1. 原油减压蒸馏的目的
原油是一种多种烃的混合物,是粘稠的、深褐色的液体。直接使用原油非常浪费,所以就需要把原油中各组分分离出来,通常是使用精馏的方法,即精确控制温度,使特定沸点的组分挥发出来。
那么什么叫原油常减压蒸馏?
也称真空蒸馏。原油中重馏分沸点约370~535℃,在常压下要蒸馏出这些馏分,需要加热到420℃以上,而在此温度下,重馏分会发生一定程度的裂化。因此,通常在常压蒸馏后再进行减压蒸馏。在约2~8kPa的绝对压力下,使在不发生明显裂化反应的温度下蒸馏出重组分。常压渣油经减压加热炉加热到约380~400℃送入减压蒸馏塔。减压蒸馏可分为润滑油型(图3)和燃料油型两类。前者各馏分的分离精确度要求较高,塔板数24~26;后者要求不高,塔板数15~17。
通常用水蒸气喷射泵(或者用机械抽真空泵)抽出不凝气,以产生真空条件。发展的干式全填料减压塔(见填充塔)采用金属高效填料代替塔板,可以使全塔压力降减少到 1.3~2.0kPa,从而可以提高蒸发率,并减少或取消塔底水蒸气用量。
为了在同一炉出口温度下使常压渣油有最大的汽化率,减压蒸馏都将炉出口至塔的管线设计成大管径的形式(见彩图),以减少压降,进而降低炉出口压强。减压塔顶分出的馏分减(压、拔)顶油,一般作为柴油混入常压三线中,减压一线至四线作为裂化原料或润滑油原料,塔底为减压渣油,可作为生产残渣润滑油(见溶剂脱沥青)和石油沥青的原料,或作为石油焦化的原料,或用作燃料油。
2. 常减压蒸馏原理
常减压蒸馏原理是通过精馏过程,在常压和减压的条件下,根据各组分相对挥发度的不同,在塔盘上汽液两相进行逆向接触、传质传热,经过多次汽化和多次冷凝,将原油中的汽、煤、柴馏分切割出来,生产合格的汽油、煤油、柴油及蜡油及渣油等。
原油分馏塔的原理与一般精馏塔相同,但由于石油及其产品的组成比较复杂,其产品只是符合一定要求沸程的馏分,因此它又有不同的特点。
一般精馏塔要求有较高的分离精度,在塔顶和塔底出很纯的产品,一般只能得到两个产品。原油通过常压蒸馏要切割成汽油、煤油、轻柴油、重柴油和重油等四五种产品。
按照一般的多元精馏方法,需要有N-1个精馏塔才能把原料分割成N个产品。当要分成五种产品时就需要四个精馏塔串联或采用其它方式排列。
但是在石油精馏中,各种产品本身也还是一种复杂混合物,它们之间的分离精确度并不要求很高,两种产品之间需要的塔板数并不高,因此,可以把这几个塔结合成一个塔。
(2)常减压蒸馏塔塔板形式扩展阅读
原油减压蒸馏油品在加热条件下容易受热分解而使油品颜色变深、胶质增加。在常压蒸馏时,为保证产品质量,炉出口温度一般不高于370 ℃,通过常压蒸馏可以把原油中350 ℃以前的汽油、煤油、轻柴油等产品分馏出来。
350 ℃~500 ℃的馏分在常压下则难以蒸出,而这部分馏分油是生产润滑油和催化裂化原料油的主要原料。根据油品沸点随系统压力降低而降低的原理,可以采用降低蒸馏塔压力(2.67~8.0KPa)的方法进行蒸馏。
减压蒸馏塔与常压蒸馏塔相同,关键是采用了抽真空设施,使塔内压力降到几十毫米、甚至小于10mmHg。减压蒸馏根据任务不同,分为两种类型:燃料型减压塔和润滑油型减压塔。
1、燃料型减压塔主要是生产二次加工原料,对分馏精度要求不高,在控制产品质量的前提下希望尽可能提高拔出率。
2、润滑油型减压塔以生产润滑油为主,要求得到颜色浅、残炭值低、镏程较窄、安定性好的减压馏分油,不仅应有较高的拔出率,还应具有较高的分馏精度。与常压蒸馏塔相比,减压蒸馏塔具有高真空、低压降、塔径大、板数少的特点 。
3. 减压塔为什么塔径大两头细
减压精馏塔多应用原油加工中与一般的精馏塔和原油常压精馏塔相比,减压精馏塔有如下几个特点:⑴ 根据生产任务不同,减压精馏塔分燃料型与润滑油型两种。润滑油型减压塔以生产润滑油料为主,这些 馏分经过进一步加工,制取各种润滑油。燃料型减压塔主要生产二次加工的原料,如催化裂化或加氢裂化原料 。⑵ 减压精馏塔的塔板数少,压降小,真空度高,塔径大。为了尽量提高拔出深度而又避免分解,要求减压 塔在经济合理的条件下尽可能提高汽化段的真空度。因此,一方面要在塔顶配备强有力的抽真空设备,同时要 减小塔板的压力降。减压塔内应采用压降较小的塔板,常用的有舌型塔板、网孔塔板等。减压馏分之间的分馏 精确度要求一般比常压蒸馏的要求低,因此通常在减压塔的两个侧线馏分之间只设3~5块精馏塔板。在减压下, 塔内的油汽、水蒸汽、不凝气的体积变大,减压塔径变大。⑶ 缩短渣油在减压塔内的停留时间 塔底减压渣油是最重的物料,如果在高温下停留时间过长,则其分解 、缩合等反应会进行得比较显著,导致不凝气增加,使塔的真空度下降,塔底部分结焦,影响塔的正常操作。 因此,减压塔底部的直径常常缩小以缩短渣油在塔内的停留时间。另外,减压塔顶不出产品,减压塔的上部汽 相负荷小,通常也采用缩径的办法,使减压塔成为一个中间粗、两头细的精馏塔。加压塔应用在甲醇抽提中技术原理及流程:三塔流程是由预精馏塔、加压精馏塔、常压精馏塔组成的精馏系统。其中预精馏塔与双塔流程中的预精馏塔作用相同。预精馏塔底部出来的甲醇液由甲醇给料泵加压后送入加压精馏塔,塔顶蒸出的甲醇蒸汽进入冷凝再沸器,甲醇蒸汽冷凝热作为常压精馏塔的热源,出冷凝再沸器的甲醇液再进入加压塔回流槽,一部分由加压塔回流泵加压后送入加压精馏塔作为回流液,其余部分经精甲醇冷却器冷却到40 ℃作为合格产品。加压精馏塔所需热量通过精馏塔再沸器提供。由加压精馏塔底部排出的甲醇液送至常压精馏塔下部,常压精馏塔顶部出来的甲醇蒸汽经精甲醇冷凝器后进入常压塔回流槽,再经常压塔回流泵加压一部分送入常压精馏塔顶回流,其余部分送至精甲醇槽。 常压精馏塔底排出的含有微量甲醇的其它高沸点杂质的水,经废液冷却器冷却后送往生化处理装置。
4. 常减压蒸馏的原理,工艺流程
常压蒸馏和减压蒸馏习惯上合称常减压蒸馏。
常压蒸馏原理:溶液受热气化,气化的溶剂经冷却又凝为液体而回收,回收的液体是较纯净的溶剂,从而使提取液浓缩。
减压蒸馏原理:借助于真空泵降低系统内压力,就可以降低液体的沸点,有些有机物就可以在较其正常沸点低得多的温度下进行蒸馏。
常压蒸馏工艺流程:原油经加热炉加热到360~370℃,进入常压蒸馏塔(塔板数36~48),塔顶操作压力为0.05MPa(表压)左右,塔顶得到石脑油馏分, 与初馏塔顶的轻汽油一起可作为催化重整原料,或作为石油化工原料,或作为汽油调合组分。常压塔侧线出料进入汽提塔,用水蒸气或再沸器加热,蒸发出轻组分,以控制轻组分含量(用产品闪点表示)。通常常一线为煤油馏分,常二线和常三线为柴油馏分,常四线为过汽化油,塔底为常压重油(>350℃)。
减压蒸馏常用于实验,流程:
磨口仪器的所有接口部分都必须用真空油脂润涂好,检查仪器不漏气后,加入待蒸的液体,量不要超过蒸馏瓶的一半,关好安全瓶上的活塞,开动油泵,调节毛细管导入的空气量,以能冒出一连串小气泡为宜。当压力稳定后,开始加热。液体沸腾后,应注意控制温度,并观察沸点变化情况。待沸点稳定时,转动多尾接液管接受馏分,蒸馏速度以0.5~1滴/S为宜.蒸馏完毕,除去热源,慢慢旋开夹在毛细管上的橡皮管的螺旋夹,待蒸馏瓶稍冷后再慢慢开启安全瓶上的活塞,平衡内外压力,(若开得太快,水银柱很快上升,有冲破测压计的可能),然后才关闭抽气泵。
5. 常减压蒸馏有哪些主要设备,塔设备的结构形式及主要技术参数
脱硫塔压差高的原因主要有:系统生产负荷过大;溶液脏起泡造成拦液;版塔板出现问权题;正压室进液或负压室漏气。发现脱硫塔压差高后,首先要对压差计进行检查清理,恢复后,压差变化小明显,排除仪表误差这一原因。对数据统计,发现工艺操作参数,如溶液循环量、操作温度、压力、脱硫气量无变化,那么,分析原因就主要为:脱硫溶液脏,或者塔板出现问题。而这两种问题向彻底决绝必须系统停车检修才能彻底确认处理。
6. 常减压蒸馏塔 的理论塔板数算法由于自己自己基础比较差,所有请告诉一个比较简单的从头到尾的计算方法。
要逐板计算理论塔板数,你得有这么几个数据:(1)馏出液组成,即xd;(2)进料液组成,即xf;(3)馏残液组成,即xw;(4)回流比R以及相对挥发度a。
在精馏塔中,Xn和Yn是一对平衡,Xn和Yn+1是同一塔板上的一对气液组成。气液平衡组成满足气液平衡方程,可根据该方程由Yn算出Xn;同一塔板上的气液组成分别满足精馏段操作线方程和提馏段操作线方程,可根据这两个方程由Xn算出Yn+1;然后由Yn+1算Xn+1(气液平衡),Xn+1算Yn+2(操作线),以此类推即可分别算出精馏段理论塔板数和提馏段理论塔板数。其中,精馏段算至x接近Xf为止,提馏段算至x接近Xw为止。所得到的Y的下标即为理论塔板数。因为塔底再沸器是部分气化,相当于一块塔板,所以最后的理论塔板数要减1。例如,精馏段塔板数:第一步,因为已知Y1(即Xd),所以可由气液平衡方程,由y1计算x1;第二步,由精馏段操作线方程,由x1计算y2;然后重复第一步和第二步,分别算出x2和y3;以此类推计算至Xn=Xf为止,可得精馏段理论塔板数;提馏段理论塔板数的计算与精馏段类似,只不过是从Xf开始,先根据提馏段操作线方程算其同层气相组成Ym,然后由Ym根据气液平衡算Xm。
希望对你有所帮助。
7. 保证常减压蒸馏装置的安全措施有哪些
常减压蒸馏装置是石油加工中最基本的工艺设备,随着减压蒸馏技术的改造和发展、原油蒸馏装置的平均能耗大幅下降、轻油拔出率和产品质量大大提高,危险、危害因素也随之增加。
常减压蒸馏装置的重点设备包括加热炉、蒸馏塔、机泵和高低压瓦斯缓冲罐等几部分。加热炉的作用是为油品的汽化提供热源,为蒸馏过程提供稳定的汽化量和热量。加热炉的平稳运行是常减压装置生产运行的必要保证,加热炉发生事故不能运行,整个装置都将被迫停工。而塔则是整个常减压蒸馏装置的核心,包括初馏塔、常压塔、常压汽提塔、减压塔及附属部分。原油在分馏塔中被分馏成不同组分的各测线油品,同时,塔内产生大量的易燃易爆气体和液体,直接影响生产的正常进行和装置的安全运行。机泵是常减压蒸馏装置的动力设备,它为输送油品及其他介质提供动力和能源,机泵故障将威胁到装置的平稳运行,特别是塔底泵的事故将导致装置全面停产。高低压瓦斯缓冲罐因其储存的介质为危害极大的瓦斯,瓦斯一旦发生泄漏将可能导致燃烧爆炸等重大事故的发生。因此高低压瓦斯缓冲罐在开工前要按照标准对其进行严格的试压和验收,检查是否泄漏。运行中要时常对其检查维护,如有泄漏等异常现象应立即停用并处理,同时还要定期排残液。
常减压蒸馏装置存在的主要危险因素,根据不同的阶段,存在不同的危险因素,避免或减轻这些危险因素的影响,可以采取相应的一些安全预防管理措施。
开工时危险因素及其安全预防管理措施
常减压装置的开工按照以下顺序步骤进行:
开工前的设备检查→设备、流程贯通试压→减压塔抽真空气密性试验→柴油冲洗→装置开车。
装置开车的顺序是:原油冷循环→升温脱水→250℃恒温热紧→常压开侧线→减压抽真空开侧线→调整操作。
在开工过程中,容易产生的危险因素主要是:机泵、换热器泄漏着火、加热炉升温过快产生裂纹等,其危险因素为油品泄漏、蒸汽试压给汽过大、机泵泄漏着火等,具体介绍如下:
油品泄漏
(1)事故原因:
①开工操作波动力大,检修质量差,或垫片不符合质量要求。
②改流程、设备投用或切换错误造成换热器憋压。
(2)产生后果:换热器憋压漏油,特别是自燃点很低的重质油泄漏,易发生自燃引起火灾。
(3)安全预防管理措施:
①平稳操作。
②加强检修质量的检查。
③选择合适的垫片。
④改流程、设备投用或切换时,严格按操作规程执行。
⑤发生憋压,迅速找出原因并进行处理。
蒸汽试压给汽过大
(1)事故原因:开工吹扫试压过程中,蒸汽试压给汽过大。
(2)产生后果:吹翻塔盘,开工破坏塔的正常操作,影响产品质量。
(3)安全预防管理措施:调节给汽量。
机泵泄漏着火
(1)事故原因:
①端面密封泄漏严重。
②机泵预热速度太快。
③法兰垫片漏油。
④泵体砂眼或压力表焊口开裂,热油喷出。
⑤泵排空未关,热油喷出着火。
(2)产生后果:机泵泄漏着火。
(3)安全预防管理措施:
①报火警灭火。
②立即停泵。若现场无法停泵,通过电工室内停电关闭泵出入口,启动备用泵。
③若泵出入口无法关闭,应将泵抽出阀及进换热器等关闭。
④若塔底泵着火,火势太大,无法关闭泵入口时,应将加热器熄火,切断进料。灭火后,迅速关阀。
停工时危险因素及其安全预防管理措施
在停工过程中,容易产生的主要危险因素有:炉温降低过快导致炉管裂纹,洗塔冲翻塔盘。停工主要危险因素有停工时炉管变脆断裂、停工蒸洗塔时吹翻塔盘等。
停工时炉管变脆断裂
(1)事故原因:停工过程中,炉温降温速度过快,可能会造成高铬炉管延展性消失而硬度增加,炉管变脆,炉管受到撞击而断裂。
(2)产生后果:炉管出现裂纹或断裂。
(3)安全预防管理措施:
①停工过程中,炉温降温不能过快,按停工方案执行。
②将原炉重新缓慢加到一个适当的温度,然后缓慢降温冷却,可以使炉管脆性消失而恢复延展性,继续使用。
③停工,将已损坏的炉管更换。
停工蒸洗塔时吹翻塔盘
(1)事故原因:停工蒸洗塔过程中,蒸汽量给的过大,又发生水击,吹翻塔盘。
(2)产生后果:停工蒸洗塔时吹翻塔盘。
(3)安全预防管理措施:适当控制吹气量。
正常生产中的危险因素及其安全预防管理
开工正常生产过程中的主要危险因素有原油进料中断加热炉炉管结焦、炉管破裂、瓦斯带油、分馏塔冲塔真空度下降、汽油线憋压、减压塔水封破坏、常顶空冷器蚀穿漏洞转油线蚀穿等。
原油进料中断加热炉炉管结焦
(1)事故原因:
①原油进料中断。
②处理量过低,炉管内油品流速低。
③加热炉进料流。
④加热炉火焰扑炉管。
⑤原料性质变重。
(2)产生后果:
①塔底液位急剧下降,造成塔底泵抽空,加热炉进料中断,加热炉出口温度急剧上升。
②结焦严重时会引起炉管破裂。
(3)安全预防管理措施:
①加强与原油罐区的联系,精心操作。
②若发生原油进料中断,联系原油罐区尽快恢复并减低塔底抽出量,加热炉降温灭火。
③炉管注汽以增加加热炉炉管内油品流速,防止结焦。
④保持炉膛温度均匀,防止炉管局部过热而结焦,防止物料偏流。
炉管破裂
(1)事故原因:
①炉管局部过热。
②炉管内油品流量少,偏流,造成结焦,传热不好,烧坏漏油。
③炉管质量有缺陷,炉管材料等级低,炉管内油品高温冲蚀,炉管外高温氧化爆皮及火焰冲蚀,造成砂眼及裂口。
④操作超温超压。
(2)产生后果:烟囱冒黑烟,炉膛温度急剧上升。
(3)安全预防管理措施:
①多火嘴、齐水苗可防止炉管局部过热造成破裂。
②选择适合材质的炉管。
③平稳操作,减少操作波动。
瓦斯带油
(1)事故原因:
①瓦斯罐排凝罐液位上升,未及时排入低压瓦斯罐网。
②瓦斯罐排凝罐加热盘管未投用。
(2)产生后果:烟囱冒黑烟,炉膛变正压,带油严重时,炉膛内发生闪爆,防爆门开,甚至损坏加热炉。
(3)安全预防管理措施:
①控制好瓦斯罐排凝罐液面,及时排油入低压瓦斯罐网。
②投用瓦斯罐排凝罐加热盘管。
③瓦斯带油严重时,要迅速灭火,带油消除后正常操作。
分馏塔冲塔真空度下降
(1)事故原因:
①原油带水。
②塔顶回流带水。
③过热蒸汽带水,塔底吹汽量过大。
④进料量偏大,进料温度突然。
⑤塔底吹汽量过大(湿式、微湿式),或炉管注汽量过大(湿式),汽提塔吹汽量过大(润滑油型),或炉出口温度波动或塔底液面波动。
⑥抽真空蒸汽压力不足或中断,减顶冷却器汽化,抽真空器排凝器气线堵,设备泄漏倒吸空气。
(2)产生后果:
①塔顶压力升高。
②油品颜色变深,甚至变黑。
③破坏塔的正常操作,影响产品质量。
④倒吸空气造成爆炸。
(3)安全预防管理措施:
①加强原油脱水。
②加强塔顶回流罐切水。
③调整塔底吹汽量。
④稳定适当进料量和进料温度。
⑤控制好塔底液位。
⑥保持适当的吹汽量,稳定的抽真空蒸汽,稳定的炉温。
⑦调整好抽真空系统的冷却器,保证其冷却负荷。
⑧加强设备检测维护。
汽油线憋压
(1)事故原因:管线两头阀门关死,外温高时容易憋坏管线。
(2)产生后果:管线爆裂,汽油流出,易起火爆炸。
(3)安全预防管理措施:夏季做好轻油的防憋压工作。
减压塔水封破坏
(1)事故原因:
①水封罐放大气线中存油凝线或堵塞,造成水封罐内压力升高,将水封水压出,破坏水封。
②水封罐放大气排出的瓦斯含对人有害的硫化氢,将其高点排空,排空高度与一级冷却器平齐。若水封罐内的减顶污油排放不及时,污油憋入罐内,当污油积累至一定程度时,水封水被压出,水封水变油封,影响末级真空泵工作。
(2)产生后果:易造成空气倒吸入塔,发生爆炸事故。
(3)安全预防管理措施:
①加强水封罐检查。
②水封破坏,迅速给上水封水,然后消除破坏水封的原因。
③若水封罐放大气线堵或凝,迅速处理畅通。
④水封变油封,迅速拿净罐内存油,并检查放大气线是否畅通。
常顶空冷器蚀穿漏洞转油线蚀穿
(1)事故原因:
①油品腐败,制造质量有问题或材质等级低。
②转油线高速冲刷及高温腐蚀穿孔,制造质量有问题或材质等级低。
(2)产生后果:
①漏油严重时,滴落在高温管线上引起火灾。
②高温油口泄漏。
(3)安全预防管理措施:
①做好原油一脱四注工作,加大防腐力度。
②报火警消防灭火,汽油罐给水幕掩护(降温)原油降量,常炉降温,关小常底吹汽,降低常顶压力,迅速切换漏油空冷器,灭火后检修空冷器。
③做好防腐工作。
④选择适当材质。
⑤将漏点处补板焊死或包盒子处理。
设备防腐
随着老油田原油的继续开采,原油的重质化、劣质化日益明显,原油的含酸介质量不断增加,加上对具有高含酸量的进口高硫原油的加工,都对设备的防腐提出更高的要求。原油中引起设备和管线腐蚀的主要物质是无机盐类及各种硫化物和有机酸等。常减压装置设备腐蚀的主要部位:
(1)初馏塔顶、常压塔顶以及塔顶油气馏出线上的冷凝冷却系统。
①腐蚀原因及结果:蒸馏过程中,原油中的盐类受热水解,生成具有强烈腐蚀性的HCl,HCl与H2S的蒸馏过程中随原油的轻馏和水分一起挥发和冷凝,在塔顶部和冷凝系统易形成低温HCl-H2S-H2O型腐蚀介质,使塔顶及塔顶油气馏出线上的冷凝冷却系统壁厚变薄,降低设备壳体的使用强度,威胁安全生产。原油中的硫化物(参与腐蚀的主要是H2S、元素硫和硫醇等活性硫及易分解为H2S的硫化物)在温度小于120℃且有水存在时,也形成低温HCl-H2S-H2O型腐蚀性介质。
②防腐预防管理措施:在电脱盐罐注脱盐剂、注水、注破乳剂,并加强电脱盐罐脱水,尽可能降低原油含盐量。在常压塔顶、初馏塔顶、减压塔顶挥发线注氨、注水、注缓蚀剂,这能有效抑制轻油低温部位的HCl-H2S-H2O型腐蚀。
(2)常压塔和减压塔的进料及常压炉出口、减压炉转油线等高温部位的腐蚀。
①腐蚀原因及结果:充化物在无水的情况下,温度大于240℃时开始分解,生成硫化氢,形成高温S-H2S-RSH型腐蚀介质,随着温度升高,腐蚀加重。当温度大于350℃时,H2S开始分解为H2和活性很高的硫,在设备表面与铁反应生成FeS保护膜,但当HCl或环烷酸存在时,保护膜被破坏,又强化了硫化物的腐蚀,当温度达到425℃时,高温硫对设备腐蚀最快。
②防腐预防管理措施:为减少设备高温部位的硫化物和环烷酸的腐蚀,要采用耐腐蚀合金材料。
(3)常压柴油馏分侧线和减压塔润滑油馏分侧线以及侧线弯头处。常压炉出口附近的炉管、转油线,常压塔的进料线。
①腐蚀原因及结果:220℃以上时,原油中的环烷酸的腐蚀性随着温度的升高而加强,到270℃~280℃时腐蚀性最强。温度升高,环烷酸汽化,液相中环烷酸浓度降低,腐蚀性下降。温度升至350℃时环烷酸汽化增加,汽相速度增加,腐蚀加剧。温度升至425℃时,环烷酸完全汽化,不产生高温腐蚀。
②防腐预防管理措施:为减少设备高温部位的硫化物和环烷酸的腐蚀,要采用耐蚀合金材料。
机泵易发生的事故及处理
机泵是整个装置中的动设备,相对装置的其他静设备如塔等更容易发生事故。机泵的故障现象有泵抽空或不上量;泵体振动大、有杂音和密封泄漏。
泵抽空或不上量
(1)产生原因:
①启动泵时未灌满液体。
②叶轮装反或介质温度低黏度大。
③泵反向旋转。
④泵漏进冷却水。
⑤入口管路堵塞。
⑥吸入容器的液位太低。
(2)处理措施:
①重新灌满液体。
②停泵联系钳工处理或加强预热。
③重新接电机导线改变转向。
④停泵检查或重新灌泵。
⑤停泵检查排除故障。
⑥提高吸入容器内液面。
泵体振动大、有杂音
(1)产生原因:
①泵与电机轴不同心。
②地脚螺栓松动。
③发生气蚀。
④轴承损坏或间隙大。
⑤电机或泵叶轮动静不平衡。
⑥叶轮松动或有异物。
(2)处理措施:
①停泵或重新找正。
②将地脚螺栓拧紧。
③憋压灌泵处理。
④停泵更换轴承。
⑤停泵检修。
⑥停泵检修,排除异物。
密封泄漏
(1)产生原因:
①使用时间长,动环磨损。
②输送介质有杂质,磨损动环产生沟流。
③密封面或轴套结垢。
④长时间抽空。
⑤密封冷却水少。
(2)处理措施:
①换泵检查。
②停泵换泵处理。
③调节冷却水太少。
8. 常压塔和减压塔的工作原理及区别
1、外形上的区别:
常压塔的外形是一个上下直径一样的圆柱形容器。
减压塔的外形是上下端都缩径的圆柱形容器,原因是上端汽液相负荷较小,下端需要将塔底渣油快速抽出,发生高温渣油长时间停留发生结焦反应。
2、气密性的区别:
常压塔一般是和大气相通的,大多数在回流罐处设有和大气相连的阀组,一般为常开,除了耐压试验时关闭以外。
减压塔一般为密闭的,靠真空机组抽真空实现负压,负压的主要作用是改变共沸物的共沸组成,实现组分的更好分离,达到节能降耗的作用。
3、塔顶压力不同:
常压塔塔顶压力一般在0.9-1.5个大气压,而减压塔塔顶压力一般只有几千Pa,一般都是先用常压塔蒸馏,塔顶的重组分再进减压塔蒸馏。
常压塔的工作原理:
常压塔是一个复合塔,原油通过常压蒸馏要切割成汽油、煤油、轻柴油、重柴油和重油等四、五种产 品馏分。按照一般的多元精馏办法,需要有n-1个精馏塔才能把原料分割成n个馏分。
而原油常压精馏塔却是在塔的侧部开若于侧线以得到如上所述的多个产品馏分,就像n个塔叠在一起一样,故称为复合塔。
减压塔的工作原理:
减压塔共设4个填料段,抽出3个侧线。减一线油一部分直接进入蜡油分配器;另一部分经过空冷和水冷冷至50℃再返回减压塔顶,作为塔顶回流;减二线油一部分经换热至120℃后进入蜡油分配器;另一部分作为减一中回流再返回减压塔Ⅱ段填料段。
减三线油大部分作为减二中回流返回减压塔Ⅲ段填料段;减四线油(过汽化油)一部分返回减压塔底或去常压塔一层作为循环油,另一部分作为重洗油又返回重洗段。减底油一般作为延迟焦化等装置热进料,或冷却至100℃以下送出装置作为渣油产品。
9. 常减压装置的主要设备
1、电脱盐罐 其主要部件为原油分配器与电级板。
原油分配器的作用是使从底部进入的原油通过分配器后能够均匀地垂直向上流动,目的一般采用低速槽型分配器。
电极板一般有水平和垂直两种形式。交流电脱盐罐常采用水平电极板,交直流脱盐罐则采用垂直电极板。水平电极板往往为两至三层。
2、防爆高阻抗变压器 变压器是电脱盐设备的关键设备。
3、混合设施。 油、水、破乳剂进脱盐罐前应充分混合,使水和破乳剂在原油中尽量分散到合适的浓度。一般来说,分散细,脱盐率高;但分散过细时可形成稳定乳化液反而使脱盐率下降。脱盐设备多用静态混合器与可调差压的混合阀串联来达到上述目的。
工艺流程:炼油厂多采用二级脱盐工艺,图:1-1 所在地址
常压蒸馏原理:
精馏又称分馏,它是在精馏塔内同时进行的液体多次部分汽化和汽体多次部分冷凝的过程。
原油之所以能够利用分馏的方法进行分离,其根本原因在于原油内部的各组分的沸点不同。
在原油加工过程中,把原油加热到360~370℃左右进入常压分馏塔,在汽化段进行部分汽化,其中汽油、煤油、轻柴油、重柴油这些较低沸点的馏分优先汽化成为气体,而蜡油、渣油仍为液体。
减压蒸馏原理:
液体沸腾必要条件是蒸汽压必须等于外界压力。
降低外界压力就等效于降低液体的沸点。压力愈小,沸点降的愈低。如果蒸馏过程的压力低于大气压以下进行,这种过程称为减压蒸馏。
常减压装置的主要设备为: 塔 和 炉。
塔是整个装置的工艺过程的核心,原油在分馏塔中通过传质传热实现分馏作用,最终将原油分离成不同组分的产品。最常见的常减压装置流程为三段气化流程或称为“两炉三塔流程”,常减压中的塔包括:初馏塔或闪蒸塔、常压塔、减压塔。
a、蒸馏塔的结构:
塔体:塔体是由直圆柱型桶体,高度在35~40米左右,材质一般为A3R或16MnR,对于处理高含硫原油的装置,塔内壁还有不锈钢衬里。
塔体封头:一般为椭圆形或半圆形。
塔底支座:塔底支座要求有一定高度,以保证塔底泵有足够的灌注压头。
塔板或填料:是塔内介质接触的载体,传质过程的三大要素之一。
开口及管嘴:是将塔体和其它部件连接起来的部件,一般由不同口径的无缝钢管加上法兰和塔体焊接而成。
人孔:是进入塔内安装检修和检查塔内设备状况之用,一般为直径450~500的圆型或椭圆型孔。
进料口:由于进料气速高,流体的冲刷很大,为减小塔体内所受损伤。同时为使气、液分布和缓冲的作用。进料处一般有较大的空间,以利于气液充分分离。
液体分布器:使回流液体在填料上方均匀分布,常减压装置应用较多的是管孔式液体分布器和喷淋型液体分布器。
气体分布器:气体分布器一般应用在汽提蒸汽入塔处,目的是使蒸汽均匀分布。
破沫网:在减压塔进料上方,一般都装有破沫网,破沫网由丝网或其它材料组成,当带液滴的气体经过破沫网时,液滴与破沫网相撞,附着在破沫网上的液滴不断积聚,达到一定体积时下落
集油箱:主要作用是收集液体供抽出或再分配。集油箱将填料分成若干个气相连续液相分开的简单塔,它靠外部打入液体建立塔的回流。
塔底防漏器:为防止塔底液体流出时,产生旋涡将油气卷入,使泵抽空。塔底装有防漏器。它还可以阻挡塔内杂质,防止其阻塞管线和进入泵体内。
外部保温层:一般用集温温砖砌成,并用螺丝固定,外包薄铁皮或铝皮,保温层起隔热和保温作用。
b、加热炉:一般为管式加热炉,其作用为:是利用燃料在炉膛内燃烧时产生的高温火焰与烟气作为热源,加热炉中高速流动的物料,使其达到后续工艺过程所要求的温度。
管式加热炉一般由辐射室、对流室、余热回收系统、燃烧及通风系统五部分组成。
通常包括钢结构、炉管、炉墙、燃烧器、孔类配件等。
辐射室:辐射室是加热炉进行热交换的主要场所,其热负荷占全炉的70~80%。
辐射室内的炉管,通过火焰或高温烟气进行传热,以辐射为主,故又称辐射管。它直接受火焰辐射冲刷,温度高,所以其材料要具有足够的高温强度和高温化学稳定性。
对流室:对流室是辐射室排出的高温烟气进行对流传热来加热物料。烟气以较高的速度冲刷炉管管壁,进行有效的对流传热其热负荷占全炉的20~30%。对流室一般布置在辐射室之上,有的单独放在地面。为了提高传热效果,多采用钉头管和翅片管。
余热回收系统:余热回收系统用以回收加热炉的排烟余热。
以靠预热燃烧空气来回收,使回收的热量再次返回到炉中
是采用另外的系统回收热量。前者称为空气预热方式,后者通用水回收称为废热锅炉方式。
燃烧及通风系统:通风系统的作用是把燃烧用空气导入燃烧器,将废烟气引出炉子。
它分为自然通风和强制通风两种方式。前者依靠烟囱本身的抽力,后者使用风机。
过去,绝大多数炉子都采用自然通风方式,烟囱安装在炉顶。
随着炉子的结构复杂化,炉内烟气侧阻力增大,加之提高加热炉的热效率的需要,采用强制通风方式日趋普。
如图: