⑴ 高濃度氨氮廢水的處理現狀與發展
高濃度氨氮廢水對環境的危害非常大,一旦進入水體,和棚備會對環境造成嚴重污染,其主要表現有:(1)引起水體富營養化;(2)消耗水體中的溶解氧。氨對生物體還會造成一定的毒害作用,氨可通過皮膚、呼吸道及消化道引起中毒。氨濃度在0.1mg/L時,人可感覺到刺激作用,濃度在0.7mg/L時可能危及生命。水中的氨氮在微生物作用下轉變為硝態氮和亞硝態氮,二者均為強化學致癌物質亞硝基化合物的前體物質,有致癌、致突變、致畸的性質,對人體危害十分嚴重。因為氨氮污染的種種危害和出水排放標準的不斷提高,高濃度氨氮廢水的處理受到了社會各界的重視。在高濃度氨氮廢水處理技術的研究、開發和應用中涌現了一大批行之有效的處理工藝,這些脫氮技術可分為物理化學脫氮技術和生物脫氮技術兩大類。
1 高濃度氨氮廢水處理的現狀
1.1 物理化學脫氮技術
目前我國常用的物化法脫氮技術主要和氏有吹脫法、折點加氯法、選擇性離子交換法、化學沉澱法等。
1.1.1 吹脫法。吹脫法是通過向廢水中加入鹼調節pH值,使水中離子氨(NH4+)轉為游離氨(喚毀NH3),再通入蒸汽或空氣進行吹脫,將廢水中氨轉化為氣相,從而達到去除氨氮的目的。一般採用NaOH或CaO調節廢水pH,採用冷卻塔作為吹脫裝置。吹脫法操作靈活,佔地面積小,脫氮效率高,對於處理濃度較高的氨氮廢水得到了較為廣泛的推廣和使用。但吹脫法也存在一些問題,比如冬季(低溫)氨吹脫效率不高;若以石灰調節pH,易在吹脫塔內形成水垢;逸出的氨會污染空氣,形成二次污染。
1.1.2 折點加氯法。折點加氯法是向廢水中投加足量氯氣,使水中離子氨(NH4+)氧化成氮氣的廢水脫氮技術。其化學反應式為:
NH4++1.5HClO→0.5N2↑+1.5H2O+2.5H++1.5Cl-(1-1)
在折點加氯法中,余氯濃度和殘留氨氮濃度與氯氣、氨氮質量之比有關。最佳理論投氯量(以Cl2計)與氨氮的質量之比為7.6:1。折點加氯法對於氨氮濃度低的廢水來說比較經濟適用,常常作為廢水深度處理的一個步驟連接在其他脫氮工藝之後。
1.1.3 化學沉澱法。化學沉澱法中應用較多的是磷酸銨鎂沉澱法,它是向廢水中投加磷酸鹽和氧化鎂,使氨形成磷酸銨鎂沉澱而被去除的廢水脫氮技術。其化學反應式為:
NH4++Mg2++PO43-→MgNH4PO4•6H2O↓ (1-2)
化學沉澱法工藝簡單、效率高,但投加葯劑量大,從而致使處理成本較高。另外,產生的磷酸銨鎂容易造成二次污染。研究開發磷酸銨鎂的回用和綜合利用技術,對於磷酸銨鎂沉澱法在高濃度氨氮廢水處理工程中的應用具有重要意義。
1.2 生物脫氮技術
生物脫氮技術是利用微生物的代謝作用使廢水中的氨氮轉化為氮氣從水體中逸出。氨氮的去除過程主要包括兩個步驟:硝化作用和反硝化作用。
硝化作用。包括兩個基本的反應步驟:(1)由亞硝酸菌參與的將氨氮轉化為亞硝酸鹽(NO2-)的反應;(2)由硝酸菌參與的將亞硝酸鹽轉化為硝酸鹽(NO3-)的反應。硝化作用過程需要在好氧條件下進行,並且以氧作為電子受體。其反應方程式如下:
亞硝化反應:2NH4++3O2→2NO2-+2H2O+4H+ (1-3)
硝化反應:2NO2-+2O2→2NO3- (1-4)
反硝化作用。將硝化過程中產生的硝酸鹽或亞硝酸鹽還原成氮氣的過程。反應過程中反硝化菌利用各種有機基質作為電子受體,以硝酸鹽作為電子受體而進行缺氧呼吸。
硝化菌是好氧、自養菌,反硝化菌是兼性、異養菌,因此硝化反應和反硝化反應實現的環境條件不同。現行的生物脫氮工藝一般是將缺氧(厭氧)和好氧區分開,如A/O工藝和A/A/O工藝,氨氮在好氧區被亞硝化菌和硝化菌氧化成亞硝態氮和硝態氮,然後將混合液迴流到前置缺氧段;在缺氧條件下,亞硝態氮和硝態氮被反硝化菌還原為氮氣,達到脫氮目的。另一種工藝是後置反硝化工藝,即把反硝化反應器放在硝化反應器之後,因混合液中缺乏有機物,一般需人工投加碳源。
2 高濃度氨氮廢水處理的未來發展
2.1 研究組合式的脫氮技術
物理化學脫氮技術和生物脫氮技術各自有其優勢及局限性。組合式處理技術就是把兩種及兩種以上的處理方法結合起來對高濃度氨氮廢水進行綜合處理。例如,當污水中氨氮濃度較高而營養物質較少時,先對高濃度氨氮污水進行吹托,可以提高去除效率;在低濃度條件下進行吸附可以減少吸附劑的用量和再生次數,提高出水水質。也可用生物法作後續處理,通過前面的吹脫處理,降低氨氮的濃度後,可減輕氨氮對微生物的抑製作用,降低營養物的投加量,提高出水水質。
2.2 對現有處理技術進行改進研究
現有的高濃度氨氮廢水處理工藝還有改進的潛力,應開展對現有工藝的改進研究。比如吹脫法中,可通過試驗考察各個處理因素(pH值、溫度、鼓風量、吹托時間等)對處理結果的影響,根據試驗結果分析得到最佳工藝參數,並對現有的氨吹脫設備進行改造。磷酸銨鎂沉澱法中,通過試驗選定沉澱效果最好的組合葯劑,確定其最佳反應條件,並對磷酸銨鎂晶體中營養物質的緩釋性能和磷酸銨鎂的循環性能進行研究。
2.3 研究和發展新型脫氮技術
操作簡便、處理性能穩定高效、運行費用低廉、能實現氨氮回收利用的處理技術是高濃度氨氮廢水處理的發展方向。物理化學脫氮技術方面,國內外研究者對超聲技術、電化學法、微波技術、高級氧化技術處理高濃度氨氮廢水進行了研究,部分工藝已有工程實例且取得了良好的處理效果。生物脫氮技術方面,隨著生物學機理的深入揭示和相關學科的發展和滲透,為高濃度氨氮廢水的高效生物脫氮提供了可能的途徑,發展出了一些新型的脫氮工藝,包括短程硝化反硝化工藝、同步硝化反硝化工藝和好氧反硝化工藝等。
3 結語
高濃度氨氮廢水對環境具有很大的危害性。目前,針對高濃度氨氮廢水的處理技術雖然眾多,且各具特點,但仍存在一定的局限性。操作簡便、處理性能穩定高效、運行費用低廉、能實現氨氮回收利用的處理技術是高濃度氨氮廢水處理的發展方向。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
⑵ 電鍍廢水治理技術的現狀及痛點是有哪些
傳統的電鍍廢水處理方法有:化學法,離子交換法,電解法等。但傳統方法處理電鍍廢水存在如下問題:
(1)成本過高——水無法循環利用,水費與污水處理費占總生產成本的15%~20%;
(2)資源浪費——貴重金屬排放到水體中,無法回收利用;
(3)環境污染——電鍍廢水中的重金屬為「永遠性污染物」,在生物鏈中轉移和積累,最終危害人類健康。
⑶ 輻射水到了我國怎麼辦
中國處理核污水的方法包括生物處理法、化學處理法和離子交換法等。
1. 生物處理法:這種方法是20世紀60年代開始研究的新工藝,通過微生物治理低放射性廢水。國內外對這種方法去除放射性廢水中的鈾已有研究,但目前多處於試驗研究階段。
2. 化學處理法:化學沉澱法是通過沉澱劑與廢水中微量的放射性核素發生共沉澱作用的方法。廢水中放射性核素的氫氧化物、碳酸鹽、磷酸鹽等化合物大都是不溶性的,因此能在處理中被除去。化學處理的目的是使廢水中的放射性核素轉移並聚集到小體積的污泥中去,使沉積後的廢水剩餘很少的放射性,從而能夠達到排放標准。
3. 離子交換法:離子交換法採用離子交換樹脂,適用於含鹽量較低的廢液。當含鹽量較高時,用離子交換樹脂來處理所花的費用比選擇性工藝要高。這主要是低選擇性的樹脂對放射性核素有很大的關聯。在放射性廢水凈化中,利用電滲析的方法可以提高離子交換工藝的利用效率。
我國核廢水分布現狀可以從以下幾個方面了解:
1. 核電站廢水:我國核電站產生的主要核廢水來源於放射性同位素衰變以及為冷卻核反應堆而使用的水。目前已有一些核電站的廢液進行了低位蒸發、活性炭吸附、化學沉澱、離子交換和膜分離等處理。
2. 醫療廢水:我國醫療廢水產生的主要來源是用於治療、診斷的放射性同位素排放,以及放射性同位素設備和實驗室的廢水排放。這些廢水通常含有放射性物質,需要進行特定的處理。
3. 工業廢水:我國工業廢水主要包括石油化工、核燃料加工、放射性物質運輸和儲存等行業的廢水排放。這些廢水中可能含有放射性物質,需要進行相應的處理。
⑷ 陰離子交換樹脂老化後的表現,陰床出水比原來突然減少一半,停床時不顯硅,但停運幾個小時後再運行硅特
陰床樹脂老化後,樹脂交換容量和交換能力都進一步下降,正常投運時,離子達到一種動態平衡,當停運一段時間,再投運時,吸附在樹脂官能團上的離子會出現一個時間段的集中釋放,這個時候,電導率和硅都會出現比進水還要高的現象,這是正常的,一般停運後繼續投運時,需要沖洗一段時間,待產水指標穩定後再投用。
陰樹脂老化一般是因為有機物污染和硅污染引起,有機物污染是因為原水中的有機物逐漸污染樹脂引起,其表現為:1)陰樹脂顏色變深;2)陰樹脂工作交換容量下降;3)出水電導率增大;4)出水PH值降低;5)出水二氧化硅含量增大;6)再生清洗水量增加。
防止有機物污染的基本措施是在水處理系統前置預處理中,盡量去除有機物成分,最好採用抗有機物污染能力更強的陰樹脂,比如大孔陰樹脂比凝膠陰樹脂要好,甚至更應該考慮採用丙烯酸系陰樹脂替代苯乙烯系的陰樹脂,比如我們公司生產的213在眾多地表水作為原水的用戶使用中,反映出很好的運行數據,不但有機物污染陰樹脂情況根本得到改善,而且周期制水量提高了30-50%,最主要是因此降低了水汽中的氫電導指標(因為有機物穿透後,進入鍋爐加熱後,分解為有機酸,從而引起水汽H電導偏高)。有機物污染的陰樹脂可以採用鹼性鹽法復甦(10%的NaCl+4-6%的NaOH混合再生溶液),混合液加溫至40度以上,結合壓縮空氣擦洗,最後一倍再生液浸泡8小時以上,效果最佳。
硅污染更多時候是用戶再生不充分引起,樹脂失效後沒有及時再生或者每次再生不徹底,都會引起陰樹脂硅中毒現象。一般採用稀的溫鹼溶液浸泡溶解,鹼液的濃度為2%,溫度40度。污染情況嚴重時,可使用加溫至40度的4-5%的NaOH溶液循環清洗處理。
希望以上回答能幫助你解決疑問。個人自1996年從事離子交換樹脂技術型的銷售工作以來,親身經歷了國內離子交換樹脂用戶的發展過程,其實說實話,目前國內的用戶生存現狀已遠遠不及上世紀90年代,究其根本原因,最主要的還是用戶持續多年的低價中標法,導致更多離子交換樹脂生產企業為了滿足低價競爭而採用偷工減料的生產工藝,或者是一味的追求降低生產成本,套用回收化工原料,導致樹脂質量在近10幾年來不升反降。而用戶現場運行工況(包括原水水質,運行設備的負荷等)也出現了較大的惡化,但在這期間,因為供應商感覺只有低價才具備最大的競爭力,所以技術交流和服務,尤其是技術應用研究方面,出現了一個斷檔真空期,這是國內整個離子交換樹脂行業發展史的悲哀,也是因為盲目的低價中標制度導致國內用戶最最得不償失的一個階段。真心希望國內市場能夠理智的面對問題本身,而不是一邊是崇洋媚外(殊不知,眾多洋品牌提供的產品,原本就是國內貼牌包裝,乃至是一些小廠貼牌包裝),一邊又認為國內企業不講誠信,產品質量不佳。試問,您如此的「作」(國內供應商採用低價中標和盲目推崇洋品牌,可以唯一指定洋品牌),能有什麼好下場呢。
以上純為肺腑之言,不妥之處望諒,別無他意。
⑸ 氨氮廢水處理方法有哪些
一、氨氮廢水現狀
氨氮廢水主要來源於化肥、焦化、石化、制葯、食品等行業廢水,氨氮廢水的處理方法通常有物理法、化學法、物理化學以及生化法等。
(1)生物法
傳統的生化法主要用於低濃度氨氮廢水處理,它是利用微生物的硝化及反硝化作用使氨氮轉變為氮氣;
(2)蒸汽汽提法
蒸汽汽提法是用蒸汽將廢水中的游離氨轉變為氨氣逸出,其處理機理與吹脫法基本相同,也是一個氣液傳質過程,即在高pH值時,使廢水與蒸汽密切接觸,從而降低廢水中氨濃度的過程;
(3)離子交換法
離子交換法適用於氨離子濃度在10~100mg/L的廢水,其原理是選用陽離子交換樹脂,將水中的銨離子與樹脂上的鈉離子交換,從而達到去除銨的目的;
(4)化學沉澱法
化學沉澱法是通過向水中投加化學葯劑,使氨反應生成不溶於水的沉澱,從而達到廢水脫氨的目的;
(5)膜分離法
採用膜分離技術處理氨氮廢水是近幾年來研究比較多的廢水脫氨技術之一,膜分離技術處理氨氮廢水的處理效果比較好,條件溫和,由於氨氮廢水中往往有較多的固體懸浮物及易於結垢的鹽類,考慮到膜的阻塞及再生問題,膜分離技術對水質的要求較高;
(6)反滲透法和電滲析法
反滲透法和電滲析法的投資和運行費用都比較高,而且,電滲析的預處理要求高,反滲透膜的使用壽命短,目前在國內應用極少。
二、定製特種吸附處理工藝
海普公司研究的特種吸附材料能針對性地吸附廢水中的氨氮物質,對氨氮物質能做到高效吸附且脫附徹底,脫附後的廢水氨氮含量可達到排放標准。
採用海普的吸附工藝處理氨氮廢水時,將廢水預先過濾去除其中的懸浮和顆粒物質,然後進入吸附塔吸附,吸附塔中填充的特種吸附材料能將廢水中的氨氮吸附在材料表面,出水氨氮可達標排放。
吸附飽和後,再利用特定的脫附劑對吸附材料進行脫附處理,使吸附材料得以再生,如此不斷循環進行。
三、案例介紹
本新建氨氮廢水吸附處理設施,總設計廢水處理規模為300m3/d,氨氮廢水氨氮含量高,生化後氨氮含量超標,達不到排放標准,影響企業的穩定生產。海普對該廢水進行了定製化的工藝設計,廢水設計指標如下表。