Ⅰ http://.baidu.com/question/553808798.html
是要翻譯嗎?
本文的工作包含以下三個方面:
(1)針對信息用戶的社會關系的社會網路,它首先使建模的社交網路,那麼它提出的演算法節點相似性在社交網路和機器學習方法。在這個演算法,它使用信息的節點本身,將計算結果與傳統的節點相似度演算法和一些輔助數據的特點培訓的學習機器,需要在邊緣(如果有的話)的模式之間的標簽對象,然後使用邏輯回歸模型作為訓練模型來計算節點的相似性。在計算節點的相似性,這是本文提出的一種演算法,節點相似性數據和用戶的評分數據來預測用戶的得分,這稱為用戶的信用得分在本文。
(2)針對問題過度時間和空間所面臨的職業質量用戶推薦系統中協同過濾推薦演算法導致的失敗使推薦新用戶,本文提出一種改進的協同過濾推薦演算法,首先構建一個「用戶的特徵項「得分矩陣,然後解決了矩陣與潛在語義模型,最後,根據解決矩陣和用戶的特徵數據,預測用戶的生長殘痕物品通過線性權重,這通常被稱為用戶的優惠得分在本文。
(3)在計算用戶的信用評分和優惠得分,這兩個生長殘痕需要inosculated以整合一個最終用戶的評分在某項與一個合適的方法。這是本文提出的一種演算法合並用戶的信用評分和優惠得分在學習與機,使用戶的信用得分,數量的邊的優惠
英語強人團為您解答:
***************************************************
^__^祝你學習進步,如果有疑問,請追問,
如果對你有所幫助,請千萬別忘記採納喲!
***************************************************
Ⅱ 基於協同過濾演算法的it書籍推薦系統設計的需求分析怎麼寫
就是寫你的設計理念..戶型出現哪些不合理的地方,你是如何解決的.這樣處理對業主今後生活中帶來什麼好處,比如說空間得到更加寬敞.給人一種回到家放鬆的心情.戀上自己的家..平時的工作壓力.回到家得到完全的釋放..等等之類的...有些設計師在口述表達中很難表達出來,但一份設計理念的說明.完全能表達出來.業主也看出你的理念是什麼了..這才是業主找設計師的原因..
Ⅲ 利用協同過濾演算法為用戶推薦商品的方法有哪些
協同過濾(Collaborative Filtering)的基本復概念就是制把這種推薦方式變成自動化的流程
協同過濾主要是以屬性或興趣相近的用戶經驗與建議作為提供個性化推薦的基礎。透過協同過濾,有助於搜集具有類似偏好或屬性的用戶,並將其意見提供給同一集群中的用戶作為參考,以滿足人們通常在決策之前參考他人意見的心態。
本人認為,協同過濾技術應包括如下幾方面:(1)一種比對和搜集每個用戶興趣偏好的過程;(2)它需要許多用戶的信息去預測個人的興趣偏好;(3)通過對用戶之間興趣偏好相關程度的統計去發展建議那些有相同興趣偏好的用戶。
Ⅳ 矩陣分解在協同過濾推薦演算法中的應用
矩陣分解在協同過濾推薦演算法中的應用
推薦系統是當下越來越熱的一個研究問題,無論在學術界還是在工業界都有很多優秀的人才參與其中。近幾年舉辦的推薦系統比賽更是一次又一次地把推薦系統的研究推向了高潮,比如幾年前的Neflix百萬大獎賽,KDD CUP 2011的音樂推薦比賽,去年的網路電影推薦競賽,還有最近的阿里巴巴大數據競賽。這些比賽對推薦系統的發展都起到了很大的推動作用,使我們有機會接觸到真實的工業界數據。我們利用這些數據可以更好地學習掌握推薦系統,這些數據網上很多,大家可以到網上下載。
推薦系統在工業領域中取得了巨大的成功,尤其是在電子商務中。很多電子商務網站利用推薦系統來提高銷售收入,推薦系統為Amazon網站每年帶來30%的銷售收入。推薦系統在不同網站上應用的方式不同,這個不是本文的重點,如果感興趣可以閱讀《推薦系統實踐》(人民郵電出版社,項亮)第一章內容。下面進入主題。
為了方便介紹,假設推薦系統中有用戶集合有6個用戶,即U={u1,u2,u3,u4,u5,u6},項目(物品)集合有7個項目,即V={v1,v2,v3,v4,v5,v6,v7},用戶對項目的評分結合為R,用戶對項目的評分范圍是[0, 5]。R具體表示如下:
推薦系統的目標就是預測出符號「?」對應位置的分值。推薦系統基於這樣一個假設:用戶對項目的打分越高,表明用戶越喜歡。因此,預測出用戶對未評分項目的評分後,根據分值大小排序,把分值高的項目推薦給用戶。怎麼預測這些評分呢,方法大體上可以分為基於內容的推薦、協同過濾推薦和混合推薦三類,協同過濾演算法進一步劃分又可分為基於基於內存的推薦(memory-based)和基於模型的推薦(model-based),本文介紹的矩陣分解演算法屬於基於模型的推薦。
矩陣分解演算法的數學理論基礎是矩陣的行列變換。在《線性代數》中,我們知道矩陣A進行行變換相當於A左乘一個矩陣,矩陣A進行列變換等價於矩陣A右乘一個矩陣,因此矩陣A可以表示為A=PEQ=PQ(E是標准陣)。
矩陣分解目標就是把用戶-項目評分矩陣R分解成用戶因子矩陣和項目因子矩陣乘的形式,即R=UV,這里R是n×m, n =6, m =7,U是n×k,V是k×m。直觀地表示如下:
高維的用戶-項目評分矩陣分解成為兩個低維的用戶因子矩陣和項目因子矩陣,因此矩陣分解和PCA不同,不是為了降維。用戶i對項目j的評分r_ij =innerproct(u_i, v_j),更一般的情況是r_ij =f(U_i, V_j),這里為了介紹方便就是用u_i和v_j內積的形式。下面介紹評估低維矩陣乘積擬合評分矩陣的方法。
首先假設,用戶對項目的真實評分和預測評分之間的差服從高斯分布,基於這一假設,可推導出目標函數如下:
最後得到矩陣分解的目標函數如下:
從最終得到得目標函數可以直觀地理解,預測的分值就是盡量逼近真實的已知評分值。有了目標函數之後,下面就開始談優化方法了,通常的優化方法分為兩種:交叉最小二乘法(alternative least squares)和隨機梯度下降法(stochastic gradient descent)。
首先介紹交叉最小二乘法,之所以交叉最小二乘法能夠應用到這個目標函數主要是因為L對U和V都是凸函數。首先分別對用戶因子向量和項目因子向量求偏導,令偏導等於0求駐點,具體解法如下:
上面就是用戶因子向量和項目因子向量的更新公式,迭代更新公式即可找到可接受的局部最優解。迭代終止的條件下面會講到。
接下來講解隨機梯度下降法,這個方法應用的最多。大致思想是讓變數沿著目標函數負梯度的方向移動,直到移動到極小值點。直觀的表示如下:
其實負梯度的負方向,當函數是凸函數時是函數值減小的方向走;當函數是凹函數時是往函數值增大的方向移動。而矩陣分解的目標函數L是凸函數,因此,通過梯度下降法我們能夠得到目標函數L的極小值(理想情況是最小值)。
言歸正傳,通過上面的講解,我們可以獲取梯度下降演算法的因子矩陣更新公式,具體如下:
(3)和(4)中的γ指的是步長,也即是學習速率,它是一個超參數,需要調參確定。對於梯度見(1)和(2)。
下面說下迭代終止的條件。迭代終止的條件有很多種,就目前我了解的主要有
1) 設置一個閾值,當L函數值小於閾值時就停止迭代,不常用
2) 設置一個閾值,當前後兩次函數值變化絕對值小於閾值時,停止迭代
3) 設置固定迭代次數
另外還有一個問題,當用戶-項目評分矩陣R非常稀疏時,就會出現過擬合(overfitting)的問題,過擬合問題的解決方法就是正則化(regularization)。正則化其實就是在目標函數中加上用戶因子向量和項目因子向量的二范數,當然也可以加上一范數。至於加上一范數還是二范數要看具體情況,一范數會使很多因子為0,從而減小模型大小,而二范數則不會它只能使因子接近於0,而不能使其為0,關於這個的介紹可參考論文Regression Shrinkage and Selection via the Lasso。引入正則化項後目標函數變為:
(5)中λ_1和λ_2是指正則項的權重,這兩個值可以取一樣,具體取值也需要根據數據集調參得到。優化方法和前面一樣,只是梯度公式需要更新一下。
矩陣分解演算法目前在推薦系統中應用非常廣泛,對於使用RMSE作為評價指標的系統尤為明顯,因為矩陣分解的目標就是使RMSE取值最小。但矩陣分解有其弱點,就是解釋性差,不能很好為推薦結果做出解釋。
後面會繼續介紹矩陣分解演算法的擴展性問題,就是如何加入隱反饋信息,加入時間信息等。
Ⅳ 個性化推薦演算法——協同過濾
有三種:協同過濾
用戶歷史行為
物品相似矩陣
Ⅵ 推薦演算法的基於協同過濾的推薦
基於協同過濾的推薦演算法理論上可以推薦世界上的任何一種東西。圖片、音樂、樣樣可以。 協同過濾演算法主要是通過對未評分項進行評分 預測來實現的。不同的協同過濾之間也有很大的不同。
基於用戶的協同過濾演算法: 基於一個這樣的假設「跟你喜好相似的人喜歡的東西你也很有可能喜歡。」所以基於用戶的協同過濾主要的任務就是找出用戶的最近鄰居,從而根據最近鄰 居的喜好做出未知項的評分預測。這種演算法主要分為3個步驟:
一,用戶評分。可以分為顯性評分和隱形評分兩種。顯性評分就是直接給項目評分(例如給網路里的用戶評分),隱形評分就是通過評價或是購買的行為給項目評分 (例如在有啊購買了什麼東西)。
二,尋找最近鄰居。這一步就是尋找與你距離最近的用戶,測算距離一般採用以下三種演算法:1.皮爾森相關系數。2.餘弦相似性。3調整餘弦相似性。調整餘弦 相似性似乎效果會好一些。
三,推薦。產生了最近鄰居集合後,就根據這個集合對未知項進行評分預測。把評分最高的N個項推薦給用戶。 這種演算法存在性能上的瓶頸,當用戶數越來越多的時候,尋找最近鄰居的復雜度也會大幅度的增長。
因而這種演算法無法滿足及時推薦的要求。基於項的協同過濾解決了這個問題。 基於項的協同過濾演算法 根基於用戶的演算法相似,只不過第二步改為計算項之間的相似度。由於項之間的相似度比較穩定可以在線下進行,所以解決了基於用戶的協同過濾演算法存在的性能瓶頸。
Ⅶ 協同過濾的演算法簡介
電子商務推薦系統的一種主要演算法。
協同過濾推薦(Collaborative Filtering recommendation)是在信息過濾和信息系統中正迅速成為一項很受歡迎的技術。與傳統的基於內容過濾直接分析內容進行推薦不同,協同過濾分析用戶興趣,在用戶群中找到指定用戶的相似(興趣)用戶,綜合這些相似用戶對某一信息的評價,形成系統對該指定用戶對此信息的喜好程度預測。
與傳統文本過濾相比,協同過濾有下列優點:
(1)能夠過濾難以進行機器自動基於內容分析的信息。如藝術品、音樂;
(2)能夠基於一些復雜的,難以表達的概念(信息質量、品位)進行過濾;
(3)推薦的新穎性。
正因為如此,協同過濾在商業應用上也取得了不錯的成績。Amazon,CDNow,MovieFinder,都採用了協同過濾的技術來提高服務質量。
缺點是:
(1)用戶對商品的評價非常稀疏,這樣基於用戶的評價所得到的用戶間的相似性可能不準確(即稀疏性問題);
(2)隨著用戶和商品的增多,系統的性能會越來越低;
(3)如果從來沒有用戶對某一商品加以評價,則這個商品就不可能被推薦(即最初評價問題)。
因此,現在的電子商務推薦系統都採用了幾種技術相結合的推薦技術。
案例: AMAZON個性化推薦系統先驅 (基於協同過濾)
AMAZON是一個虛擬的網上書店,它沒有自己的店面,而是在網上進行在線銷售。它提供了高質量的綜合節目資料庫和檢索系統,用戶可以在網上查詢有關圖書的信息。如果用戶需要購買的話,可以把選擇的書放在虛擬購書籃中,最後查看購書籃中的商品,選擇合適的服務方式並且提交訂單,這樣讀者所選購的書在幾天後就可以送到家。
AMAZON書店還提供先進的個性化推薦功能,能為不同興趣偏好的用戶自動推薦盡量符合其興趣需要的書籍。 AMAZON使用推薦軟體對讀者曾經購買過的書以及該讀者對其他書的評價進行分析後,將向讀者推薦他可能喜歡的新書,只要滑鼠點一下,就可以買到該書;AMAZON能對顧客購買過的東西進行自動分析,然後因人而異的提出合適的建議。讀者的信息將被再次保存,這樣顧客下次來時就能更容易的買到想要的書。此外,完善的售後服務也是AMAZON的優勢,讀者可以在拿到書籍的30天內,將完好無損的書和音樂光碟退回AMAZON,AMAZON將原價退款。當然AMAZON的成功還不止於此,如果一位顧客在AMAZON購買一本書,下次他再次訪問時,映入眼簾的首先是這位顧客的名字和歡迎的字樣。
Ⅷ 協同過濾的演算法細分
這是最早應用協同過濾系統的設計,主要是解決Xerox公司在 Alto的研究中心資訊過載的問題。這個研究中心的員工每天會收到非常多的電子郵件卻無從篩選分類,於是研究中心便發展這項實驗性的郵件系統來幫助員工解決這項問題。 其運作機制大致如下:
個人決定自己的感興趣的郵件類型;個人旋即隨機發出一項資訊需求,可預測的結果是會收到非常多相關的文件;從這些文件中個人選出至少三筆資料是其認為有用、會想要看的;系統便將之記錄起來成為個人郵件系統內的過濾器,從此以後經過過濾的文件會最先送達信箱;以上是協同過濾最早的應用,接下來的里程碑為GroupLens。 這個系統主要是應用在新聞的篩選上,幫助新聞的閱聽者過濾其感興趣的新聞內容,閱聽者看過內容後給一個評比的分數,系統會將分數記錄起來以備未來參考之用,假設前提是閱聽者以前感興趣的東西在未來也會有興趣閱聽,若閱聽者不願揭露自己的身分也可以匿名進行評分。 和Tapestry不同之處有兩點,首先,Tapestry專指一個點(如一個網站內、一個系統內)的過濾機制;GroupLens則是跨點跨系統的新聞過濾機制。再來,Tapestry不會將同一筆資料的評比總和起來;GroupLens會將同一筆資料從不同使用者得到的評比加總。
GroupLens具有以下特點:開放性:所有的新聞閱聽者皆可使用,雖然系統委託Better Bit Bureau設計給分的系統,但若有不同的評分機制也適用於GroupLens。方便性:給分並不是一件困難的事情且溝通上非常方便,評分結果容易詮釋。規模性:有可能發展成大規模的系統,一旦發展成大規模,儲存空間與計算成本問題顯得相當棘手。隱密性:如果使用者不想讓別人知道他是誰,別人就不會知道。由此可以看出,現今網路各個推薦系統的雛形已然形成,在GroupLens之後還有性質相近的MovieLens,電影推薦系統;Ringo,音樂推薦系統;Video Recommender,影音推薦系統;以及Jster,笑話推薦系統等等。乃至於今日的YouTube、aNobii皆是相似性值得網路推薦平台,較不同的是經過時間推移,網路越來越發達,使用者越來越多,系統也發展得越來越嚴密。 最著名的電子商務推薦系統應屬亞馬遜網路書店,顧客選擇一本自己感興趣的書籍,馬上會在底下看到一行「Customer Who Bought This Item Also Bought」,亞馬遜是在「對同樣一本書有興趣的讀者們興趣在某種程度上相近」的假設前提下提供這樣的推薦,此舉也成為亞馬遜網路書店為人所津津樂道的一項服務,各網路書店也跟進做這樣的推薦服務如台灣的博客來網路書店。 另外一個著名的例子是Facebook的廣告,系統根據個人資料、周遭朋友感興趣的廣告等等對個人提供廣告推銷,也是一項協同過濾重要的里程碑,和前二者Tapestry、GroupLens不同的是在這里雖然商業氣息濃厚同時還是帶給使用者很大的方便。 以上為三項協同過濾發展上重要的里程碑,從早期單一系統內的郵件、文件過濾,到跨系統的新聞、電影、音樂過濾,乃至於今日橫行互聯網的電子商務,雖然目的不太相同,但帶給使用者的方便是大家都不能否定的。
Ⅸ 推薦系統的研究主要包括哪些方面
推
薦系統的研究主要包括以下幾個方面:
(1)用戶信息獲取和建模。
早期的推薦系統只需獲取簡單的用戶信息,隨著推薦系統
發展,
推薦系統由簡單的信息獲取轉變為和用戶交互的系統,
需要考慮用戶多興趣和用戶興
趣轉變的情況,將數據挖掘應用到用戶信息獲取中,挖掘用戶的隱性需求。
(2)推薦演算法研究。
要實現被顧客接受和認可的個性化推薦,設計准確、高效率的個
性化推薦演算法是核心。基於內容的推薦和協同過濾是最主要的兩種。為了克服各自的缺點,
可以將各種推薦方法混合使用,以提高推薦精度和覆蓋率。同時,信息獲取和人工智慧,以
及模糊推薦等相關領域的引入擴寬了推薦演算法的思路。
(3)推薦系統的評價問題。
要使推薦系統為廣大用戶所接受,必須對推薦系統作出客
觀綜合的評價。
推薦結果的准確性和可信性是非常重要的兩個方面。
如何對推薦結果的准確
性進行判定,
如何把推薦結果展示給用戶以及如何獲取用戶對推薦結果的評價都是需要深入
研究的問題。
(4)
推薦系統的應用和社會影響研究。
需要建立推薦系統在其他應用領域的應用框架,
研究如何與企業其它信息系統的集成。
Ⅹ 協同過濾中的可擴展性問題是什麼
協同過濾演算法能夠容易地為幾千名用戶提供較好的推薦,但是對於電子商務網站,往往需要給成百上千萬的用戶提供推薦,這就一方面需要提高響應時間的要求,能夠為用戶實時地進行推薦;另一方面還應考慮到存儲空間的要求,盡量減少推薦系統運行的負擔。
1.3 可擴展性問題
在協同過濾推薦演算法中,全局數值演算法能及時利用最新的信息為用戶產生相對准確的用戶興趣度預測或進行推薦,但是面對日益增多的用戶,數據量的急劇增加,演算法的擴展性問題(即適應系統規模不斷擴大的問題)成為制約推薦系統實施的重要因素。雖然與基於模型的演算法相比,全局數值演算法節約了為建立模型而花費的訓練時間,但是用於識別「最近鄰居」演算法的計算量隨著用戶和項的增加而大大增加,對於上百萬的數目,通常的演算法會遇到嚴重的擴展性瓶頸問題。該問題解決不好,直接影響著基於協同過濾技術的推薦系統實時向用戶提供推薦問題的解決,而推薦系統的實時性越好,精確度越高,該系統才會被用戶所接受。
基於模型的演算法雖然可以在一定程度上解決演算法的可擴展性問題,但是該類演算法往往比較適於用戶的興趣愛好比較穩定的情況,因為它要考慮用戶模型的學習過程以及模型的更新過程,對於最新信息的利用比全局數值演算法要差些。
分析以上協同過濾在推薦系統實現中面臨的兩個問題,它們的共同點是均考慮到了最近鄰居的形成問題(包括用戶信息獲得的充分性、計算耗費等)。但是應該看到協同過濾在推薦系統的實現中,要獲得最近鄰居用戶,必須通過一定的計算獲得用戶之間的相似度,然後確定最佳的鄰居個數,形成鄰居用戶集。而在這一過程中,如果對全部數據集進行相似性計算,雖然直接,但是運算量和時間花費都極大,無法適應真實的商務系統。如果通過對訓練集數據(整個數據集的某一子集)進行實驗獲得,雖然不必對整個數據集進行計算,但是必須通過將多次實驗結果統計出來才可能得到,這無疑也增加了推薦結果獲得的代價和誤差。並且如果考慮到數據集的動態變化,這一形成最近鄰居用戶集技術的實際應用價值越來越小。因此,考慮使用更為有效的最近鄰居用戶形成辦法,對於協同過濾的應用非常必要。