『壹』 什麼是陽離子交換容量(CEC),名詞解釋定義
陽離子交換其實是復分解反應的一種。
復分解反應,是四大基本反應類型之一。復分解反應是由兩種化合物互相交換成分,生成另外兩種化合物的反應。復分解反應的實質是發生復分解反應的兩種物質交換離子,結合成難電離的物質——沉澱、氣體或弱電解質(最常見的為水),使溶液中離子濃度降低,化學反應即向著離子濃度降低的方向進行。可簡記為AB+CD→AD+CB。
基本條件:發生復分解反應的兩種物質能在水溶液中交換離子,結合成難電離的物質(沉澱、氣體或弱電解質)。
1、鹼性氧化物+酸:酸的酸性較強(如鹽酸、硫酸、硝酸等),可發生反應。
2、酸+鹼(中和反應):任何酸和任何鹼都能發生中和反應。
3、酸+鹽:強酸制弱酸;交換離子後有沉澱;強酸與碳酸鹽反應;滿足一個條件即可發生反應。弱酸一般不和強酸鹽反應,但氫硫酸可以和硝酸銅或硫酸銅反應,生成硫化銅的沉澱,這是弱酸制強酸的特例。
4、鹼+鹽:強鹼能與銨鹽反應;兩種反應物都可溶、交換離子後有沉澱、水、氣體三者之一;滿足一個條件即可發生反應。能產生氣體的只有強鹼與銨鹽反應這一種,因為氫氧化銨受熱時不穩定,容易分解為氨氣和水,實驗室用氯化銨和氫氧化鈣製取氨氣,生成氯化鈣,水和氨氣。
5、鹽+鹽:兩種反應物都可溶,交換離子後有沉澱、水、氣體三者之一,滿足一個條件即可發生反應。
希望我能幫助你解疑釋惑。
『貳』 陽離子交換質量作用方程
(一)陽離子吸附親合力
就特定的固相物質而言,陽離子吸附親合力是不同的。影響陽離子吸附親合力的因素主要是;(1)同價離子,其吸附親合力隨離子半徑及離子水化程度而差異,一般來說,它隨離子半徑的增加而增加,隨水化程度的增加而降低;離子半徑越小,水化程度越高。例如Na+、K+、NH4+的離子半徑分別為0.98、1.33和1.43Å,其水化半徑分別為7.9、5.37和5.32Å;他們的親合力順序為NH4+>K+>Na+。(2)一般來說,高價離子的吸附親合力高於低價離子的吸附親合力。
按各元素吸附親合力的排序如下:
水文地球化學基礎
上述排序中,H+是一個例外,它雖然是一價陽離子,但它具有兩價或三價陽離子一樣的吸附親合力。
值得注意的是,上述排序並不是絕對的,因為陽離子交換服從質量作用定律,所以吸附親合力很弱的離子,只要濃度足夠大,也可以交換吸附親合力很強而濃度較小的離子。
(二)陽離子交換質量作用方程
按質量作用定律,陽離子交換反應可表示為:
水文地球化學基礎
式中,KA-B為陽離子交換平衡常數,A和B為水中的離子,Ax和Bx為吸附在固體顆表面的離子,方括弧表示活度。
以Na-Ca交換為例,其交換反應方程為:
水文地球化學基礎
(1.146)式表明,交換反應是等當量交換,是個可逆過程;兩個鈉離子交換一個鈣離子。如果水中的Na+交換已被吸附在固體顆粒表面的Ca2+(即Cax),則反應向右進行;反之,則向左進行。如反應向右進行,那麼,就鈣離子而言,是個解吸過程;就鈉離子而言,是個吸附過程。所以,陽離子交換反應,實際上是一個吸附-解吸過程。
在地下水系統中,Na-Ca交換是一種進行得最廣泛的陽離子交換。例如,當海水入侵到淡水含水層時,由於海水Na+遠高於淡水,而且淡水含水層顆粒表面可交換性的陽離子主要是Ca2+,因此產生海水中的Na+與顆粒表面的Ca2+產生交換,形成Na+被吸附而Ca2+被解吸,方程(1.146)向右進行。又如,如果在某個地質歷史里,淡水滲入海相地層,按上述類似的機理判斷,則產生Na+被解吸Ca2+被吸附的過程,方程(1.146)向左進行。
Na-Ca交換反應方向的判斷,以及對地下水化學成分的影響,仍至對土壤環境的影響,是水文地球化學及土壤學中一個很重要的問題,後面將作更詳細的介紹。
上述(1.145)式中都使用活度,水中的A和B離子活度可以按第一節所提供的方法求得,但如何求得被吸附的陽離子(Ax和Bx)的活度,目前還沒有太滿意的解決辦法。萬賽羅(Vanselow,1932)〔7〕提出,規定被吸附離子的摩爾分數等於其活度。
摩爾分數的定義為:某溶質的摩爾分數等於某溶質的摩爾數與溶液中所有溶質摩爾數和溶劑摩爾數總和之比。其數學表達式如下
水文地球化學基礎
式中,xB為B組分的摩爾分數,無量綱;mA為溶劑的摩爾數(mol/L);mB、mC、mD、……為溶質B、C、D……的摩爾數(mol/L)。就水溶液而言,溶劑是水,1mol H2O=18g,lL H2O=1000g,所以l升溶劑(H2O)的摩爾數=1000/18=55.56mol/L。
按照上述摩爾分數的定義,Ax和Bx的摩爾分數的數學表達式為:
水文地球化學基礎
式中,NA和NB分別為被吸附離子A和B的摩爾分數;(Ax)和(Bx)分別為被吸附離子A和B的摩爾數(mol/kg)。
以摩爾分數代替被吸附離子A和B的活度。則(2.145)的交換平衡表達式可寫成:
水文地球化學基礎
式中,
從理論上講,
在研究陽離子交換反應時,人們關心的問題是,在地下水滲流過程中,從補給區流到排泄區,由於陽離子交換反應,地下水中的陽離子濃度將會產生何種變化?為了簡化問題起見,假定其他反應對陽離子濃度的變化都可忽略,那麼從理論上講,地下水從原來的地段進入一個具有明顯交換能力的新地段後,必然會破壞其原有的陽離子交換平衡,而調整到一個新的交換平衡條件。達到新的平衡後,其陽離子濃度的變化主要取決於:(1)新地段固體顆粒表面各種交換性陽離子的濃度,以及它們互相間的比值;(2)進入新地段地下水的原有化學成分,特別是陽離子濃度。隨著地下水的不斷向前流動,陽離子交換平衡不斷被打破,又不斷地建立新的平衡。其結果是,不但水的陽離子濃度變化了,含水層固體顆粒表面有關的交換性陽離子濃度也改變了。為了定量地說明上述理論上的判斷,特列舉下列例題的計算。
例題1.8
在某一地下水流動系統中,有一段具有明顯陽離子交換能力且含有大量粘土礦物的地段,試利用陽離子交換質量平衡方程(2.150),計算地下水達到新的交換平衡後,水中Ca2+和Mg2+濃度的變化,含水層粘土礦物顆粒表面交換性陽離子(被吸附的陽離子)濃度的變化。
假定:(1)含粘土礦物地段的陽離子交換容量為100meq/100g,交換性陽離子只有Ca2+和Mg2+,且Cax=Mgx,即Cax=Mgx=50meq/100g;(2)進入該地段前,地下水中的Ca2+和Mg2+濃度也相等,即Ca2+=Mg2+=1×10-3mol/L;(3)該含水層地段的有關參數:孔隙度n=0.33;固體顆粒密度ρ=2.65g/cm3;(4)地下水與該地段粘土礦物顆粒相互作用後,達到平衡時,選擇系數
計算步驟:
(1)求新的地下水進入該地段前的NCa和NMg
按題意所給,Cax=Mgx=50meq/100g。把它們換算為以mol/g表示,則Cax=Mgx=0.25×10-8mol/g;將此數據代入(1.149)式,則
NCa=NMg=0.5
(2)求新的地下水剛進入該地段時,起始狀態的
按質量作用定律,Ca-Mg交換方程為:
水文地球化學基礎
交換平衡後,雖然各自的摩爾分數有所增減,但其總數仍然不變,即NCa+NMg=1。
設達到新交換平衡時,NCa=Y,那麼,NMg=1-Y。
把上述假設代入(1.151)式,則
水文地球化學基礎
因達到新的交換平衡時,
水文地球化學基礎
因達到新交換平衡時,Cax和Mgx雖然有變化,那其總和仍然不變,即Cax+Mgx=0.5。設那時的Cax=Z,那麼:
水文地球化學基礎
把(1.154)式代入(1.153)式,得:
水文地球化學基礎
由於達到交換平衡前後,固相中的交換性鈣離子(Cax)和液相中的溶解鈣離子的總和不變。就一升水及其所接觸的岩土而論,達到交換平衡前,一升水的Ca2+為1mmol;岩土中的Cax=0.25mmol/g,-升水所佔據的岩土體積=5379.5g。達交換平衡後,一升水的Ca2+摩爾數為x,岩土中交換性鈣離子(Cax)濃度為Z。那麼,其均衡方程為:
水文地球化學基礎
式的左邊,為交換平衡前固液相中鈣離子總量(mmol);式的右邊,為交換平衡後固液相中鈣離子總量(mmol)。
整理(1.156)式,得:
水文地球化學基礎
把(1.157)式代入(1.155)式,整理後得:
水文地球化學基礎
解方程(1.158),得:
Z=0.250046,即交換平衡後,Cax=0.250046mmol/g
那麼,Mgx=0.5-0.250046=0.249954mmol/L
按上述計算摩爾分數的方法,得:
NCa=0.50009,NMg=0.49991
把所算得的Z值代入(1.157),得:
x=0.7525,即交換平衡後,〔Ca2+〕=0.7525mmol/L
那麼,〔Mg2+〕=2-0.7525=1.2475mmol/L
上述計算結果說明,當新的地下水通過交換地段,達到交換平衡時,吸附的陽離子(Ca2+和Mg2+)的濃度或摩爾分數的比值變化極小;相比之下,地下水中Ca2+和Mg2+的濃度變化很大,〔Mg2+〕/〔Ca2+〕從1約增至1.7。如果隨後進入該地段的地下水〔Mg2+〕/(Ca2+)仍然是1的話,地下水再次破壞了剛建立起來的交換平衡,交換反應又繼續進行,直至NMg/NCa=O.6為止。此時,新流入地下水的Ca2+和Mg2+的濃度才不會改變。然而,要達到此種狀態,必需通過無數個孔隙體積的水,甚至要幾百萬年時間才能完成。
上述計算還說明,陽離子的交換方向,從左向右進行(2.151式),水中的Ca2+被吸附,而固相表面所吸附的Mg2+不斷被解吸。交換反應方向不僅取決於水中兩種離子的濃度比,同時也取決於吸附離子的摩爾分數比。如若交換的起始條件為NMg=0.375和NCa=0.625,流入的水,其鈣鎂活度比為1,那麼流過該地段的地下水,其Ca2+和Mg2+的濃度就沒有變化了。如若交換的起始條件為NMg/NCa<0.6,其交換方向則與上述相反,從右向左進行(2.151式)。
(三)地下水系統中的Na-Ca交換
地下水中Na-Ca交換在地下水化學成分形成和演變過程中,是一個很重要的陽離子交換過程,它無論在深層地下水形成和演變,或者在淺層潛水水化學成分的改變,特別是硬度升高等方面,都具有重要意義;在土壤科學中,它對鹽鹼土的形成,也有重要作用。
地下水系統中,固液相間的Na-Ca交換也服從質量作用定律,但其質量作用方程的表達形式不同。其交換反應如下:
水文地球化學基礎
(2.159)反應最常用的質量作用方程是Gappn方程:
水文地球化學基礎
在Gapon方程的基礎上,又有許多學者提出類似於此方程的各種表達式。例如,美國鹽實驗室〔17〕在研究灌溉水與土壤間的Na-Ca交換時,提出類似於Gapon方程的表達式:
水文地球化學基礎
式中,Nax為達到交換平衡時土壤的交換性鈉量(meq/100g);CEC為土壤的陽離子交換容量(meq/100g);Na+、Ca2+和Mg2+是達交換平衡時水中這些離子的濃度(meq/L);K為平衡常數。
(1.161)式左邊項表示為:
水文地球化學基礎
式中的ESR稱為「交換性鈉比」。
(1.16l)式右邊項表示為:
水文地球化學基礎
式中的「SAR」稱為鈉吸附比,它是Na-Ca交換中一個很重要的參數。(1.161)式可改寫成:
水文地球化學基礎
(1.164)式說明,ESR與SAR線性相關,水中的SAR越高,岩土中的ESR值也越大,岩土中的Nax也越高。許多學者通過岩土的Na-Ca交換試驗,得出了有關回歸方程,列於表1.20。
表1.20Na-Ca交換的回歸方程
表1.20中的Na-Ca交換方程是實驗方程,應用起來當然有其局限性。其中,美國鹽實驗室的回歸方程是用美國西部12個土壤剖面59個土樣試驗得出的,所以其代表性較好。盡管有其局限性,但是,應用此類方程判斷Na-Ca交換的方向,定量化計算其交換量,還是比較有效的。表1.21的數據充分說明這一推斷。
表1.21Na-Ca試驗中某些參數的變化〔2〕
表1.21中是一組Na-Ca交換試驗數據,其中包括實測值與計算值的對比。表中的數據可說明以下幾點;
(1)Na-Ca交換反應方向取決於水中的起始SAR值,及岩土中的起始ESR值。例如,用SAR值分別為0.73和9.81的水淋濾ESR值為0.046的同一種土壤時,淋濾後,前者的(Cax+Mgx)從8.56增至8.76meq/100g,水中的Ca2+和Mg2+被吸附,而固體顆粒表面的交換性Na+解吸到水中,按(1.159)式,其交換反應方向朝左進行;相反,後者的(Cax+Mgx)從8.56減至7.52meq/100g,水中的Na+被吸附,而固體顆粒表面的交換性Ca2+和Mg2+解吸進入水中,按(1.159)式,其交換反應向右進行。如果起始條件已知,即水中的SAR值及岩土中的ESR值已知,也可判斷其反應方向。例如,把表1.21中的SAR值0.73和9.81分別代入表1.20中的3號方程,ESR值的計算值分別為0.038和0.1379。前者的ESR計算值(0.038)小於土壤的起始ESR值(0.046,見表1.21),反應按(1.159)式向左進行;後者的SER計算值(0.1379)明顯大於土壤的起始ESR值(0.046),反應按(1.159)式向右進行。也就是說;如果ESR計算值小於岩土的ESR值,反應向左進行;反之,則相反。當然,如果土壤的起始ESR值為0.038,與S4R值為0.73的水相互作用時,Na-Ca交換處於平衡狀態,水中的Na+、Ca2+和Mg2+濃度不會改變。表1.22是現場試驗結果,結果說明,SAR值越高,固體表面解吸出來的Ca2+和Mg2+就越多,水的硬度增加就越大。這些數據充分證明了上述理論。
表1.22SAR值不同的污水現場試驗結果〔2〕
註:硬度以CaCO3計(mg/L)。
(2)把Na-Ca交換方程應用於實際是比較可靠的。表1.21中(Cax+Mgx)的實測值及計算值相差很小,說明了這一點。其計算方法如下:以計算SAR=0.73的水為例,將0.73代入表1.20中的方程3,求得ESR=0.038;將此值及CEC值(8.96)代入(1.162)式,求得Nax=0.328meq/100g;將CEC值減去Nax值,即為(Cax+Mgx)值(因為土中吸附的陽離子主要是Na+、Ca2+和Mg2+),其值為8.63meq/100g。
SAR值不僅在研究Na-Ca交換反應中是重要的,而且它是灌溉水質的一個重要參數。前面談到,SAR高的水,在水岩作用過程中,引起水中的Na+被吸附到固相顆粒表面上,2個Na+交換一個Ca2+或Mg2+(等當量交換)。因為2個Na2+的大小比一個Ca2+或Mg2+大,因而引起土壤的透氣性減小,產生板結及鹽鹼化。有關SAR值的灌溉水質標准可參考有關文獻。本書不詳述。
『叄』 為什麼說陽離子交換樹脂交換能力是陰離子交換樹脂的兩倍
因為陽樹脂的工作交換容量高,通常陽樹脂的填裝量都比陰樹脂少,樹脂失效時通常是陰柱失效,往往這時陽柱還有交換能力。這時我工作總結的,沒有人指導,您僅供參考
『肆』 質量作用方程
1.陽離子吸附親和力
Deutsch(1997)根據Appelo和Postma(1993)的資料,對二價陽離子的吸附親和力進行了研究,得到的吸附親和力順序如下:
Pb2+>Ba2+≈Sr2+>Cd2+>≈Zn2+≈Ca2+>Mg2+≈Ni2+≈Cu2+>Mn2+>Fe2+≈Co2+
在常見的天然地下水系統中,Ca2+和Mg2+通常為地下水中的主要陽離子,它們在水溶液中相對較高的含量將使其成為含水層顆粒表面的主要吸附離子,盡管一些微量元素可能更緊密地被吸附在含水層顆粒表面上,但在污染地下水系統中,若吸附親和力更強的Pb2+和Ba2+的含量與Ca2+、Mg2+的含量近似,則含水層顆粒表面的主要吸附離子將變為Pb2+和Ba2+,這將大大地影響Pb2+和Ba2+在地下水中的遷移能力。
綜合來講,陽離子和陰離子的吸附親和力順序分別為(何燧源等,2000):
水文地球化學基礎
可見,陽離子中Li+和Na+最不易被吸附,陰離子中Cl—和
2.陽離子交換質量作用方程
(1)陽離子交換平衡常數
按質量作用定律,陽離子交換反應可表示為:
水文地球化學基礎
式中:KA—B為陽離子交換平衡常數;A和B為水中的離子;AX和BX為吸附在固體顆粒表面的離子;方括弧表示活度。
陽離子交換反應,實際是一個吸附—解吸過程。以Na—Ca交換為例,其交換反應方程為:
水文地球化學基礎
在地下水系統中,Na—Ca交換是一種進行得最廣泛的陽離子交換。例如,海水入侵過程存在著典型的離子交換。當在沿海地帶大量抽取含水層中的淡水時,海水將對含水層進行補給。初始狀態下含水層顆粒表面吸附的主要是Ca2+和Mg2+,海水中的主要陽離子為Na+,陰離子為Cl—。海水入侵將導致含水層中發生下述陽離子交換反應:
水文地球化學基礎
由於Cl—通常不易被吸附,也不參與其他的水岩作用過程。所以相對於Cl—來說,該過程將使Na+的遷移能力降低。
地下水系統中另一種常見的情況與上述過程相反,即淡水驅替海水時,Ca2+置換被吸附的Na+,反應式如下:
水文地球化學基礎
式(3—90)中各組分均為活度,水中的A和B離子活度可以按本章第一節所提供的方法求得,但如何求得被吸附的陽離子的活度,目前還沒有太滿意的解決辦法。Vanselow(1932)提出,規定被吸附離子的摩爾分數等於其活度。
(2)摩爾分數
某溶質的摩爾分數等於某溶質的摩爾數與溶液中所有溶質摩爾數和溶劑摩爾數總和之比。其數學表達式如下:
水文地球化學基礎
式中:xB為B組分的摩爾分數,量綱為一;mA為溶劑的摩爾數,mol;mB,mC,mD…為溶質B,C,D…的摩爾數,mol。
按照上述摩爾分數的定義,AX和BX的摩爾分數的數學表達式為:
水文地球化學基礎
式中:xA和xB分別為被吸附離子A和B的摩爾分數;mAX和mBX分別為被吸附離子A和B的摩爾數,mol。
以摩爾分數代替被吸附離子A和B的活度。則式(3—90)的交換平衡表達式可寫成:
水文地球化學基礎
式中:
理論上講,
【例題3—12】在某地下水系統中,有含大量黏土礦物、具有明顯陽離子交換能力的地段,假定:
(1)該地段含水層的陽離子交換容量為100meq/100g,含水層中的交換性陽離子只有Ca2+和Mg2+,初始狀態下含水層顆粒中Ca2+、Mg2+的含量相等;
(2)在進入該地段之前,地下水中的Ca2+、Mg2+濃度相等,均為10—3mol/L;
(3)含水層的孔隙度n為0.33,固體顆粒的密度p為2.65g/cm3;
(4)含水層中發生的陽離子交換反應為:
水文地球化學基礎
不考慮活度系數的影響,其平衡常數為:
水文地球化學基礎
試用陽離子交換平衡關系計算,當地下水通過該地段並達到新的交換平衡後,水溶液中及含水層顆粒表面Ca2+、Mg2+濃度的變化。
解:設達到新的交換平衡後,含水層顆粒中Ca2+的摩爾分數為y、水溶液中Ca2+的濃度為xmmol/L,則這時含水層顆粒中Mg2+的摩爾分數為1—y、水溶液中Mg2+的濃度為(2—x)mmol/L,故有:
水文地球化學基礎
整理得:
水文地球化學基礎
已知含水層的CEC為100meq/100g,因此對於二價陽離子來說,含水層顆粒可吸附的陽離子總量為50mmol/100g=0.5mmol/g。若用z表示達到交換平衡後1g含水層顆粒中Ca2+的含量,則有:
y=z/0.5 (3—98)
以式(3—98)代入式(3—97)得:
水文地球化學基礎
為了計算上述變化,需要對1L水所對應的含水層中Ca2+的質量守恆關系進行研究。已知含水層的孔隙度為0.33,顯然在這樣的含水層中,1L水所對應的含水層顆粒的體積為0.67/0.33(L),相應的含水層顆粒的質量為:
m=0.67/0.33×1000×2.65=5380.3g
故吸附作用前後1L水所對應的含水層中Ca2+的質量守恆關系為:
5380.3×0.25+1=5380.3×z+x (3—100)
式中:0.25為吸附作用前1g含水層顆粒中Ca2+的含量,mmol。
由式(3—100)可得:
x=1346—5380z (3—101)
將式(3—101)代入式(3—99)並整理得:
2152z2—3229.2z+673=0 (3—102)
求解得:z=0.25005mmol/g。
即交換平衡後,CaX=0.25005mmol/g。
而MgX=0.5—0.25005=0.24995mmol/g。
把z值代入式(3—101)可得:x=0.731mmol/L。
即交換平衡後,[Ca2+]=0.731mmol/L,[Mg2+]=2—0.731=1.269mmol/L。
由此可見,地下水通過該黏性土地段後,盡管Ca2+、Mg2+在含水層顆粒中的含量變化很小,但它們在地下水中的含量變化卻較大,Mg2+從原來的1mmol/L增加到了1.269mmol/L,Ca2+則從原來的1mmol/L減少到了0.731mmol/L,發生了離子交換。
『伍』 影響陽離子交換能力的因素有哪些
土壤溶液來中的陽離子進行交自換,稱為陽離子的交換作用。影響因素有——(1)陽離子的代換能力隨離子價數的增加而增大,因為高價陽離子的電荷量大、電性強所以代換能力也大,各種陽離子代換力的大小順序:Na+<K+<NH4+<Mg2+<Ca2+<H+<Al3+<Fe3+(2)等價離子代換能力的大小,隨原子序數的增加而增大(3)離子運動速度愈大,交換力愈強(4)陽離子的相對濃度及交換生成物的性質。
影響土壤陽離子交換量的因素有:陽離子交換量:每千克干土中所含的全部陽離子總量,以厘摩爾(+)每千克土或 c mol(+)kg的-1次冪表示。影響因素——(1)膠體的種類,有機膠體>無機膠體,有機質高的>有機質低的,次生鋁硅酸鹽(2:1>1:1)>次生氧化物(2)溶液的pH值(3)土壤質地,質地愈細交換量愈高。
『陸』 陽離子交換容量meq/100g怎麼換算成mol/100g
一價離子: 1meq/100g=1mol/100g
二價離子: 1meq/100g=2mol/100g
依此類推。
『柒』 陽離子交換
1.陽離子交換
按質量作用定律,陽離子交換反應可以表示為
水文地球化學基礎
式中:KA—B為陽離子交換平衡常數;A和B為水中的離子;AX和BX為吸附在固體顆粒表面的離子;方括弧指活度。
在海水入侵過程中,准確模擬陽離子交換作用是預測陽離子在含水層中運移的前提條件。按照質量作用定律可以用一個平衡常數把離子交換作為一種反應來描述。例如Na+、Ca2+的交換:
水文地球化學基礎
平衡常數為:
水文地球化學基礎
式(3—115)表明,交換反應是等當量的,是個可逆過程;兩個Na+交換一個Ca2+。如果水中的Na+與吸附在固體顆粒表面的Ca2+(即CaX)交換,則反應向右進行;反之,則向左進行。如果反應向右進行,Ca2+是解吸過程,而Na+是吸附過程。所以,陽離子交換實際上是一個吸附—解吸過程。Na+、Ca2+的交換是一種最廣泛的陽離子交換。當海水入侵淡水含水層時,由於海水中Na+遠高於淡水,而且淡水含水層顆粒表面可交換的陽離子主要是Ca2+,因此產生Na+、Ca2+之間的離子交換,Na+被吸附而Ca2+被解吸,方程(3—115)向右進行;當淡水滲入海相地層時,則Na+被解吸而Ca2+被吸附,反應向左進行。
2.質量作用方程
描述離子交換反應的方程式有多種,通常主要是通過對實驗數據的最佳擬合來決定選擇哪一種方程式,眾多的研究者很難達成一致(Gaines et al.,1953;Vanselow,1932;Gapon,1933;Appelo et al.,1993;Grolimund et al.,1995;Vulava et al.,2000),因為目前並沒有一個統一的理論來計算吸附劑上的離子活度,而前面提到的迪拜—休克爾方程、戴維斯方程都是適用於水溶液中的離子活度計算。
交換性陽離子活度有時用摩爾分數來計算,但更為常用的是當量分數作為交換位的數量分數或者作為交換性陽離子的數量分數。在一種理想的標准狀態下,交換劑只被一種離子完全占據,交換離子的活度等於1。對於等價交換使用哪一種方程式沒有區別,但是對於非等價交換影響十分顯著(Grolimund et al.,1995;Vulava et al.,2000)。所有的模型都有相同的函數形式:
水文地球化學基礎
即為交換位濃度(單位質量吸附劑的摩爾數)與無單位函數
海水入侵過程中的交換反應主要為Na+與Ca2+之間的交換,通常寫作:
水文地球化學基礎
X為—1價的表面交換位,交換位X的總濃度為
水文地球化學基礎
式中:S指每單位質量固體的總交換位濃度,mol/g。這種情況下S的量等於陽離子交換容量(只要單位換算統一即可)。
水文地球化學基礎
式(3—120)的書寫方式符合Gaines—Thomas方程式,Gaines(蓋恩斯)和Thomas(托馬斯)(1995)最先給出交換性陽離子熱動力學標准態的嚴格定義。它使用交換性陽離子的當量分數作為吸附離子的活度。若式(3—120)使用摩爾分數,則遵守Vanselow(1932)公式。
如果假定吸附陽離子的活度和被離子占據的交換位的數目成正比,反應式(3—115)則可寫成
水文地球化學基礎
式(3—122)符合Gapon(加彭)方程式。在Gapon方程式中,摩爾分數和當量分數是一樣的,都是電荷為—1的單一交換位。
還有一種交換形式為:
水文地球化學基礎
Y指交換位的電荷為—2,這種反應式同樣是交換反應的一種有效熱力學描述。它假定交換位Y的總濃度為
水文地球化學基礎
S則為陽離子交換容量的二分之一。Cernik(采爾尼克)等根據當量分數利用反應式(3—123),將交換系數表示為:
水文地球化學基礎
3.質量作用方程擬合
利用Gaines—Thomas(GT)方程式、Vanselow(VS)方程式和Gapon(GP)方程式對在砂樣中進行的試驗所獲得的數據進行擬合,根據擬合結果作出 Na+、Ca2+、Mg2+、K+吸附等溫線(劉茜,2007),如圖3—4~圖3—7所示。
圖3—4 Na+吸附等溫線和擬合數據
由吸附等溫線可以看出,砂樣對Na+、Mg2+、K+的吸附量均隨著溶液中離子濃度的增加而逐漸增加,而Ca2+發生解吸。圖3—4中,砂樣對Na+的吸附量隨溶液中離子濃度的增加而緩慢增加。圖3—5中,在Ca2+濃度較低時,解吸量迅速增大,當Ca2+濃度較高時,隨濃度增加解吸量增加緩慢,逐漸趨於平穩狀態。
圖3—6中Mg2+濃度較低時,吸附量增加較慢,在較高濃度時增加較快,但並沒有出現Ca2+的解吸等溫線中的平穩狀態,依然為直線型,且直線的斜率大於低濃度狀態時的斜率,說明Na+、Mg2+的吸附速率在低濃度(海水含量為20%左右)時較小,在高濃度時,吸附速率變大;Ca2+的解吸在高濃度時基本達到平衡,而Na+、Mg2+還有增長趨勢,也較好證明了試驗所用砂樣的交換位主要為Ca2+所佔據。圖3—7中K+實測值的吸附等溫線則沒有出現Ca2+、Na+、Mg2+的規律,雖然整體上隨著溶液離子濃度的增加,吸附量也是增長趨勢,但並沒有出現直線規律。究其原因,主要是陽離子交換吸附作用不大,主要是化學吸附,因為K+的水化膜較薄,所以有較強的結合力,K+被吸附後,大多被牢固吸附在黏土礦物晶格中。
圖3—5 Ca2+吸附等溫線和擬合數據
圖3—6 Mg2+吸附等溫線和擬合數據
圖3—7 K+吸附等溫式和擬合數據
由吸附等溫線模擬圖(圖3—4~圖3—7)及公式與試驗數據擬合的相關系數(表3—17)看出,GT方程式擬合效果較好,能夠很好地預測離子交換趨勢。因此,在多組分離子交換模擬計算中採用Gaines—Thomas方程,為陽離子交換的定量研究提供了依據。
表3—17 GT、GP、VS方程式擬合的相關系數
所以根據Gaines—Thomas方程式(3—126)~式(3—131)計算離子交換系數(表3—18)。由於 9 種配比濃度的離子強度不同,所以各自的交換系數也有所差別。對比
水文地球化學基礎
表3—18 試驗土樣不同濃度下的交換系數
『捌』 陽離子交換樹脂交換容量的國家標準是多少
一般按900-1000mmol/L。
離子交換樹脂工作交換容量的測試方法:版
1、陽樹脂工作交換容量計算公權式:Qa=(A+S)V/ VR
Qa:陽樹脂的工作交換容量,單位為mol/m³
A:陽床平均進水鹼度,單位為mmol/l
S: 陽床平均出水酸度,單位為mmol/l
V: 周期制水總量, 單位為m³
VR:床內樹脂體積(逆流再生則不含壓脂層體積),單位為m³
2、陰樹脂工作交換容量計算公式:Qk=(S+〔CO2〕+〔SiO2〕)V/ VR
Qk:陰樹脂工作交換容量,
〔CO2〕:陰床進水平均CO2濃度,單位為mmol/l;
〔SiO2〕:陰床進水平均SiO2濃度,單位為mmol/l;
S、V、 VR同陽樹脂工作交換容量公式;
詳情點擊:網頁鏈接
『玖』 測定膨潤土(蒙脫石)陽離子交換容量CEC有什麼意義
膨潤土(蒙脫石)晶層中的陽離子具有可交換性能,在一定的物理—化學條件下,不僅Ca2+、Mg2+、Na+、K+等可相互交換,而且H+、多核金屬陽離子(如羥基鋁十三聚體)、有機陽離子(如二甲基雙十八烷基氯化銨)也可交換晶層間的陽離子。陽離子交換性是膨潤土(蒙脫石)的重要工藝特性,利用這一特性,可進行膨潤土的改型,由鈣基膨潤土改型為鈉基膨潤土、活性白土、鋰基膨潤土、有機膨潤土、柱撐蒙脫石等產品。 陽離子交換容量(Cation Exchange Capacity)是指PH值為7的條件下所吸附的K+、Na+、Ca2+、Mg2+ 等陽離子總量,簡稱為CEC。膨潤土礦陽離子交換容量和交換性陽離子是判斷膨潤土礦質量和劃分膨潤土礦屬型的主要依據, CEC值愈大表示其帶負電量愈大,其水化、膨脹和分散能力愈強;反之,其水化、膨脹和分散能力愈差。如北票市膨潤土陽離子交換容量CEC 為66.7mmol/100g,阜新市的膨潤土陽離子交換容量CEC 為85.55 mmol/100g,內蒙古優質膨潤土陽離子交換容量CEC為115—139 mmol/100g。
研究表明,蒙脫土的片層中間的CEC通常在60-120mmol/100G范圍內,這是一個比較適合與聚合物插層形成納米復合材料的離子交換容量。因為如果無機物的離子交換容量太高,極高的層間庫侖力使得無機物片層間作用力過大,不利於大分子鏈的插入;如果無機物的離子交換容量太低,無機物不能有效地與聚合物相互作用,不足以保證無機物與聚合物基體的相容性,同樣不能得到插層納米復合物材料。適宜的離子交換容量、優良的力學性能使得蒙脫土成為制備PLS納米復合材料的首選礦物。CEC值和膨潤土(蒙脫石)的內表面積與蒙脫石含量呈正相關關系,用陽離子交換容量CEC 為100mmol/100g的膨潤土和 用陽離子交換容量CEC 為61mmol/100g的膨潤土製備插層納米復合物材料,盡管層間距相差不大(d001=1.98和1.91nm),但比表面(421.5和127.2m2。g-1)和吸氨量(318.3和80.7mg。g-1)卻有較大的差別. 與原料土的比表面(76.0和90.5m2。g-1)及吸氨量(49.2和62.1mg。g-1)相比,分別增加5.5和1.4倍及6.5和1.3倍,比表面和吸氨量的增加倍數有一定的對應關系. 這說明層電荷密度主要影響材料的表面性質. 由於層間距(d001)的變化主要取決於交聯劑的大小, 因而不同層電荷密度對於採用同種的交聯劑制備材料的層間距影響不大。
測定CEC的方法很多,如定氮蒸鎦法、醋酸銨法、氯化銨-醋酸鈉法、氯化銨-無水乙醇法、氯化銨-氨水法、氯化鋇-硫酸法等。目前,膨潤土CEC測定是依據國標JC/T 593—1995(膨潤土試驗方法)。具體方法如下:
(1)方法提要
用含指示陽離子NH4+的提取劑處理膨潤土礦試樣,將試樣中可交換性陽離子全部置換進入提取液中,並使試樣飽和吸附指示陽離子轉化成銨基上。將銨基土和提取液分離,測定提取液中的鉀、鈉、鈣及鎂等離子,則為相應的交換性陽離子量。
(2)主要試劑和材料
a. 離心機:測量范圍為0~400r/min;
b. 磁力攪拌器:測量范圍為50~2 400r/min』
c. 鉀、鈉、鈣、鎂混合標准溶液〔c(0.01Na+、0.005Ca2+、0.005Mg2+、0.002K+)〕稱取0.5004g碳酸鈣(基準試劑),0.201 5g氧化鎂(基準試劑),0.5844g氯化鈉(高純試劑)和0.1491g氯化鉀(高純試劑)於250mL燒杯中,加水後以少量稀鹽酸使之溶解(小心防止跳濺)。加熱煮沸趕盡二氧化碳,冷卻。將溶液移入1 000mL容量瓶中,用水稀釋至刻度,搖勻,移於乾燥塑料瓶中保存;
d. 交換液:稱取28.6g氯化銨置於250mL水中,加入600mL無水乙醇,搖勻,用1+1氨水調節pH為8.2,用水稀釋至1L,即為0.5mol/L氯化銨-60%乙醇溶液。
e. EDTA標准溶液〔c(0.01EDTA)〕:取3.72g乙二胺四乙酸二鈉,溶解於1 000mL水中。
標定:吸取10mL0.01mol/L氯化鈣(基準試劑)標准溶液於100mL燒杯中,用水稀釋至40~50mL左右。加入5mL4mol/L氫氧化鈉溶液,使pH≈12~13,加少許酸性鉻藍K-萘酚綠B混合指示劑,用EDTA溶液滴至純藍色為終點。
c1= c2·V3/ V4
式中:
c1——EDTA標准溶液的實際濃度,mol/L;
c2——氯化鈣標准溶液的濃度,mol/L;
V3——氯化鈣標准溶液的體積,mL;
V4——滴定時消耗EDTA標准溶液的體積,mL。
f. 洗滌液:50%乙醇,95%乙醇。
(3)試驗步驟
稱取在115~110℃下烘乾的試樣1.000g,置於100mL離心管中。加入20mL50%乙醇,在磁力攪拌器上攪拌3~5min取下,離心(轉速為300r/min左右),棄去管內清液,再在離心管內加入50mL交換液,在磁力攪拌器上攪拌30min後取下,離心,清液收集到100mL容量瓶中。將殘渣和離心管內壁用95%乙醇洗滌(約20mL),經攪拌離心後,清液合並於上述100mL容量瓶中,用水稀釋至刻度,搖勻,待測。殘渣棄去。
交換性鈣、鎂的測定,取上述母液25mL,置於150mL燒杯中,加水稀釋至約50mL,加1mL1+1三乙醇胺和3~4mL4mol/L氫氧化鈉,再加少許酸性鉻藍K-萘酚綠B混合指示劑,用0.01mol/LEDTA標准溶液滴定至純藍色,記下讀數V5,然手用1+1鹽酸中和pH為7,再加氨水-氯化銨緩沖溶液(pH=10),再用0.01mol/LEDTA標准溶液滴至純藍色記下讀數V6。
交換性鉀、鈉的測定:取25mL母液於100mL燒杯中,加入2~3滴1+1鹽酸,低溫蒸干。加入1mL1+1鹽酸及15~20mL水,微熱溶解可溶性鹽,冷卻後溶液移入100mL容量瓶中,以水稀釋至刻度、搖勻,在火焰光度計上測定鉀、鈉。標准曲線的繪制:分取0、3、6、9、12、15mL鉀、鈉、鈣、鎂混合標准溶液於100mL容量瓶中,加入2mL1+1鹽酸,用水稀釋至刻度、搖勻。在與試樣同一條件下測量鉀、鈉的讀數,並繪制標准曲線(此標准系列分別相當於每100g樣中含有0、170、345、520、690、860mg的交換性鈉和0、60、120、175、240、295mg的交換性鉀。
(4)結果計算
鈣、鎂的含量按下式計算:
交換性鈣g/100g= (40c5V5)/(2.5m3)
交換性鎂g/100g=[ 24c5(V6-V5)]/ (2.5m3)
式中:
c5—EDTA標准溶液的實際摩爾濃度mol/L;
V6、V5—滴定時耗用EDTA標准溶液的毫升數,mL;
m3——試樣質量,g。
鉀、鈉的含量按(10)式計算:
交換性鉀(g/100g)= Kmg /(2.5m3)
交換性鈉(g/100g)= Namg/(2.5m3)
式中:
Kmg,Namg—由標准曲線上查得的鉀鈉的毫克數;
m3——試樣質量,g。
『拾』 含蛭石晶層間層礦物的陽離子交換容量及酸浸研究
彭同江 劉福生 張寶述 孫紅娟
(西南科技大學礦物材料及應用研究所,四川綿陽 621010)
摘要 對采自新疆尉犁蛭石礦、河南靈寶-陝西潼關蛭石礦的工業蛭石礦物樣品進行了可交換性陽離子、交換容量和酸處理試驗研究。結果發現新疆尉犁蛭石礦金雲母-蛭石中的可交換性陽離子主要為Na+和Ca2+,其次有Mg2+和K+、Ba2+和Sr2+。而河南靈寶-陝西潼關蛭石礦工業蛭石樣品主要為Ca2+和Mg2+,其次為Na+、K+等。金雲母-蛭石和綠泥石-蛭石間層礦物的陽離子交換容量隨間層結構中蛭石晶層的含量增加而增大,一般在56.92~98.95 m mol/100 g之間,僅為蛭石最大陽離子交換容量的一半。金雲母-蛭石樣品陽離子交換容量大小與K2O含量呈負相關關系,與(Na2O+CaO)含量呈正相關關系。層間可交換性陽離子的氧化物CaO和Na2O的酸浸取率最高,層間不可交換性陽離子的氧化物 K2O次之,八面體中陽離子的氧化物MgO、Fe2O3和Al2O3具有較高的酸浸取率,而四面體陽離子的氧化物SiO2的酸浸取率最低;金雲母-蛭石間層礦物中蛭石晶層含量高的樣品酸浸取率高,金雲母-蛭石間層礦物的耐酸蝕性能不如金雲母。
關鍵詞 金雲母-蛭石;間層礦物;陽離子交換容量;酸浸取物;酸浸取率。
第一作者簡介:彭同江,男,1958年4月出生,博士,教授,礦物晶體化學專業。E-mail:[email protected]。
一、含蛭石晶層間層礦物的陽離子交換容量
(一)原理
根據工業蛭石樣品的化學成分研究,蛭石晶層中可交換性陽離子的種類主要有:K+、Na+、Ca2+、Mg2+、Ba2+、Sr2+等。用醋酸銨(NH4Ac)作為淋洗劑,
中國非金屬礦業
相關系數為0.90。
圖1 金雲母-蛭石樣品陽離子交換容量(CEC) 隨K2O 和Na2O+CaO 含量(質量分數) 的變化
可以看出,隨著K2O含量的增加,樣品的陽離子交換容量減小;隨(Na2O+CaO)含量的增加,陽離子交換容量增加。從而表明,隨K2O含量的增加,蛭石晶層的含量降低;隨(Na2O+CaO)含量的增加,蛭石晶層的含量增加。由此可以得出,在金雲母變化為金雲母-蛭石的過程中,溶液中富含Na+和Ca2+離子組分。
對於金雲母-蛭石樣品來說,我們發現其陽離子交換容量的大小與樣品的粉末X射線衍射譜特徵有一定關系。一般說來,陽離子交換容量小於75 m mol/100 g的樣品,其粉末X射線衍射圖上發現有較強的金雲母的衍射峰;高於95 m mol/100 g樣品,發現有蛭石的衍射峰。這進一步表明對樣品陽離子交換容量的貢獻主要來自於間層結構中蛭石晶層的含量。蛭石晶層的含量越高,間層礦物的陽離子交換容量越大。
二、酸浸實驗研究
(一)酸處理實驗與酸浸取物分析
酸處理試驗步驟與實驗方法如下:
1)將燒杯在100℃下烘乾1 h後稱重。
2)分別在燒杯中加0.5 g樣品。
3)將盛樣品的燒杯放在烘箱中在100℃下烘乾2 h。
4)從烘箱中取出燒杯在乾燥器中涼至室溫後稱重,計算出樣品除去吸附水後的質量。
5)將燒杯中分別加入0.5 mol/L,1.0 mol/L,1.5 mol/L,2.0 mol/L稀鹽酸30 mL,攪拌均勻後靜止作用12 h。
6)過濾、洗滌、定溶後用原子吸收光譜法測定濾液中K、Na、Mg、Si、Fe、Al的含量。
利用上述方法對所選的3個樣品進行了酸處理和酸浸取物的分析。測定結果轉換成氧化物百分含量後列入表2中。
表2 不同濃度的稀鹽酸對樣品不同氧化物的腐蝕量(wB/%)
註:X為鹽酸溶液的濃度,單位mol/L。
(二)酸蝕量與酸浸取物的變化規律
由表2可以看出,在不同鹽酸濃度溶液的情況下金雲母樣品主要氧化物的酸蝕量都大大低於金雲母-蛭石樣品主要氧化物的酸蝕量,這表明金雲母的耐酸性能高於金雲母-蛭石間層礦物。
金雲母-蛭石間層礦物兩個樣品不同氧化物的酸浸取率大致相同。按氧化物的酸浸取率的大小可分為三種情形。
(1)處於蛭石晶層層間域中的水化陽離子
劉福生等(2002)給出的金雲母-蛭石間層礦物樣品的可交換性陽離子氧化物的含量(不考慮H2O+)分別為,Wv-6a:CaO 0.612%,Na2O 1.30%;Wv-16:CaO 0.394%,Na2O 1.79%,考慮所含H2O+後樣品的可交換性陽離子氧化物的含量分別為,Wv-6a:CaO 0.580%,Na2O 1.231%;Wv-16:CaO 0.375%,Na2O 1.702%,這些數值與表2中CaO和Na2O的腐蝕量非常相近(其差別來源於對樣品進行不同的處理及分析的誤差)。由於水化陽離子與結構層間的結合最弱,故CaO和Na2O的酸浸取率最高,其中CaO幾乎全部浸出,Na2O的浸取率在82.27%~89.24%之間。
(2)在結構中以離子鍵相結合的陽離子
在結構中與陰離子呈離子鍵結合的陽離子主要有:K+、Mg2+、Fe2+、Al3+。相應氧化物酸浸取率分別為 K2O 6.33%~13.80%,Al2O33.67%~12.45%,Fe2O34.44%~11.75%,MgO 3.44%~10.03%。離子鍵的結合力高於蛭石晶層層間水化陽離子與結構層之間的結合力,而又小於硅氧四面體內的共價鍵結合力,因此,以離子鍵結合的陽離子氧化物的酸浸取率低於層間水化陽離子氧化物,而又高於以共價鍵結合的陽離子氧化物。
(3)在結構中以共價鍵結合的陽離子
在結構中與陰離子呈共價鍵結合的陽離子只有Si4+,SiO2的酸浸取率最低,為2.15%~3.02%。
蛭石晶層的水化陽離子最容易被酸淋濾出來,即使在低濃度的鹽酸溶液中,且它們的酸蝕量隨鹽酸濃度的增大變化很小;其次是處於金雲母晶層的層間K+離子。MgO、Fe2O3和Al2O3也具有較高的酸蝕量百分數,其中MgO、Al2O3的酸蝕量隨鹽酸濃度的增大而急劇增大,Fe2O3酸蝕量隨鹽酸濃度的增大而緩慢增大;SiO2的酸蝕量最低,且酸蝕量隨鹽酸濃度的增大變化很小。
金雲母-蛭石樣品與金雲母樣品相比較,層間陽離子、八面體陽離子、四面體陽離子都具有較高的氧化物酸蝕量百分數。這表明金雲母-蛭石的結構穩定性較金雲母差,即使是金雲母-蛭石間層結構中的金雲母晶層也是如此。這一結果與熱分析所得出的結果(彭同江等,1995)是完全一致的。
(三)金雲母-蛭石間層礦物酸蝕機理
對於蛭石及含蛭石晶層的間層礦物酸蝕機理的研究不多。但對於蒙脫石酸活化機理研究已經很深入,並得出比較一致的結論。即當用酸處理蒙脫石時 蒙脫石層間的可交換性陽離子(如Ca2+、Mg2+、Na+、K+等)可被氫離子交換而溶出,同時隨之溶出的還有蒙脫石八面體結構中的鋁離子及羥基。因此,活化後的蒙脫石比表面積增大,形成多孔活性物質,使其吸附性及離子交換性進一步增強(張曉妹,2002)。下面結合前面的試驗與分析結果對金雲母-蛭石間層礦物酸蝕機理進行討論。
1.酸浸取反應機理
金雲母-蛭石間層礦物中蛭石晶層的結構和陽離子佔位與蒙脫石的大致相同,只是蛭石晶層八面體中的陽離子主要是Mg2+,而蒙脫石則主要是Al3+,而與蛭石晶層相間排列的還有金雲母晶層。因此,金雲母-蛭石間層礦物的酸蝕機理可以看成是蛭石晶層和金雲母晶層分別與酸進行作用。
蛭石晶層與鹽酸產生離子交換反應和酸腐蝕反應,後者導致結構的局部破壞。其中離子交換反應是氫離子將樣品中蛭石晶層的層間可交換陽離子如K+、Na+、Ca2+、Mg2+等置換出來。
氫質蛭石晶層在酸的繼續作用下結構產生局部破壞,溶出八面體中的陽離子及羥基,硅氧四面體轉化為偏硅酸。
金雲母晶層與鹽酸產生酸腐蝕反應,產生局部結構被破壞,溶出層間陽離子、八面體中的陽離子及羥基,硅氧四面體轉化為偏硅酸。
上述反應可歸三類:H+離子與蛭石晶層層間可交換陽離子的交換反應;H+離子與結構中八面體片上的(OH)-和四面體片中Si-OH上的(OH)-中和形成H2O的反應;陽離子從結構上解離形成鹽和偏硅酸的反應。
2.酸浸取規律的晶體化學分析
金雲母-蛭石間層礦物屬三八面體層狀硅酸鹽礦物。由金雲母的晶體結構特點可知,結構中陽離子與陰離子結合有兩種化學鍵,即離子鍵和共價鍵。其中,四面體陽離子(主要為 Si4+)與陰離子(氧)的化學鍵主要為共價鍵,因而在結構中的聯結力最強;八面體陽離子(主要為Mg2+)以離子鍵與陰離子(氧和羥基)結合,聯結力相對較強;層間陽離子位於層間域內與底面氧以弱離子鍵結合,聯結力較弱。金雲母-蛭石間層礦物結構中金雲母晶層的情形與金雲母相類似,蛭石晶層的八面體和四面體兩種位置的化學鍵特點與金雲母的情形也相類似。在金雲母-蛭石間層結構中聯結力相對最弱的位置是蛭石晶層層間水化陽離子的位置,由於水分子的存在,層間陽離子與結構層的聯結力比金雲母的更弱。
上述晶體化學特點決定了四面體陽離子Si4+的酸浸取率最小,八面體陽離子Mg2+、Al3+、Fe2+酸浸取率較大,層間可交換性陽離子Na+、Ca2+最大。
因此,金雲母-蛭石間層礦物樣品不同氧化物酸浸取率的大小取決於晶體結構的強度和陰陽離子之間的化學鍵強度的大小。
3.酸蝕作用歷程與結構破壞
根據酸蝕試驗和分析結果,結合金雲母-蛭石的晶體結構特點,得出金雲母-蛭石酸蝕作用和結構破壞的過程如下。
酸蝕過程中各種酸蝕反應首先沿礦物顆粒邊緣和結構缺陷部位進行。H+離子與層間可交換陽離子產生交換反應,形成氫質蛭石,交換出來的陽離子Na+、Ca2+、K+等形成鹽;H+離子與八面體中的(OH)-作用,形成H2O,其結果導致與(OH)-呈配位關系的Mg2+和其他陽離子隨(OH)-的解離而裸露於外表面並變得不穩定,從而脫離結構表面並進入溶液形成鹽;H+離子與四面體片邊緣的Si-O(或OH)作用,中和後形成H2O,並使Si4+裸露,進一步使Si4+解離並形成偏硅酸配陰離子;伴隨著H+離子的這些反應,還會導致金雲母晶層邊緣的層間陽離子(主要為K+)從結構中解離出來;整個結構的破壞程度和酸蝕量隨H+濃度增大和反應時間的增長而增大。酸蝕反應主要發生在結構層的邊緣、層間域和結構缺陷部位。
X射線分析結果表明,金雲母-蛭石間層礦物具有較好的耐酸蝕性能,層間可交換性陽離子的氫交換反應和邊緣與缺陷部位離子的解離和浸取,沒有導致金雲母-蛭石間層結構的破壞。但結合酸浸取物和酸浸取殘留物的研究,金雲母-蛭石間層礦物的耐酸蝕性能不如金雲母。
三、結論
金雲母-蛭石間層礦物具有良好的陽離子交換性。因此,它可用於環保,吸附水中的重金屬離子或有機污染物,回收有用物質;在農業上用作儲水和儲肥載體,改良土壤等等。含蛭石晶層礦物結構中的Ca、Mg、K、Fe等元素在酸性條件下易被淋濾出來。因此,它可在農業上用作儲水和儲肥載體,同時又是長效肥料。一方面可為植物提供K、Mg、Ca、Si、Fe等有用元素;另一方面可以起到改良土壤的作用,即增加土壤的保水,保肥性能,降低土壤的密度,提高土壤的透氣性能等等。
酸浸取的結果導致金雲母-蛭石間層礦物中蛭石晶層的可交換性陽離子幾乎全部被淋濾交換出來,同時也在結構層邊緣和結構缺陷部位淋濾出其他組分。其結果導致金雲母-蛭石間層礦物比表面積增大,形成多孔活性物質,使其吸附性及離子交換性進一步增強(Suquet et al.,1991;Suquet et al.,1994)。因此,酸處理後的金雲母-蛭石間層礦物可用於環保方面作污水處理劑。
An Experimental Study on Cation Exchange Capacity and Acid Soaking of Vermiculite Containing Interstratified Minerals
Peng Tongjiang,Liu Fusheng,Zhang Baoshu,Sun Hongjuan
(The Research Institute of Mineral Materials and Their Application,Southwest University of Sciences and Technology,Mianyang Sichuan 621010,China)
Abstract:The changeable cations,the exchange capacity and acid erodibility of instrial vermiculite samples from Weli Mine,Xinjiang Autonomous Region,Lingbao Mine,Henan Province,and Tongguan Mine,Shanxi Province are studied.It is found that the changeable cations of phlogopite-vermiculite samples from Weli Mine are mainly Na+,Ca2+,and Mg2+,K+,Ba2+,Sr2+in the next place.The changeable cations of phlogopite vermiculite samples from Tongguan Mine are mainly Mg2+,Ca2+,and Na+,K+in the next place.The cation exchange capacity of phlogopite-vermiculite and chlorite-vermiculite increases with the increase of content of ver miculite crystal layer in interstratified structure.The cation exchange capacity is commonly between 56.92 m mol/100 g and 98.95 m mol/100 g,which is only a half of the maximal value of cation exchange capacity of vermiculite.The cation exchange capacity of phlogopite-vermiculite is negatively related to the content of K2O and positively related to the content of Na2O and CaO.The acid soak-out ratios of CaO and Na2O are the highest and that of K2O is lower slightly,the acid soak-out ratios of MgO,Fe2O3and Al2O3are relatively higher,but the acid soak-out ratios of SiO2are the lowest.The acid corroding contents of the samples with more vermiculite layer are higher.The acid-resistant property of the phlogopite-vermiculite interstratified mineral is not as good as the phlogopite.
Key words:phlogopite-vermiculite,interstratified minerals,cation exchange capacity,acid soak-out-substances,acid soak-out-ratio.