導航:首頁 > 凈水問答 > 振動信號過濾

振動信號過濾

發布時間:2022-06-27 01:52:24

A. 頻率域快速數字濾波方法

1.頻率域濾波的步驟

(1)對已知地震記錄道進行頻譜分析

設已知地震記錄x(t),如圖9-2-1,包含了有效波s(t)和干擾波n(t)。對此地震記錄道進行頻譜分析,有效波頻率成分在ω1~ω2范圍,干擾波在ω3~ω4范圍,兩者基本上是分開的。見圖9-2-2。

(2)設計合適的濾波器

為了濾去干擾波的頻譜成分,需要設計一個帶通濾波器(圖9-2-3),即在頻率ω1~ω2范圍|H(ω)|=1,在其他頻率范圍|H(ω)|=0,這個濾波器可表示如下:

物探數字信號分析與處理技術

(3)進行濾波運算

根據濾波方程,對地震記錄道x(t)進行濾波,相當於令x(t)的譜X(ω)與濾波器的頻率特性H(ω)相乘,得到 ,相乘後的譜 中消除了干擾波成分,見圖9-2-4。

圖9-2-1 濾波前地震記錄道

圖9-2-2 地震記錄的頻譜

(4)對輸出信號譜 進行傅立葉反變換,得到濾波後的輸出 ,見圖9-2-5。頻率濾波的過程可以歸納為以下的數學運算:

物探數字信號分析與處理技術

圖9-2-3 帶通濾波器

圖9-2-4 濾波後地震記錄道頻譜

圖9-2-5 濾波後地震記錄道

可見,要進行頻率濾波,必須進行兩次傅立葉變換,即正、反傅立葉變換。由於採用了快速演算法,運算時間大大減少,頻率域濾波得到廣泛應用。

2.用快速傅立葉變換進行濾波的幾個問題

(1)周期性

已知正、反離散傅立葉變換(DFT)公式如式(9-2-2)和(9-2-3)

物探數字信號分析與處理技術

式中N是時間域抽樣點個數,也是計算出的頻率抽樣個數,由連續傅立葉變換過渡到離散傅立葉變換時使用了

物探數字信號分析與處理技術

則(9-2-2)和(9-2-3)可以寫成一種形式,即

物探數字信號分析與處理技術

(9-2-4)是完成一對DFT的條件,否則就不能進行正、反傅立葉變換的對應計算。可以看出,N就是傅立葉變換的頻率抽樣點周期,由(9-2-2)式可寫出

物探數字信號分析與處理技術

由於

所以

物探數字信號分析與處理技術

(9-2-6)表示X(m)確是以N為頻率抽樣點數的周期,它表示應用(9-2-2)式計算X(m)時,如果給定的x(n)是N個值,那麼只要計算N個X(m)就行了,再多計算就重復

了。見圖9-2-6。例如N=50時,

X(0)=X(50)

X(1)=X(51)

……………………

X(49)=X(99)

圖9-2-6 頻譜圖形

在m=0~49一段是計算出的X(m)值,由於以N=50為周期,m=50~99一段與m=0~49是重復的,這就出現了因離散而出現的偽門現象。因此公式(9-2-4)中的參數N,在編製程序時要選擇好,應既是x(n)的抽樣個數,也是計算X(m)的個數,又是頻率抽樣個數的周期。它必須滿足條件 ,即在編製程序計算X(m)或x(n)時,選擇參數Δt,Δf和N必須滿足式(9-2-4)。同時周期性告訴我們,在進行快速傅立葉變換時,只要計算N個值就行了,再多計算就重復了。

(2)對稱性

對稱性是指當x(n)是實數序列時,計算出的頻譜滿足

物探數字信號分析與處理技術

證明:由式(9-2-2)可知

物探數字信號分析與處理技術

由於

所以得到

物探數字信號分析與處理技術

此式表明,N-m點處的頻率對應的頻譜值X(N-m)和m點處頻率對應的頻譜值是共軛關系,X(m)與X(N-m)共軛,其模是相等的

物探數字信號分析與處理技術

例如當N=50時,m=26~50一段的|X(m)|值與m=0~24一段的|X(m)|形狀對稱。這說明當x(n)取實數序列時,復變譜共軛,振幅譜對稱於N/2點處,見圖9-12的頻譜圖形。

3.用FFT演算法實現頻率域數字濾波的具體方法

1)首先確定理想濾波器的頻率特性,起始頻率ω1和終止頻率ω2,對ω1和ω2要求是在頻率間隔的整數倍處;

2)對給定的記錄x(n),(n=0,1,…,N-1),取N=2m的離散點數做FFT,計算復變譜X(m)(m=1,1,2,…,N-1),在內存中開辟兩個區,一個區存入復變譜的實部,一個區存入復變譜的虛部;

3)按照濾波器的起始頻率和頻帶寬度,對給定的復變譜實部和虛部將要濾去的頻率成分充零,得到新的復變譜 的實部和虛部;

物探數字信號分析與處理技術

4)再對 做反傅立葉變換,得到濾波後的地震記錄

物探數字信號分析與處理技術

下面舉例說明以上步驟。例如,有一時間序列x(n)(n=0,0,1,1,1,1,0,0),抽樣間隔為Δt=10ms,N=8,要求用頻率濾波濾去0,12.5Hz分量,求x^(n)。

①對x(n)做正傅立葉變換FFT,見表9-2-1。

表9-2-1 對x(n)做正變換數據

由於時間抽樣間隔Δt的倒數和頻率抽樣間隔Δf相差N倍,所以此處重排時要被N除。由此得到xn的復變譜X(m),見圖9-2-7,由於N=8,Δt=0.01ms,所以Δf=12.5Hz。

②對復變譜X(m)進行頻率濾波,為了濾去0、12.5Hz的頻率分量,將0、12.5Hz及87.5Hz對應的X(m)值充零,得到濾波後的頻譜 ,見表9-2-2。

表9-2-2 濾波後的頻譜

根據表9-2-2計算出的振幅譜見圖9-2-8。

圖9-2-7 x(n)的離散復變譜

圖9-2-8 濾波後的振幅譜

③對濾波後的頻譜 做反傅立葉變換得到所要求的輸出 ,見表9-2-3。

根據表9-2-3作出的振動圖形見圖9-2-9。

表9-2-3 輸出 的數據

④為了驗證 與 的對應關系,再對 做一次正傅立葉變換FFT,根據表9-3計算振幅譜作圖9-2-9與圖9-2-8相同。

由以上例子可以得到以下幾點:

a.FFT全部是復數運算;

b.計算出的復變譜以N/2為中心,有共軛關系;

c.頻率濾波時,對濾去的頻率分量fk充0,同時對fN-k的頻率分量也要充0,否則不能進行反變換。

圖9-2-9 濾波後的振動圖形

B. 振動光纜和普通光纜的區別

普通光纜是通訊設備

振動光纜是周界報警防盜設備

周界安防或圍欄報警系統,在光纖感測技術中可利用兩種光纖感測器來實現:

一是利用光纖Bragg 光柵分布式光纖感測器;二是利用光纖干涉型光纖感測器。

近年來,光纖感測技術中的光纖光柵是發展最為迅速、應用最為廣泛的光纖無源器件之一。

光纖光柵感測主要優點之一是便於構成分布式感測系統,。

而構成分布式感測系統最關鍵技術之一是復用技術。

包括波分復用(WDM)、時分復用(TDM)、空分復用(SDM)及它們的組合復用技術。由於它的敏感變化參量為光的波長。

所以,不受光源、傳輸線路損耗等因素所引起的對光強度變化的干擾。

並且光纖光柵具有製作簡單、體積小、性能穩定可靠、又易與系統及其他光纖器件連接等特點。

若將其作為感測部件,可實現實時測量和分布式測量。

由於光纖布拉格(Bragg)光柵對特定波長的光具有反射作用,並且其反射中心波長隨著溫度、應力等物理量的變化而變化。

具有優良的溫度和應變響應特性。因此它在感測領域有著非常廣泛的應用前景。

隨著光纖布拉格光柵感測技術在測量方面的廣泛應用,為安全技術防範系統的研究提供了廣闊的生機。

顯然,能利用光纖布拉格光柵的應變與溫度感測特性製成周界安防及圍欄報警系統,因而對它的研究具有很大的實際意義和社會意義。

光纖光柵感測器除具有一般光纖感測器的優點外。

還具有下列優點: (1)抗干擾能力更強,有很高的可靠性和穩定性 FBG 感測器是以光的波長為最小計量單位的。

只需要探測到光纖中光柵波長的移動,而與光強無關,對光強的波動不敏感,因而比一般的光纖感測器具有更高的抗干擾能力。FBG 感測器是用波長編碼的感測器,光源強度的起伏、光纖微彎效應引起的隨機起伏、耦合損耗等都不可能影響感測信號的波長特性,因而該感測系統具有很高的可靠性和穩定性。

(2)測量靈敏度高、解析度高、精度高,具有良好的重復性光纖布喇格光柵 (FBG)感測器。

明顯優於普通光纖感測器的地方是它的感測信號為波長調制,因而其測量信號不受光源起伏、光纖彎曲損耗、連接損耗和測量儀器老化等因素影響。

所以測量結果具有良好的重復性。

振動光纖:

品牌:三安古德 探測方式:振動探測

防區長度:長度可調,推薦單防區長度50-200米

靈敏度:可調

振動頻率檢測服務:1HZ-100HZ

振動加速監測范圍:0.001g-100000g

工作環境溫度/濕度:-200C-700C/0-900C 振動光纜最大拉伸力:1000N

振動光纜抗老化壽命:10年

產品認證:通過ISO9000質量管理體系認證

警號輸出類型:開關量

防區類型:光纜震動信號

外部通信埠:1個485信號輸出,2組開關量輸出

485匯流排通信介面:2線半雙工

485通信協議:MODBUS工業控制器網路通信協議

工作溫度:-20℃-70℃

設備材質:金屬外殼,LED顯示屏

設備尺寸:機殼270×210×50mm。兩邊側條寬15mm,掛壁孔間距6m

C. 什麼是超弦理論

超弦理論(英語:Superstring Theory),屬於弦理論的一種,有五個不同的超弦理論,也指狹義的弦理論。是一種引進了超對稱的弦論,其中指物質的基石為十維時空中的弦。

超弦理論理論基礎

1、十一維時空(十維空間加一維時間)

為了將玻色子和費米子統一,科學家預言了這種粒子,由於實驗條件的限制,人們很難找到這種能夠證明弦理論的粒子。超弦理論作為最為艱深的理論之一,吸引著很多理論研究者對它進行研究,是萬有理論的候選者之一,可來解釋我們所知的一切作用力、乃至於解釋宇宙。

2、超弦理論將次原子粒子都被視為受激而振動的多維循環(開頭所提的10維空間)。

3、超弦理論與傳統的量子力學一樣,將不確定性視為真正的隨機。

4、以膜理論解釋弦與三維空間和多維度空間的關系。

(3)振動信號過濾擴展閱讀:

弦理論中的超對稱[編輯]

弦論的對偶性:黃色箭頭為S對偶,藍色箭頭為T對偶,而IIA型弦與E型雜弦則亦可與M理論有對偶聯系(此對偶又可稱之為U對偶)

弦理論是我們知道的唯一能融合廣義相對論和量子力學的方式,但只有超對稱的弦理論才能避免快子問題,才能包括費米子振動模式從而才能說明組成我們世界的物質粒子。為了實現引力的量子力學,也為了一切力和物質的大統一,超對稱性與弦理論手拉手地走來了。假如弦理論是對的,物理學家希望超對稱性也是對的。

主要類型有:I型弦、IIA型弦、IIB型弦、O型雜弦(SO(32))、E型雜弦(E8×E8)。若納入對偶性以及超重力,則可統一出M理論的框架,常見的對偶有T對偶、S對偶、U對偶。

D. 流式細胞分析術的工作原理

流式細胞計是對細胞進行自動分析和分選的裝置。它可以快速測量、存貯、顯示懸浮在液體中的分散細胞的一系列重要的生物物理、生物化學方面的特徵參量,並可以根據預選的參量范圍把指定的細胞亞群從中分選出來。多數流式細胞計是一種零解析度的儀器,它只能測量一個細胞的諸如總核酸量,總蛋白量等指標,而不能鑒別和測出某一特定部位的核酸或蛋白的多少。也就是說,它的細節 解析度為零。國外又把流式細胞計稱作熒光激活細胞分選器(Flu-orescence Activated CellSorter,FACS)。美國Becton—Dickinson 公司生產的流式細胞計系列均冠以FACS字頭。目前中國國內使用的儀器多為美國、西歐及日本等國的產品,國內有些單位也已研製成功,但尚無定型產品面市。
流式細胞計的基本結構流式細胞計組成
它們是:流動室和液流系統;激光源和光學系統;光電管和檢測系統;計算機和分析系統。
⑴流動室和液流系統:流動室由樣品管、鞘液管和噴嘴等組成,常用光學玻璃、石英等透明、穩定的材料製作。設計和製作均很精細,是液流系統的心臟。樣品管貯放樣品,單個細胞懸液在液流壓力作用下從樣品管射出;鞘液由鞘液管從四周流向噴孔,包圍在樣品外周後從噴嘴射出。為了保證液流是穩液,一般限制液流速度υ<10m/s。由於鞘液的作用,被檢測細胞被限制在液流的軸線上。流動室上裝有壓電晶體,受到振盪信號可發生振動。
⑵激光源和光學系統:經特異熒光染色的細胞需要合適的光源照射激發才能發出熒光供收集檢測。常用的光源有弧光燈和激光;激光器又以氬離子激光器為普遍,也有配和氪離子激光器或染料激光器。光源的選擇主要根據被激發物質的激發光譜而定。汞燈是最常用的弧光燈,其發射光譜大部分集中於300~400nm,很適合需要用紫外光激發的場合。氬離子激光器的發射光譜中,綠光514nm和藍光488nm的譜線最強,約占總光強的80%;氪離子激光器光譜多集中在可見光部分,以647nm較強。免疫學上使用的一些熒光染料激發光波長在550nm以上,可使用染料激光器。將有機染料做為激光器泵浦的一種成份,可使原激光器的光譜發生改變以適應需要即構成染料激光器。例如用氬離子激光器的綠光泵浦含有Rhodamine 6G水溶液的染料激光器,則可得到550~650nm連續可調的激光,尤在590nm處轉換效率最高,約可佔到一半。為使細胞得到均勻照射,並提高解析度,照射到細胞上的激光光斑直徑應和細胞直徑相近。因此需將激光光束經透鏡會聚。光斑直徑d可由下式確定:d=4λf/πD。λ為激光波長;f為透鏡焦距;D為激光束直徑。色散棱鏡用來選擇激光的波長,調整反射鏡的角度使調諧到所需要的波長λ。為了進一步使檢測的發射熒光更強,並提高熒光訊號的信噪比,在光路中還使用了多種濾片。帶阻或帶通濾片是有選擇性地使某一濾長區段的光線濾除或通過。例如使用525nm帶通濾片只允許FITC(Fluoresceinisothiocyanate,異硫氰熒光素)發射的525nm綠光通過。長波通過二向色性反射鏡只允許某一波長以上的光線通過而將此波長以下的另一特定波長的光線反射。在免疫分析中常要同時探測兩種以上的波長的熒光信號,就採用二向色性反射鏡,或二向色性分光器,來有效地將各種熒光分開。
⑶光電管和檢測系統:經熒光染色的細胞受合適的光激發後所產生的熒光是通過光電轉換器轉變成電信號而進行測量的。光電倍增管(PMT)最為常用。PMT的響應時間短,僅為ns數量級;光譜響應特性好,在200~900nm的光譜區,光量子產額都比較高。光電倍增管的增益從10到10可連續調節 ,因此對弱光測量十分有利。光電管運行時特別要注意穩定性問題,工作電壓要十分穩定,工作電流及功率不能太大。一般功耗低於0.5W;最大陽極電流在幾個毫安。此外要注意對光電管進行暗適應處理,並注意良好的磁屏蔽。在使用中還要注意安裝位置不同的PMT,因為光譜響應特性不同,不宜互換。也有用硅光電二極體的,它在強光下穩定性比PMT好。
從PMT輸出的電信號仍然較弱,需要經過放大後才能輸入分析儀器。流式細胞計中一般備有兩類放大器。一類是輸出信號輻度與輸入信號成線性關系,稱為線性放大器。線性放大器適用於在較小范圍內變化的信號以及代表生物學線性過程的信號,例DNA測量等。另一類是對數放大器,輸出信號和輸入信號之間成常用對數關系。在免疫學測量中常使用對數放大器。因為在免疫分析時常要同時顯示陰性、陽性和強陽性三個亞群,它們的熒光強度相差1~2個數量級;而且在多色免疫熒光測量中,用對數放大器採集數據易於解釋。此外還有調節 便利、細胞群體分布形狀不易受外界工作條件影響等優點。
⑷計算機和分析系統:經放大後的電信號被送往計算機分析器。多道的道數是和電信號的脈沖高度相對應的,也是和光信號的強弱相關的。對應道數年縱坐標通常代表發出該信號的細胞相對數目。多道分析器出來的信號再經模-數轉換器輸往微機處理器編成數據文件,或存貯於計算機的硬碟和軟盤上,或存於儀器內以備調用。計算機的存貯容量較大,可存貯同一細胞的6~8個參數。存貯於計算機內的數據可以在實測後離線重現,進行數據處理和分析,最後給出結果。除上述四個主要部分外,還備有電源及壓縮氣體等附加裝置。
參數測量、樣品分選及數據處理
⑴參數測量原理:流式細胞計可同時進行多參數測量,信息主要來自特異性熒光信號及非熒光散射信號。測量是在測量區進行的,所謂測量區就是照射激光束和噴出噴孔的液流束垂直相交點。液流中央的單個細胞通過測量區時,受到激光照射會向立體角為2π的整個空間散射光線,散射光的波長和入射光的波長相同。散射光的強度及其空間分布與細胞的大小、形態、質膜和細胞內部結構密切相關,因為這些生物學參數又和細胞對光線的反射、折射等光學特性有關。未遭受任何損壞的細胞對光線都具有特徵性的散射,因此可利用不同的散射光信號對不經染色活細胞進行分析和分選。經過固定的和染色處理的細胞由於光學性質的改變,其散射光信號當然不同於活細胞。散射光不僅與作為散射中心的細胞的參數相關,還跟散射角、及收集散射光線的立體角等非生物因素有關。
在流式細胞術測量中,常用的是兩種散射方向的散射光測量:①前向角(即0角)散射(FSC);②側向散射(SSC),又稱90角散射。這時所說的角度指的是激光束照射方向與收集散射光信號的光電倍增管軸向方向之間大致所成的角度。一般說來,前向角散射光的強度與細胞的大小有關,對同種細胞群體隨著細胞截面積的增大而增大;對球形活細胞經實驗表明在小立體角范圍內基本上和截面積大小成線性關系;對於形狀復雜具有取向性的細胞則可能差異很大,尤其需要注意。側向散射光的測量主要用來獲取有關細胞內部精細結構的顆粒性質的有關信息。側向散射光雖然也與細胞的形狀和大小有關,但它對細胞膜、胞質、核膜的折射率更為敏感,也能對細胞質內較大顆粒給出靈敏反映。
在實際使用中,儀器首先要對光散射信號進行測量。當光散射分析與熒光探針聯合使用時,可鑒別出樣品中被染色和未被染色細胞。光散射測量最有效的用途是從非均一的群體中鑒別出某些亞群。
熒光信號主要包括兩部分:①自發熒光,即不經熒光染色細胞內部的熒光分子經光照射後所發出的熒光;②特徵熒光,即由細胞經染色結合上的熒光染料受光照而發出的熒光,其熒光強度較弱,波長也與照射激光不同。自發熒光信號為雜訊信號,在多數情況下會干擾對特異熒光信號的分辨和測量。在免疫細胞化學等測量中,對於結合水平不高的熒光抗體來說,如何提高信噪比是個關鍵。一般說來,細胞成分中能夠產生的自發熒光的分子(例核黃素、細胞色素等)的含量越高,自發熒光越強;培養細胞中死細胞/活細胞比例越高,自發熒光越強;細胞樣品中所含亮細胞的比例越高,自發熒光越強。
減少自發熒光干擾、提高信噪比的主要措施是:①盡量選用較亮的熒光染料;②選用適宜的激光和濾片光學系統;③採用電子補償電路,將自發熒光的本底貢獻予以補償。
⑵樣品分選原理:流式細胞計的分選功能是由細胞分選器來完成的。總的過程是:由噴嘴射出的液柱被分割成一連串的小水滴,根據選定的某個參數由邏輯電路判明是否將被分選,而後由充電電路對選定細胞液滴充電,帶電液滴攜帶細胞通過靜電場而發生偏轉,落入收集器中;其它液體被當作廢液抽吸掉,某些類型的儀器也有採用捕獲管來進行分選的。
穩定的小液滴是由流動室上的壓電晶體在幾十KHz的電信號作用下發生振動而迫使液流均勻斷裂而形成的。一般液滴間距約距約數百μm。實驗經驗公式f=v/4.5d給出形成穩定水滴的振盪信號頻率。其中v是液流速度,d為噴孔直徑。由此可知使用不同孔徑的噴孔及改變液流速度,可能會改變分選效果。使分選的含細胞液滴在靜電場中的偏轉是由充電電路和偏轉板共同完成的。充電電壓一般選+150V,或-150V;偏轉板間的電位差為數千伏。充電電路中的充電脈沖發生器是由邏輯電路控制的,因此從參數測定經邏輯選擇再到脈沖充電需要一段延遲時間,一般為數十ms。精確測定延遲時間是決定分選質量的關鍵,儀器多採用移位寄存器數字電路來產生延遲。可根據具體要求予以適當調整。
(50)數據處理原理:FCM的數據處理主要包括數據的顯示和分析,至於對儀器給出的結果如何解釋則隨所要解決的具體問題而定。
①數據顯示:FCM的數據顯示方式包括單參數直方圖(histogram)、二維點圖(dot plot)、二維等高圖(contour )、假三維圖(pseudo 3D)和列表模式(list mode)等。
直方圖是一維數據用昨最多的圖形顯示形式,既可用於定性分析,又可用於定量分析,形同一般X—Y平面描圖儀給出的曲線。根據選擇放大器類型不同,橫坐標可以是線性標度或對數標度,用「道數」(Channel No .)來表示,實質上是所測的熒光或散射光的強度。縱坐標一般表示的是細胞的相對數。圖10-2給出的是直方圖形式。只能顯示一個參數與細胞之間的關系是它的局限性。
二維點圖能夠顯示兩個獨立參數與細胞相對數之間的關系。橫坐標和縱坐標分別為與細胞有關的兩個獨立參數,平面上每一個點表示同時具有相應坐標植的細胞存在(圖10-3)。可以由二維點圖得到兩個一維直方圖,但是由於兼並現象存在,二維點圖的信息量要大於二個一維直方圖的信息量。所謂兼並就是說多個細胞具有相同的二維坐標在圖上只表現為一個點,這樣對細胞點密集的地方就難於顯示它的精細結構。
二維等高圖類似於地圖上的等高線表示法。它是為了克服二維點圖的不足而設置的顯示方法。等高圖上每一條連續曲線上具有相同的細胞相對或絕對數,即「等高」。曲線層次越高所代表的細胞數愈多。一般層次所表示的細胞數間隔是相等的,因此等高線越密集則表示變化率越大,等高線越疏則表示變化平衡。圖10-4給出了二維等高圖的樣式。
假三維圖是利用計算機技術對二維等高圖的一種視覺直觀的表現方法。它把原二維圖中的隱坐標—細胞數同時顯現,但參數維圖可以通過旋轉、傾斜等操作,以便多方位的觀察「山峰」和「谷地」的結構和細節 ,這無疑是有助於對數據進行分析的。圖10-5為假三維圖的示意圖。
列表模式其實只是多參數數據文件的一種計算機存貯方式,三個以上的參數數據顯示是用多個直方圖、二維圖和假三維圖來完成的。可用List Mode中的特殊技術,開窗或用游標調出相關部分再改變維數進行顯示。例如,「一調二」就是在一維圖上調出二維圖來;「二調一」就是從二維圖中調出一維圖來。圖10-6給出了從二維圖等高圖中調出相應窗口的直方圖的示意圖。
上面簡要地介紹了幾種數據顯示形式,在實際應用中,可根據需要選擇匹配,以便了解和獲得盡可能多的有用信息。
②數據分析:數據分析的方法總的可分為參數方法和非參數方法兩大類。當被檢測的生物學系統能夠用某種數學模型技術時則多使用參數方法。數學模型可以是一個方程或方程組,方程的參數產生所需要的信息來自所測的數據。例如在測定老鼠精子的DNA含量時,可以獲取細胞頻數的尖銳波形分布。如果採用正態分布函數來描述這些數據,則參數即為面積、平均值和標准偏差。方程的數據擬合則通常使用最小二乘法。而非參數分析法對測量得到的分布形狀不需要做任何假設,即採用無設定參數分析法。分析程序可以很簡單,只需要直觀觀測頻數分布;也可能很復雜,要對兩個或多個直方圖逐道地進行比較。
逐點描圖(或用手工,或用描圖儀、計算機系統)是大家常用的數據分析的重要手段。我們常可以用來了解數據的特性、尋找那些不曾預料的特異徵兆、選擇統計分析的模型、顯示最終結果等。事實上,不經過先對數據進行直觀觀察分析就決不應該對這批數據進行數值分析。從這一點來看,非參數分析是參數分析的基礎。
逐道比較工作量較大,但用直觀法很容易發現明顯的差異,特別是對照組和測試組。考慮到FCM的可靠性,要注意到對每組測量,都要有對照組,對照組可以是空白對照組、陰性對照組、或零時刻對照組等,具體設置應根據整體實驗要求而定。對照組和測試組的逐道比較往往可以減少許多不必要的誤差和錯誤解釋。順便指出,進行比較時對曲線的總細胞數進行歸一化處理,甚至對兩條曲線逐道相減而得到「差結果曲線」往往是適宜的。
因為數據分析往往和結果解釋關系十分密切,也就是說和生物學背景相關,因此具體的分析法和原理將在後面結合實例再介紹。
流式細胞計的技術參數 為了表徵儀器性能
往往根據使用目的和要求而提出幾個技術參數或指標來定量說明。對於流式細胞計常用的技術指標有熒光解析度、熒光靈敏度、適用樣品濃度、分選純度、可分析測量參數等。
⑴熒光解析度:強度一定的熒光在測量時是在一定道址上的一個正態分布的峰,熒光解析度是指兩相鄰的峰可分辨的最小間隔。通常用變異系數(C.V值)來表示。C.V的定義式為:
C.V=σ/μ
式中,σ為標准偏差,μ是平均值。
在實際應用中,我們使用挖關系式σ=0.423FWHM;其中FWHM為峰在峰高一半處的峰寬值。目前儀器的熒光解析度均優於2.0%。
⑵熒光靈敏度:反映儀器所能探測的最小熒光光強的大小。一般用熒光微球上所標可測出的FITC(fluorescein isothiocyanate 異硫氰基熒光素)的最少分子數來表示。目前儀器均可達到1000左右。
⑶分析速度/分選速度:儀器每秒種可分析/分選的數目。一般分析速度為5000~10000;分選速度掌握在1000以下。
⑷樣品濃度:主要給出儀器工作時樣品濃度的適用范圍。一般在1010細胞/ml的數量級。
其它技術參數尚多,不再一一介紹。
流式細胞計的調試和使用
古語說:「工欲善其事,必先利其器」。要想很好地應用流式細胞分析和分選技術,必需先對儀器進行調試,使其處於良好的工作狀態,並能正確使用儀器。下面簡要介紹細胞計的調試項目及要點、使用的程序等等。
⑴調試和校準:流式細胞計在使用前,甚至在使用過程中都要精心進行調試,以保證工作的可靠性和最佳性。調試的項目主要是激光強度、液流速度和測量區的光路等。
激光強度:除調整反射鏡的角度以調整到所需波長的激光出光外,還要結合顯示屏上的光譜曲線使激光的強度輸出為最大。
液流速度:可通過操作台數字顯示監督,調節 氣體壓力大小以獲得穩定的液流速度。
測量區光路調節 :這是調試工作的關鍵。需要保證在測量區的液流、激光束、90散射測量光電系統垂直正交,而且交點較小。一般可在用標准熒光微球等校準中完成。
流式細胞術中所測得的量是相對值,因此需要在使用前或使用中對系統進行校準或標定,這樣才能通過相對測量獲得絕對的意義。因而FCM中的校準具有雙重功能:儀器的準直調整和定量標度。標准樣品應該穩定,有形成份形狀應是大小比較一致球形,樣品分散性能良好,且經濟、容易獲得。常用標准熒光微球作為非生物學標准樣品,雞血紅細胞做為生物學標准樣品。微球用樹脂材料製作,或標有熒光素,或不標記熒光素。Flow Cytometry Stands公司可提供熒光強度葯盒,在免疫實驗中可用來作為定量熒游標准來測定每個細胞所標記的抗原位點數目。所用的雞血紅細胞標准樣品製作過程昭下:取3.8%枸櫞酸或肝素抗凝的雞血(抗凝劑:雞血=1:4),經PBS清洗3次,再用5~10ml的1.0%戊二醛與清洗後的雞紅細胞混合,室溫下振盪醛化24h,最後經PBS再清洗,貯4℃冰箱中備用。需要指出的是因為未經熒光染色,所測光信號為雞血紅蛋白的自發熒光。
⑵儀器的操作和使用:
①打開電源,對系統進行預熱;
②打開氣體閾,調節 壓力,獲得適宜的液流速度;開啟光源冷卻系統;
③在樣品管中加入去離子水,沖洗液流的噴嘴系統;
④利用校準標准樣品,調整儀器,使在激光功率、光電倍增管電壓、放大器電路增益調定的基礎上,0和90散射的熒光強度最強,並要求變異系數為最小;
⑤選定流速、測量細胞數、測量參數等,在同樣的工作條件下測量樣品和對照樣品;同時選擇計算機屏上數據的顯示方式,從而能直觀掌握測量進程;
⑥樣品測量完畢後,再用去離子水沖洗液流系統;
⑦因為實驗數據已存入計算機硬碟(有的機器還備有光碟系統,存貯量更大),因此可關閉氣體、測量裝置,而單獨使用計算機進行數據處理;
⑧將所需結果列印出來。
在操作和使用中一定要注意如下事項:
1)光電倍增管要求穩定的工作條件,暴露的較強的光線下以後,需要較長時間的「暗適應」以消除或降低部分暗電流本底才能工作;另外還要注意磁屏蔽;
2)光源不得在短時間內(一般要1h左右)關上又打開;使用光源必須預熱並注意冷卻系統工作是否正常;
3)液流系統必需隨時保持液流暢通,避免氣泡栓塞,所使用的鞘流液使用前要經過過濾、消毒;
4)注意根據測量對象的變換選用合適的濾片系統、放大器的類型等;
5)特別強度每次測量都需要對照組。

E. 在電視中,什麼是sawer filter作用原理

聲表面濾波器。
在玻璃陶瓷類晶片上做成的類似鍍膜梳子形電路,利用晶體本身的固有諧振特性,組成一個選定頻率段的信號濾波單元。
對於電視機,就是在中頻放大電路前使用,將高頻頭輸出的含有高頻、差頻等多種頻率的信號,經[濾波器]阻止、過濾。該濾波器僅僅對選定的中頻段信號有較大輸出,其它頻率信號基本衰減掉。

哈哈,你誤會了。
[聲表面濾波器]的工作原理是晶體表面振動「聲波」,當然不是指我們聽的聲音。
高頻頭輸出信號無論包含什麼頻率,都是電信號,經過[聲表面濾波器]時,已經過 電-聲-電 的形式轉換。濾波是在[聲]的傳遞過程中完成的。
電視伴音、視頻信號都是從中頻信號中分離解碼而得來的。
這樣說,能明白嗎?(我不專業,只是個愛好者,表達可能不確切)。

F. 聲速的測定中如何調節最佳工作頻率

用共振干涉法測量聲速的方法中,改變換能器距離之前,會調整低頻信號發生器的輸出頻率,在調整時,示波器上的波振幅達到最大時,說明兩波共振,也就是換能器的共振。所以換能器的共振頻率即波振幅最大時低頻信號發生器的輸出頻率。

物理系統在特定頻率下,比其他頻率以更大的振幅做振動的情形;此一特定頻率稱之為共振頻率。在共振頻率下,很小的周期驅動力便可產生很大的振動,因為系統儲存有振動的能量。

當阻尼很小時,共振頻率大約與系統自然頻率或稱固有頻率相等,後者是自由振盪時的頻率。


(6)振動信號過濾擴展閱讀:

共振頻率

共振頻率是指一物理系統在特定頻率下,比其他頻率以更大的振幅做振動的情形;此一特定頻率稱之為共振頻率。在共振頻率下,很小的周期驅動力便可產生很大的振動,因為系統儲存有振動的能量。當阻尼很小時,共振頻率大約與系統自然頻率或稱固有頻率相等,後者是自由振盪時的頻率。

一般來說一個系統(不管是力學的、聲響的還是電子的)有多個共振頻率,在這些頻率上振動比較容易,在其它頻率上振動比較困難。假如引起振動的頻率比較復雜的話(比如是一個沖擊或者是一個寬頻振動)一個系統一般會「挑出」其共振頻率隨此頻率振動,事實上一個系統會將其它頻率過濾掉。

G. 提升機常見故障有哪些

礦井提升機的三類常見故障

H. 請問大神,已知振動信號采樣點,怎麼用matlab實現平滑濾波

1. 建議在fdatool下完成濾波器設計。
2. 您搞錯了很重要的概念,「采樣頻率」是不能用數字信號本身觀察出來的,因為數字信號本身已經沒有了時間概念,或者說,給定數字信號,任意給出一個采樣率,都能找到一個相對應的模擬信號。不過你既然有時間信號,那麼采樣時間的間隔就是采樣周期,倒數就是采樣頻率。

I. 什麼是振動信號濾波器

濾波器(filter),是一種用來消除干擾雜訊的器件,將輸入或輸出經過過濾而得到純凈的直流電。對特定頻率的頻點或該頻點以外的頻率進行有效濾除的電路,就是濾波器,其功能就是得到一個特定頻率或消除一個特定頻率。
振動信號濾波器就是對「振動信號」進行上述濾波處理。

閱讀全文

與振動信號過濾相關的資料

熱點內容
水垢花灑堵 瀏覽:399
企業污水檢測申請書怎麼寫範文 瀏覽:510
沁園凈水機廢水比多少比較好 瀏覽:94
工業污水處理廠安全施工總結 瀏覽:814
蘇伊士污水設計多少錢 瀏覽:321
2020年雨污水改造 瀏覽:8
如何區分一瓶蒸餾水和一瓶稀氯化鉀溶液 瀏覽:154
純水產量怎麼計算 瀏覽:672
污水處理廠綠化管理規范 瀏覽:81
12代軒逸空調濾芯怎麼更換 瀏覽:757
污水有哪些危險 瀏覽:165
樹脂工藝品古代 瀏覽:953
重慶市造紙廠污水絮凝劑多少錢 瀏覽:473
濟南醫院污水處理多少錢 瀏覽:111
澤德污水提升器工作原理圖 瀏覽:243
磁石濾芯加什麼最好 瀏覽:264
冷水機組的水垢系數 瀏覽:823
最大埋深深度不大於多少米社提升泵 瀏覽:28
ro純凈水和edi超純水濕巾 瀏覽:441
茶杯如何清除水垢 瀏覽:641