确保实验数据的高度重复性。所有这些都无不昭示要得到准确的“真实”原子量需要有非凡的实验化学家。自19世纪中叶开始到本世纪初叶,相继有两位卓越的化学家为此付出了艰辛的劳动。

比利时化学家斯达(J.S.Stas,1813~1891)是最早进行原子量精确测定的人。他在1860年提出采用O=16为原子量基准。在广泛使用当时发展起来的各种制备纯净物质的方法的同时,他一方面注意提高使用的蒸馏水的纯度,以防引入杂质,同时,将天平的灵敏度提高到0.03毫克;另一方面选用易被制成高纯度的金属银作为测定基准物。这些精益求精的工作使斯达在1857~1882这二十五年时间里测定了多种元素的精确原子量,其精度可达小数点后4位数字,与现在原子量相当接近。继斯达之后,美国化学家理查兹(T.w.Richards,1868~1928)的工作更为出色。这使他因此而荣获1914年诺贝尔化学奖。自1904年起,他和他的学生通过大量的分析工作修正了斯达的原子量值。例如,他发现斯达使用的银中含有少量氧,于是采用如下方法改进:用经过15次重结晶后得到的AgNO3还原得到银,再将银放置在石灰石上在氢气中熔化,从而得到不含氧的银。他通过这种方法将银的原子是从107.93修正为107.88与现代银原子量更为接近。

五、原子量基准的演变与现代原子量的测定
原子量基准的选择是测定原子量的重要基础。最早的原子量基准是由道尔顿提出的H=1。接着贝采里乌斯以O=100为基准。1860年,斯达提出O=16为基准,很快得到公认并在化学领域沿用了整整一个世纪(1860~1960)。伴随着化学科学的不断发展和原子量数值精度的不断提高,特别是1929年美国化学家乔克(W.F.Giauque,1895~1982)等人在天然氧中发现了17O和18O两种同位素后,使得化学和物理两大领域的原子量基准出现了差别。由于化学的原子量基准选用的是天然氧,而物理的原子量基准选用的是16O=16,因此精确计算得出化学原子量单位=1.000275×物理原子量单位,这佯就使得世界上存在两套原子量数值,这势必要引起一些混乱。对此,化学和物理界都认识到统一两套原子量单位的必要性。为此科学家们提出了许多建议。曾先后提出以4He= 4和以19F=19为基准,但都因各自的不足而被否定[2] 。

1957年,美国质谱学家尼尔(A·O·Neer和化学家厄兰得(A.OLander)提出以12 C=12为基准的方案。由于l2 C基准有利于采用质谱法则定核素的原子量,这一方案得到德国著名质著学家马陶赫(J.Mattauch)的支持。1959 年国际纯粹与应用化学联合会(IUPAC接受马陶赫的意见,决定建议使用12C=12 为原子量基准.1960年国际纯粹与应用物理联合会(IUPAC)接受了这项倡议,于是一个为世界公认的新原子基准诞生了。

现代测定原子量主要有化学方法和物理方法(质谱法)。化学方法是先制备该元素的纯卤化物,采用银作二级基准分析卤化物纯度,再向一定量的卤化物样品溶液中加入等量的硝酸银,用重量法测定卤化银的重量,然后通过当量测定原子量。质谱法是通过测定同位素的原子量,然后根据其在自然界的丰度计算得到的。它所使用的仪器叫质谱仪,这种方法的最大优点是精度高。现代原子量几乎都是由质谱洁测定的。在质谱仪中,被测样品(气体和固体的蒸气)中的元素经阴极射线的作用产生带正电荷的离子,正离子先后通过电场和磁场后发生偏转。无论正离子速度的大小,只要其电荷与质量之比e/m,简称荷质比)相同的离子就会收敛在一处,在照相板上留下痕迹;不同e/m的正离子将收敛在不同位置,从而形成相应的线条。将这些线条的位置与l2C原子质谱上的谱线和相应的质量标度比较可求得这些离子即元素的相对质量。同时,用电流检示计通过测定离子流的强度求出这些元素的相对丰度,进而便可算出该元素的原子量。此外还有一种核反应法。它是通过质能关系式DM=Q/C2,根据核反应的能量变化Q来计算两核间的质量差值,进而求出原变化Q来计算两核简的质量差值,进而求出原子量,这种方法对测定短半衰期的放射性同位素原子量是唯一的。由于用质谱测定原子量时,必须同时测定同位素丰度,而有些元素同位素的组成因来源不同而有涨落,以导致实际测得这些元素的原子量并非固定不变。因此,现在每两年需修订一次原子量表。

六、结束语
回首原子量测定的沧桑历史,我们不难得到如下启示:

开创性思维在科学发现和发展中发挥着重要作用。不难设想,倘若没有道尔顿确定相对原子重量这一极富创见性的开端,当时的化学家们恐怕还要在盲目中枉费许多时光和精力;倘若康尼查罗不在原子量测定处于非常混乱之时,创造性地理顺了分子和原子的概念,以其杰出的思辨性思维和极其精辟的论述使原子量测定工作走出困境,人们不知还会在无休止的争论中僵持多久,这样,门捷列夫恐怕也难以攻克元素周期律这一划时代的科学堡垒。

参考文献
[1]张家治主编,化学史教程,山西教育出版社,1987:263
[2]赵匡华编著,化学通史. 北京:高等教育出版社,1990:102,122,124
[3][英]约翰.道尔顿著,化学哲学新体系.李家玉,盛根玉,潘道皑译,武汉出版社,1992:129~130,312,513~514
[4]凌永乐编著。世界化学史简编。辽宁教育出版社,1989: 137~148
[5]「英]J.R柏延顿著。化学简史。胡作玄译,商务印书馆,1979:219
[6]袁翰青,应礼义合骗。化学重要史实。人民教育出版社,1989:119~121,524~528
[7]化学发展简史编写组编著%学发展简史,科学出版社,1980:113
===============================================
现代的测定方法主要有以下几种:
----------------------------
1) 利用核反应 的能量平衡求取
在一个核反应中,反应前后能量守恒,能量和质量之间有着爱因斯坦关系。如果反应前后的某些粒子的质量或能量已知,那么就可以根据 守恒原理 求出 某1个 未知粒子的质量。例如 不带电的中子的质量 通常就是这样求得的。
-------------------------
2)利用原子发射光谱中的超精细结构测定
原子可以发射光谱,光谱对于原子 就如同 指纹对于人。每种原子都有自己的特征光谱。光谱记录呈现若干个独立的 峰。用高分辨能力的 光谱仪器观察这些峰,会发现 所谓的 峰 并非单峰,而是若干个波长很近的 峰叠加在一起而成。这若干个小峰称为光谱的超精细结构。小峰与小峰之间的波长差 决定于原子的质量。通过对小峰之间的波长差的测量,可以推算出 原子的质量。
------------------------
3)利用分子转动光谱中的同位素位移。
这种方法的原理与 2)很相似,不再具体描述。
-----------------------
4)质谱法
这是当代最为流行、测量精度最高的原子量测定方法。测量精度可达 10的 -18 克。在这种方法中,利用“质谱仪”(mass spectrometer) 测量微观粒子的质量。其中的 “质”就是质量的意思。
世界上第一台质谱仪诞生于1919年。目前已经有多种不同类型的质谱仪,例如:单聚焦、双聚焦、串列、四极、飞行时间、加速器 等类型。
质谱仪的工作原理中,主要是通过对微观带电粒子在电磁场中的运动规律的测量来得到微观粒子的质量。带电粒子在电场中 受到库仑力,在磁场中受到洛仑兹力。由于力的作用,微观粒子会具有加速度,以及与加速度对应的运动轨迹。微观粒子质量不同时,加速度以及运动轨迹就会不同。通过对微观粒子运动情况的研究,可以测定微观粒子的质量。
----------------------------
碳原子是中性粒子,不带电,不会在电磁场中受到作用。但是在自然界中存在着大量种类的碳氢化合物,可以通过一定的技术手段让碳以离子形式被注入到电磁场中。这样就可以测定碳离子、或者碳氢集团离子等的质量。同时它们的电荷也很容易测定,每个电子的质量也很容易测定。这样,就可以推出碳原子的质量。
--------------------------------
关于 阿伏加德罗常数的测定:
主要有:气体动力学法、密立根油滴实验法、布朗运动法、布拉格X射线衍射法等。这些方法都涉及很专业的知识。不再详述。
------------

㈡ 古人发明酒的最初用途是什么

相传酒是由杜康发明制造的。杜康想研制一种可以喝的东西,可是冥思苦想就是想不出制作方法,直到有天晚上他梦见一位鹤发童颜的老翁对他说:“你以水为源,以粮为料,再在粮食泡在水里的第九天酉时找三个人,每人取一滴血加在其中,即成。”说完老翁就不见了。

杜康醒来就按照老翁说的方法制作。他在第九天的酉时到路边寻找到三个人,分别是一位文质彬彬的书生、一位威武英气的将军、一个无亲无故且傻乎乎的乞丐,求得了三滴血,终于制作成了。

可是杜康又犯愁了,起什么名字。他一想,这饮品里有三个人的血,又是酉时滴的,就写作“酒”吧,怎么念呢。这是在第九天做成的,就取同音,念酒(九)吧。这就是关于酒来历的传说,后来人们将杜康作为酒的代称。

(2)蒸馏水发明者扩展阅读:

古人发明葡萄酒的最初目的。

在古代,在一群游牧营地中,收集了许多野生谷物。不知何故,这可能是一场突如其来的暴雨。在收集谷物的地方,形成了温水池。在短时间内,谷物被发酵,将池变成深黑色的液体,一些冒险的牧民喝了液体,发现它味道很好!所以葡萄酒诞生了。

另一种说法是,欧洲大陆的农民在收获后总是在粮仓堆积小麦。这些简单的粮仓经常导致仓库中的小麦由于屋顶的泄漏而变湿,从而开始发芽和发酵,一个大胆的农民好奇地品尝它,发现液体香气可口。从那以后,人们模仿葫芦,所以最原始的啤酒出来了。

古老的巴比伦人,埃及人和中国人制造葡萄酒。由于古希腊人之间的关系,古老的欧洲,包括西班牙,葡萄牙,意大利,法国,比利时,德国和荷兰,都知道葡萄酒。后来,欧洲中西部的凯尔特人也了解葡萄酒,葡萄酒成为最受欢迎的饮品。葡萄酒的声誉在整个欧洲慢慢传播。

㈢ 中国十大圣贤

1、儒圣—孔子

他发愤为学,博学多能。他开创了私人讲学的风气,广收门徒,收的学生不管贫富贵贱,据说有3000弟子,其中优秀的有72人。他成为文化传播的使者。他曾周游列国,晚年专心从事古代文献整理与传播工作,致力于教育,整理《诗》、《书》等古代典籍,删修《春秋》。其学生将其思想言行记载在《论语》中。

孔子经其终生倡导和历代儒家的发展,使中国儒家学说成为中华文化的主流,作为中国人的指导思想逾两千余年。孔子思想体系的核心是德治主义,他执著地倡导德化社会与德化人生。德化社会的最高标准是“礼”,德化人生的最高价值是“仁”。

2、诗圣—杜甫

杜甫(公元712--770),汉族,字子美,祖籍襄阳(今湖北襄樊市),后迁居巩县(今河南巩县),世称杜工部、杜拾遗,自号少陵野老,是我国唐代伟大的现实主义诗人,诗圣,世界文化名人,与同年代“诗仙”李白并称“李杜”。杜甫的远祖为晋代功名显赫的杜预,乃祖为初唐诗人杜审言,杜甫本人出生于河南巩县(今郑州巩义)。杜甫曾任左拾遗、检校工部员外郎,因此后世称其杜拾遗、杜工部。杜甫生活在唐朝由盛转衰的历史时期,其诗多涉笔社会动荡、政治黑暗、人民疾苦,被誉为“诗史”。杜甫忧国忧民,人格高尚,诗艺精湛,被后世尊为“诗圣”。杜甫一生写诗一千四百多首,其中很多是传颂千古的名篇,比如“三吏”和“三别”,并有《杜工部集》传世;其中“三吏”为《石壕吏》《新安吏》和《潼关吏》,“三别”为《新婚别》《无家别》和《垂老别》。杜甫的诗对后世影响深远。

3、书圣—王羲之
东晋书法家,字逸少,号澹斋,汉族,原籍山东琅琊(今山东临沂),后迁居会稽(绍兴),写下《兰亭集序》,晚年隐居会稽下辖剡县金庭,中国东晋书法家,有书圣之称。历任秘书郞、宁远将军、江州刺史。后为会稽内史,领右将军,人称“王右军”、“王会稽”。其子王献之书法亦佳,世人合称为“二王”。。此后历代王氏家族书法人才辈出。
4、
茶圣—陆羽

湖北天门)人,一生嗜茶,精于茶道,以著世界第一部茶叶专著——《茶经》闻名于世,对中国茶业和世界茶业发展作出了卓越贡献,被誉为“茶仙”,尊为“茶圣”,祀为“茶神”。他也很善于写诗,但其诗作目前世上存留的并不多。他对茶叶有浓厚的兴趣长期实施调查研究,熟悉茶树栽培、育种和加工技术,并擅长品茗。唐朝上元初年(公元760年),陆羽隐居浙江湖州苕溪,撰《茶经》三卷,成为世界上第一部茶叶专著。《全唐文》有《陆羽自传》。

5、武圣—关羽

关羽生前除曹操奏请汉献帝封其为汉寿亭侯外,正式官职为襄阳太守、都督荆州事务。刘备封赐的爵位先为荡寇将军,后为前将军,列蜀汉“五虎上将”之首。在其殁后的41年,即三国蜀景耀三年(260,正好是其诞辰100周年),后主刘禅追谥为壮穆侯。然而,从南北朝开始,直到清朝末年,关羽受历代封建帝王的祟封有增无减,“侯而王,王而帝,帝而圣,圣而天”,褒封不尽,庙祀无垠,关羽名扬海内外,成为历史上最受崇拜的神圣偶像之一,以致与孔夫子齐名,并称“文武二圣”。

6、画圣—吴道子

吴道子(680-759年),玄宗赐名道玄.是中国唐代画家,被后世尊称为“画圣”,被民间画工尊为祖师。画史尊称吴生。唐代第一大画家河南阳翟(今河南省禹州)人,大约生于唐高宗朝(约685年左右),卒于唐肃宗朝(约758年左右)。少孤,相传曾学书于张旭、贺知章,未成,乃改习绘画。曾在韦嗣立幕中当大吏,做过兖州暇丘(今山东兖州)县尉。漫游洛阳时,唐玄宗闻其名,任以内教博士官,并官至宁王府友,改名道玄,在宫廷作画。开元年间,玄宗知其名,召入宫中,让其教内宫子弟学画,因封内教博士;后又教玄宗的哥哥宁王学画,遂晋升为宁王友,从五品。
7、
草圣—张旭

张旭的书法,始化于张芝、二王一路,以草书成就最高。史称“草圣”。他自己以继承“二王”传统为自豪,字字有法,另一方面又效法张芝草书之艺,创造出潇洒磊落,变幻莫测的狂草来,其状惊世骇俗。相传他见公主与担夫争道,又闻鼓吹而得笔法之意;在河南邺县时爱看公孙大娘舞西河剑器,并因此而得草书之神。颜真卿曾两度辞官向他请教笔法。张旭是一位纯粹的艺术家,他把满腔情感倾注在点画之间,旁若无人,如醉如痴,如癫如狂。唐韩愈《送高闲上人序》中赞之:“喜怒、窘穷、忧悲、愉佚、怨恨、思慕、酣醉、无聊、不平,有动于心,必于草书焉发之。观于物,见山水崖谷、鸟兽虫鱼、草木之花实、日月列星、风雨水火、雷霆霹雳、歌舞战斗、天地事物之变,可喜可愕,一寓于书,故旭之书,变动犹鬼神,不可端倪,以此终其身而名后世。”这是一位真正的艺术家对艺术的执着的真实写照。难怪后人论及唐人书法,对欧、虞、褚、颜、柳、素等均有褒贬,唯对张旭无不赞叹不已,这是艺术史上绝无仅有的。

8、酒圣—杜康

杜康(约公元前十世纪),字仲宁,白水县康家卫(今杜康镇)人。生卒无可考。相传他是周朝时酿酒术的发明者。被称作酒祖。酿酒是中华民族饮食文化的一大创造。杜康作为酒的始造者,开辟了源远流长的华夏酒文化的源头。他酿酒采取蒸馏法,其过程大致是:先把粮食作物磨碎,然后发酵,使之成为酒糟,再把含醇的酒糟溶入水中,加热煮沸,造成含醇的蒸馏水,即酒。初制出的酒有糙味,放入地窖醇化三年,取出后清洌甘醇。
9、
史圣—司马迁

司马迁是中国历史上伟大的史学家“他因直言进谏而遭宫刑,却因此更加发愤著书,创作了名震古今中外的史学臣著《史记》,为中国人民,世界人民留下了一笔珍贵的文化遗产。司马迁(前145或前135—前87?),字子长,西汉夏阳(今陕西韩城,一说山西河津)人,生于汉景帝中元五年(公元前145),一说生于汉武帝建元六年(公元前135),48岁终。中国西汉史学家、思想家、文学家,被后人尊称为“史圣”。
10、
医圣—张仲景

张仲景名机,被人称为医圣。南阳郡涅阳(今河南省邓州市穰东镇张寨村,另说河南南阳市)人。生于东汉桓帝元嘉、永兴年间,(约公元150~154年),死于建安末年(约公元215~219年)活了七十岁左右。相传曾举孝廉,做过长沙太守,所以有张长沙之称。张仲景从小嗜好医学,“博通群书,潜乐道术。

㈣ Ringer溶液可以用蒸馏水代替吗为什么

蒸馏[2]是一种热力学的分离工艺,它利用混合液体或液-固体系中各组分沸点不同,使低沸点组分蒸发,再冷凝以分离整个组分的单元操作过程,是蒸发和冷凝两种单元操作的联合。与其它的分离手段,如萃取、过滤结晶等相比,它的优点在于不需使用系统组分以外的其它溶剂,从而保证不会引入新的杂质。
一次蒸馏水
水经过一次蒸馏,不挥发的组分(盐类)残留在容器中被除去,挥发的组分(氨、二氧化碳、有机物)进入蒸馏水的初始馏分中,通常只收集馏分的中间部分,约占60%。
多次蒸馏水
要得到更纯的水,可在一次蒸馏水中加入碱性高锰酸钾溶液,除去有机物和二氧化碳;加入非挥发性的酸(硫酸或磷酸),使氨成为不挥发的铵盐。由于玻璃中含有少量能溶于水的组分,因此进行二次或多次蒸馏时,要使用石英蒸馏器皿,才能得到很纯的水,所得纯水应保存在石英或银制容器内。
蒸馏水指标
1 灼烧渣含量 (≤0.01 %)[3]
2锰(Mn)含量 (≤0.00001%)
3铁(Fe)含量 (≤0.0004 %)
4氯(Cl) (≤0.0005 %)
5 还原高锰酸钾物质(O)含量 (≤0.0002 %)
6 透明度 (mm) 无色透明
7 电阻率(25℃) (≥10x104 Ωcm)
8硝酸及亚硝酸盐(以N计) ( ≤0.0003 %)
9 铵(NH4)含量 (≤0.0008 %)
10 碱土金属氧化物(CaO计) (≤0.005 %)
11颜色 呈淡蓝色或无色
制作方法
自然界中的水都不纯净[2],通常含有钙、镁、铁等多种盐,还含有机物、微生物、溶解的气体(如二氧化碳)和悬浮物等。用蒸馏方法可以除去其中的不挥发组成。用蒸馏法

㈤ 蒸馏水对人体有什么影响呢

蒸馏水是一种非自然的、人为的发明,实际上并不适合人类消费。为什么?蒸馏法是将沸水蒸发,然后将纯水蒸气冷凝的过程。但这水实在太纯了!你看,现在它完全不含你通常在天然水中发现的溶解矿物质。积极的一面是,由于这个。蒸馏水能够吸收并清除体内的有毒物质。当你想要净化或排毒的时间不超过几周的时候,这是非常好的。

然而,蒸馏水的消极一面实际上是危险的,因为除了清除毒素外,蒸馏水还会清除身体真正需要的东西,如电解质(钠、钾、氯)和微量矿物质,如镁。这会导致营养不良,从而导致心跳不规律和高血压。此外,在蒸馏水中烹饪也会带走食物中的矿物质,降低食物的营养价值。

水会和软饮料配方中的成分发生反应,产生不均匀的味道,而像可口可乐这样的汽水公司不能有这种情况。因此,他们被迫使用蒸馏水。但软饮料不健康的一个主要原因是蒸馏水。多项研究表明,饮用大量软饮料的人将大量的钙、镁和其他微量矿物质排入尿中,而这些矿物质正是身体所需要的。

你的身体失去的必需矿物质越多,你患骨质疏松症、骨关节炎、甲状腺功能减退、冠状动脉疾病、高血压和其他许多与过早衰老有关的退行性疾病的风险就越大。

同样,在短时间内,蒸馏水可以帮助你排毒。但请记住,在水中添加矿物质补充剂是个好主意。根据一项重要的医学研究,北美的饮用水中可能含有大量的钙、镁和钠,这可以为临床推荐的膳食摄入量提供重要部分。由于蒸馏水缺乏矿物质,因此需要通过饮食或补充矿物质来保持健康。

㈥ 化学仪器的复杂仪器

主词条:启普发生器
一种实验室常用的气体发生装置,是荷兰科学家启普(Petrus Jacobus Kipp 1808~1864)发明,并以他的姓命名。它用普通玻璃制成,构造见图。它由球形漏斗、容器和导气管三部分组成。适用于块状固体与液体在常温下反应制取气体,如氢气、硫化氢等。
块状固体在反应中很快溶解、或变成粉末时,不能用启普发生器。
如果生成气体难溶于反应液,可以使用。如二氧化碳可溶于水,但难溶于盐酸;故用石灰石与盐酸反应制二氧化碳时可用启普发生器。
注意:启普发生器不能用于加热!
气密性检查
使用前应先检查装置的气密性。
方法:开启旋塞,向球形漏斗中加水。当水充满容器下部的半球体时,关闭旋塞。继续加水,使水上升到长颈漏斗中。静置片刻,若水面不下降,则说明装置气密性良好,反之则说明装置漏气。漏气处可能是容器上气体出口处的橡皮塞、导气管上的旋塞或长颈漏斗与容器接触的磨口处。如漏气,应塞紧橡皮塞或在磨口处涂上一薄层凡士林。
具体操作
固体试剂由容器上的气体出口加入,加固体前应在容器的球体中加入一定量的玻璃棉或放入橡胶垫圈,以防固体掉入半球体中。加固体的量不得超过球体容积的1/3。液体试剂从长颈漏斗口注入,注液方法与上述注水方法相同。液体的量以反应时刚刚浸没固体,液面不高过导气管的橡胶塞为宜。
使用时,打开导气管上的旋塞,长颈漏斗中的液体进入容器与固体反应,气体的流速可用旋塞调节。停止使用时,关闭旋塞,容器中的气体压力增大,将液体压回长颈漏斗,使液体和固体脱离,反应停止。为保证安全,可在球形漏斗口加安全漏斗,防止气体压力过大时炸裂容器。
特点:符合“随开随用、随关随停”的原则。能节约药品,控制反应的发生和停止,可随时向装置中添加液体药品。 主词条:酒精喷灯
常用的酒精喷灯有座式酒精喷灯和挂式酒精喷灯两种。座式酒精喷灯的酒精贮存在灯座内,挂式喷灯的酒精贮存罐悬挂于高处。酒精喷灯的火焰温度可达1000℃左右。使用前,先在预热盆中注入酒精,点燃后铜质灯管受热;待盆中酒精将近燃完时,开启灯管上的开关(逆时针转);来自贮罐的酒精在灯管内受热气化,跟来自气孔的空气混合;这时用火点燃管口气体,就产生高温火焰;调节开关阀来控制火焰的大小。用毕后,挂式喷灯座旋紧开关,同时关闭酒精贮罐下的活塞,就能使灯焰熄灭。
构造
学校实验室用的座式酒精喷灯,由灯管、空气调节器、引火碗、螺旋盖、贮酒精罐等部分构成(如图)。火焰温度在800℃左右,最高可达1000℃,每耗用酒精200毫升,可连续工作半小时左右。
使用
1.旋开加注酒精的螺旋盖,通过漏斗把酒精倒入贮酒精罐。为了安全,酒精的量不可超过罐内容积的80%(约200毫升)。随即将盖旋紧,避免漏气。然后把灯身倾斜70度,使灯管内的灯芯沾湿,以免灯芯烧焦。
2.灯管内的酒精蒸气喷口直径为0.55毫米,容易被灰粒等堵塞,堵塞后就不能引燃,所以每次使用前要检查喷口,如发现堵塞,就应该用通针或细钢针把喷口刺通。
3.在引火碗内注2/3容量的酒精,用火柴把酒精点燃,对灯管加热(此时要转动空气调节器把入气孔调到最小),待酒精气化,从喷口喷出时,引火碗内燃烧的火焰便可把喷出的酒精蒸气点燃。如不能点燃,也可用火柴来点燃。
4.当喷口火焰点燃后,再调节空气量,使火焰达到所需的温度。在一般情况下,进入的空气越多,也就是氧气越多,火焰温度越高。
5.熄灭喷灯,可用事先准备的废木板平压灯管上口,火焰即可熄灭,然后垫着布旋松螺旋盖(以免烫伤),使罐内温度较高的酒精蒸气逸出。
注意
1.喷灯工作时,灯座下绝不能有任何热源,环境温度一般应在35℃以下,周围不要有易燃物。
2.当罐内酒精耗剩20毫升左右时,应停止使用,如需继续工作,要把喷灯熄灭后再增添酒精,不能在喷灯燃着时向罐内加注酒精,以免引燃罐内的酒精蒸气。
3.使用喷灯时如发现罐底凸起,要立即停止使用,检查喷口有无堵塞,酒精有无溢出等,待查明原因,排除故障后再使用。
4.每次连续使用的时间不要过长。如发现灯身温度升高或罐内酒精沸腾(有气泡破裂声)时,要立即停用,避免由于罐内压强增大导致罐身崩裂。 主词条:布氏漏斗
布氏漏斗是实验室中使用的一种陶瓷仪器,也有用塑料制作的,用来使用真空或负压力抽吸进行过滤。普遍认为发明者为1907年诺贝尔化学奖获得者爱德华·比希纳,事实上布氏漏斗是由化学家Ernst Büchner发明的。形状为扁圆筒状,圆筒底面上开了很多小孔。下连一个狭长的筒状出口。
使用的时候,一般先在圆筒底面垫上滤纸,将漏斗插进布氏烧瓶上方开口并将接口密封(例如用橡胶环)。布氏烧杯的侧口连抽气系统。然后将欲分离的固体、液体混合物倒进上方,液体成分在负压力作用下被抽进烧杯,固体留在上方。常用于有机化学实验中提取结晶。这种情况的过滤完成后,还可以在上方用少量纯溶剂来洗掉结晶表面的杂质。
主词条:坩埚钳
坩埚钳(crucible tongs),一种常见的化学仪器。通常用来夹取坩埚。一般由不锈钢,或不可燃、难氧化的硬质材料制成。
注意事项
1.必须使用干净的坩埚钳。
2.用坩埚钳夹取灼热的坩埚时,必须将钳尖先预热,以免坩埚因局部冷却而破裂,用后钳尖应向上放在桌面或石棉网上。
3.实验完毕后,应将坩埚钳擦干净,放入实验器材柜中,干燥放置。
4.夹持坩埚使用弯曲部分,其它用途时用尖头。
5.坩埚钳不一定与坩埚配合使用。 主词条:索氏提取器
索氏提取器是由提取瓶、提取管、冷凝器三部分组成的,提取管两侧分别有虹吸管和连接管,各部分连接处要严密不能漏气。提取时,将待测样品包在脱脂滤纸包内,放入提取管内。提取瓶内加入石油醚,加热提取瓶,石油醚气化,由连接管上升进入冷凝器,凝成液体滴入提取管内,浸提样品中的脂类物质。待提取管内石油醚液面达到一定高度,溶有粗脂肪的石油醚经虹吸管流入提取瓶。流入提取瓶内的石油醚继续被加热气化、上升、冷凝,滴入提取管内,如此循环往复,直到抽提完全为止。
从固体物质中萃取化合物的一种方法是,用溶剂将固体长期浸润而将所需要的物质浸出来,即长期浸出法。此法花费时间长.溶剂用量大、效率不高。
在实验室多采用脂肪提取器(索氏提取器)来提取。脂肪提取器(如图所示) 就是利用溶剂回流及虹吸原理,使固体物质连续不断地被纯溶剂萃取,既节约溶剂,萃取效率又高。
萃取前先将固体物质研碎,以增加固液接触的面积。然后,将固体物质放在滤纸包内,置于提取器中,提取器的下端与盛有浸出溶剂的圆底烧瓶相连,上面接回流冷凝管。加热圆底烧瓶,使溶剂沸腾,蒸气通过连接管上升,进入到冷凝管中,被冷凝后滴入提取器中,溶剂和固体接触进行萃取,当提取器中溶剂液面达到虹吸管的最高处时,含有萃取物的溶剂虹吸回到烧瓶,因而萃取出一部分物质。然后圆底烧瓶中的浸出溶剂继续蒸发、冷凝、浸出、回流,如此重复,使固体物质不断为纯的浸出溶剂所萃取,将萃取出的物质富集在烧瓶中。 液—固萃取是利用溶剂对固体混合物中所需成分的溶解度大,对杂质的溶解度小来达到提取分离的目的。 布氏烧瓶,又称抽滤瓶,是实验室中使用的一种玻璃器皿,为烧瓶的一种。配合布氏漏斗过滤用。发明者为1907年诺贝尔化学奖获得者Eard Buchner。
形状类似锥形瓶,但有两个不同:侧面有一个细颈,与真空泵连接。为了抗衡真空造成的负气压,布氏烧瓶的壁比锥形瓶要厚。抽滤瓶的外形极似锥形瓶,只是在管口处多开了一个侧向的连接口,用来接上塑胶管再接到水流抽气帮浦(即水流抽气泵)上。当抽滤瓶口放上漏斗过滤时,此时水流抽气帮浦(即水流抽气泵)开始抽气,使抽滤瓶内的空气压力降低;若漏斗上的滤纸内有任何的溶液存在,由于大气压力和重力的作用,这些溶液即会经过滤纸流入下方的抽滤瓶中,残馀的固体则留在滤纸上,而达到过滤的目的。利用吸滤瓶过滤时,通常使用瓷漏斗置於其上,不能用锥形漏斗。还可以用吹风机对着滤纸吹,加快气流,从而加速抽滤过程。 主词条:砂芯漏斗
砂芯漏斗是耐酸玻璃滤过仪器,系采用优良硬质高硼玻璃组成,具有较高的理化性能。产品适用于化学分析、卫生检验、石油工业、制药工业、染料工业等方面。
注意事项
1、新购置的滤过仪器使用前需用酸溶液进行抽滤,并用蒸馏水冲洗干净,烘干后使用。对于除菌滤器,使用前需高压灭菌,使用后应用洗涤液进行抽滤,然后放入洗涤液中浸泡48小时,取出用蒸馏水冲洗、抽滤、烘干、保存。在烘干过程中,切勿中途开烘箱,要待烘箱降至室温后再打开烘箱取出,以防炸裂。
2、滤器使用后须进行洗涤处理,以免因沉淀物堵塞而影响过滤功效。 主词条:三梁天平
三梁天平因其有三支具刻度的横杆量尺而得名。三梁天平有三组骑码但没有砝码 先使用刻度最大的骑码若指针没归零再调较小刻度的骑码。三梁天平有三支横杆,每支横杆各有不同质量的砝码置于其上,移动砝码的位置即可调整以天平支点为中心,和物体相对边的抗力大小。待测物则盛装在称量纸或是称量盘内再放于天平的称盘上。
使用方法
A.天平之水平位置的调整:旋转天平底盘上的水平螺旋,使底盘中央水平仪之气泡维持在正中央位置。
B.零点校正:把天平横杆支点下方之固定锁锁住,再将三根横杆上的砝码放置在零刻度的刻齿或刻度上。打开固定锁,使横杆自由摆动,当横杆静止时,横杆最右端之水平指针是否指在标度盘之中央零点上?如果指针恰好指在零标度,则天平已归零,可以使用。如果指针指在零标度的下方,则锁住固定锁,旋转平衡调整器之调整螺使向左移,一直到打开固定锁而指针恰指在零标度为止。如果指针指在零标度的上方,则使调整螺向右移。
C.测质量(称重):锁住固定锁,把等测物体置于物盘中央,如果物体会腐蚀称物盘,则用适当容器或纸张盛垫。预估物体的质量(重量),把砝码移在预估质量的相应刻度上,打开固定锁,由指针之平衡位置判定物体质量是大于或小于预估质量,改变或移动三根横杆上砝码的位置,直至横杆平衡静止时,指针恰指在零标度。而由三根横杆上之砝码位置,读记物体的质量值。
D.重复上述各步骤,测量待测物体之质量三次,求取平均值,并用有效数字表示其质量大小。 主词条:冷凝管
利用热交换原理使冷凝性气体冷却凝结为液体的一种玻璃仪器。有直形、球形、蛇形三种,规格以长度(mm)表示,有150~300等多种。
用途
用于蒸馏液体或有机备置中,起冷凝或回流作用。
使用范围:蒸汽的温度大于140摄氏度,用空气冷凝管,温度小于140摄氏度,用直形冷凝管。
冷凝管通常使用于欲在回流状况下做实验的烧瓶上或是欲搜集冷凝後的液体时的蒸馏瓶上。蒸气的冷凝发生在内管的内壁上。内外管所围出的空间则为行水区有吸收蒸气热量并将这热量移走的功用。进水口处通常有较高的水压,为了防止水管脱落,塑胶管上应以管束绑紧。当在回流状态下使用时,冷凝管的下端玻璃管要插入一个橡皮塞,以便能塞入烧瓶口中,承接烧瓶内往上蒸发的蒸气。
回流冷凝管
有易挥发的液体反应物时,为了避免反应物损耗和充分利用原料,要在发生装置设计冷凝回流装置,使该物质通过冷凝后由气态恢复为液态,从而回 流并收集。实验室可通过在发生装置安装长玻璃管或冷凝回流管等实现。
直形冷凝管
由内外组合的直玻璃管构成,多用于蒸馏操作蒸汽温度小于140度,不可用于回流。在其外管的上下两侧分别有连接管接头,用作出水口和进水口。
使用方法:使用时,将靠下端的连接口以塑胶管接上水龙头,当作进水口。因为进水口处的水温较低而被蒸气加热过后的水,温度较高;较热的水因密度降低会自动往上流,有助于冷却水的循环。
空气冷凝管
空气冷凝管和直形冷凝管主要是蒸出产物时使用(包括蒸馏和分馏),当蒸馏物沸点超过140度时,一般使用空气冷凝管,以免直形冷凝管通水冷却导致玻璃温差大而炸裂。
球形冷凝管
内管为若干个玻璃球连接起来,用于有机制备的回流,适用于各种沸点的液体。
长期使用后,隔套中的铁锈可以用盐酸洗去。缺点:冷凝后的液体凝固后容易卡在玻璃球中。由于进水口水压较高所以胶管容易脱落,使用时要用铁丝绑住。
蛇形冷凝管
用于有机制备的回流,适用于沸点较低的液体。 主词条:洗瓶
化学实验室中用于装纯水的一种容器,并配有发射细液流的装置。常用的有吹出型和挤压型两种。吹出型由平底玻璃烧瓶和瓶口装置一短吹气管和长的出水管组成;挤压型由塑料细口瓶和瓶口装置出水管组成。
洗瓶用于溶液的定量转移和沉淀的洗涤和转移。经济洗瓶(常用500ml经济洗瓶)、安全洗瓶(蒸馏水洗瓶、甲苯洗瓶、乙醇洗瓶、甲醇洗瓶、丙酮洗瓶、异丙醇洗瓶、次氯酸钠洗瓶)、耐溶剂洗瓶,塑料洗瓶(红)(即红嘴洗瓶) 主词条:克氏烧瓶
1883年发明测定有机化合物中氮含量的方法:他将一定重量的试样与硫酸作用,使试样中的氮全部转变为硫酸铵,然后往硫酸铵溶液中加入碱,再将生成的氨蒸馏到一定体积的标准酸溶液中,再滴定过量的酸,就能测出试样的含氮量。此法普遍用于化学和医学研究及农业生产和药物工业。后人称此法为克氏定氮法。
此法所用的仪 器是一种梨形长颈烧瓶,容量通常约300毫升,微量分析用的可以小到10毫升,后人称这种烧瓶为克氏烧瓶。 主词条:称量瓶
磨口塞的筒形玻璃瓶,用于差减法称量试样的容器。因有磨口塞,可以防止瓶中的试样吸收空气中的水分和CO2等,适用于称量易吸潮的试样。
称量瓶的盖子是磨口配套的,不得丢失、弄乱。称量瓶使用前应洗净烘干,不用时应洗净,在磨口处垫一小纸,以方便打开盖子。
称量瓶主要用于使用分析天平时称取一定质量的试样,也可用于烘干试样。称量瓶平时要洗净,烘干,存放在干燥器内以备随时使用。称量瓶不能用火直接加热,瓶盖不能互换,称量时不可用手直接拿取,应带指套或垫以洁净纸条。
常见的称量瓶有高型和扁型两种,高型的瓶高40mm至60mm不等;扁型的瓶高40mm至60mm不等。扁型用作测定水分或在烘箱中烘干基准物;高型用于称量基准物、样品。称量瓶不可盖紧磨口塞烘烤,磨口塞要原配。 主词条:干燥器
干燥器是通过加热使物料中的湿分(一般指水分或其他可挥发性液体成分)汽化逸出,以获得规定湿含量的固体物料的机械设备。
注意事项
(1)干燥剂不可放得太多,以免沾污坩埚底部。
(2)搬移干燥器时,要用双手拿着,用大拇指紧紧按住盖子。
(3)打开干燥器时,不能往上掀盖,应用左手按住干燥器,右手小心地把盖子稍微推开,等冷空气徐徐进入后,才能完全推开,盖子必须仰放在桌子上。
(4)不可将太热的物体放入干燥器中。
(5)有时较热的物体放入干燥器中后,空气受热膨胀会把盖子顶起来,为了防止盖子被打翻,应当用手按住,不时把盖子稍微推开。
(6)灼烧或烘干后的坩埚和沉淀,在干燥器内不宜放置过久,否则会因吸收一些水分而使质量略有增加。
(7)变色硅胶干燥时为蓝色,受潮后变粉红色。可以在120℃烘受潮的硅胶待其变蓝后反复使用,直至破碎不能用为止。 主词条:盐桥
盐桥常出现在原电池中,是由琼脂和饱和氯化钾或饱和硝酸铵溶液构成的。用来在两种溶液中转移电子。常用于原电池实验,材料:琼脂+饱和氯化钾溶液或饱和硝酸铵溶液。 为了减小液界电位,通常在两种溶液之间连接一个高浓度的电解质溶液作“盐桥”。
作用原理:
在两种溶液之间插入盐桥以代替原来的两种溶液的直接接触,减免和稳定液接电位(当组成或活度不同的两种电解质接触时,在溶液接界处由于正负离子扩散通过界面的离子迁移速度不同造成正负电荷分离而形成双电层,这样产生的电位差称为液体接界扩散电位,简称液接电位),使液接电位减至最小以致接近消除。 防止试液中的有害离子扩散到参比电极的内盐桥溶液中影响其电极电位。
原理:
饱和KCl溶液的浓度高达4.2mol·dm-3,当盐桥插入到浓度不大的两电解质溶液之间的界面时,产生了两个接界面,盐桥中K+和Cl-向外扩散就成为这两个接界面上离子扩散的主流。由于K+和Cl-的扩散速率相近,使盐桥与两个溶液接触产生的液接电势均很小,且两者方向相反,故相互抵消后降至1~2mV。 选择盐桥中的电解质的原则是高浓度、正负离子迁移速率接近相等,且不与电池中溶液发生化学反应。常采用KCl、NH4NO3和KNO3的饱和溶液。

㈦ 在网上“蒸馏水”是什么意思

没有任何价值的留言

㈧ 如何做蒸馏水 物理发明

需要一个蒸发及冷凝装置啊,见图

㈨ 电动车电源亮,但是转动把手都走不了

保险丝烧掉,更换保险丝。

电源开关坏,更换电源开关。判断方法:打开电源开关,用万能表欧姆档测量一下电源开关的输入端与输出端之间的电阻,如电阻值为零侧正常,如电阻值为无穷大,侧电源开关坏,应更换电源开关。

霍耳转把坏,用万能表直流电压测量一下转把输出端绿色线的输出电压,如有1-4.2电压输出,侧转把正常,如无电压输出侧转把烧坏,需更换转把。

控制器坏,用万能表直流电压测量一下控制器输出端红色线(接转把线的插头),如有5伏左右电压输出侧控制器正常,如无电压输出侧控制器烧坏,需更换控制器。

断电开关烧坏,如以上几个条都排除了,侧拔掉端电开关插头,如电机转动正常侧需更换端电开关。

电机烧坏,如给电机一个助力电机才起动且出现哒哒的异常噪音,侧是电机霍尔元件烧坏,造成缺相,需更换电机。

电机各接线头松动,把每个接插头重新检查一遍。或某些车型的电池盒放入车架时不到位,触点接触不好。

(9)蒸馏水发明者扩展阅读:

电动车,即电力驱动车,又名电驱车。电动车分为交流电动车和直流电动车。通常说的电动车是以电池作为能量来源,通过控制器、电机等部件,将电能转化为机械能运动,以控制电流大小改变速度的车辆。

第一辆电动车于1881年制造出来,发明人为法国工程师Gustave Trouvé 古斯塔夫·特鲁韦(也称:古斯塔夫·特鲁夫),这是一辆用铅酸电池为动力的三轮车它是由直流电机驱动的,时至今日,电动车已发生了巨大变化,类型也多种多样。

电动车电池问题汇总

1、不平衡。

容量和电压差异造成。经常是一只严重落后。

修复方法:换,但不要用新的。

2、失水。

过充电造成。不平衡、充电器的原因。

修复方法:补水(蒸馏水)。

3、硫化。

欠充电造成。失水、充电器原因。

修复方法:用0.01-0.02C 小脉冲电流。

4、软化。

大电流充放造成。

修复方法:先深放电,再用0.2-0.5C 大脉冲电流充起来。

5、脱落。

后期不可避免。

修复方法:无。

6、短路、开路。

严重硫化、脱落造成,寿命后期的必然。

阅读全文

与蒸馏水发明者相关的资料

热点内容
3m6003cn怎么换过滤棉 浏览:26
污水处理厂运行台账需要哪些 浏览:872
过滤阻力主要是 浏览:288
怎么去掉暖瓶里的水垢 浏览:210
不锈钢胆除水垢方法 浏览:143
梯形树脂瓦图片大全 浏览:151
麻将净化器灯什么牌子 浏览:316
高效率超声除垢设备 浏览:34
小分子水和纯净水自来水哪个解渴 浏览:919
污水处理工艺管线设计计算 浏览:540
厦门市环保局洗车场污水处理 浏览:309
饮水机不干净会有什么影响 浏览:585
白酒淀粉过滤使用方法 浏览:329
深圳公司污水处理 浏览:699
污水处理厂泥饼含水率化验怎么做 浏览:303
用蒸馏水洗衣服好吗 浏览:524
污水排放每人每天多少立方 浏览:854
ro膜净水机的水的味道 浏览:245
华谊阻燃树脂 浏览:895
污水净化有哪些风险 浏览:341