導航:首頁 > 廢水污水 > 污水中的CEC是什麼意思

污水中的CEC是什麼意思

發布時間:2025-10-08 01:22:59

Ⅰ 陽離子交換質量作用方程

(一)陽離子吸附親合力

就特定的固相物質而言,陽離子吸附親合力是不同的。影響陽離子吸附親合力的因素主要是;(1)同價離子,其吸附親合力隨離子半徑及離子水化程度而差異,一般來說,它隨離子半徑的增加而增加,隨水化程度的增加而降低;離子半徑越小,水化程度越高。例如Na+、K+、NH4+的離子半徑分別為0.98、1.33和1.43Å,其水化半徑分別為7.9、5.37和5.32Å;他們的親合力順序為NH4+>K+>Na+。(2)一般來說,高價離子的吸附親合力高於低價離子的吸附親合力。

按各元素吸附親合力的排序如下:

水文地球化學基礎

上述排序中,H+是一個例外,它雖然是一價陽離子,但它具有兩價或三價陽離子一樣的吸附親合力。

值得注意的是,上述排序並不是絕對的,因為陽離子交換服從質量作用定律,所以吸附親合力很弱的離子,只要濃度足夠大,也可以交換吸附親合力很強而濃度較小的離子。

(二)陽離子交換質量作用方程

按質量作用定律,陽離子交換反應可表示為:

水文地球化學基礎

式中,KA-B為陽離子交換平衡常數,A和B為水中的離子,Ax和Bx為吸附在固體顆表面的離子,方括弧表示活度。

以Na-Ca交換為例,其交換反應方程為:

水文地球化學基礎

(1.146)式表明,交換反應是等當量交換,是個可逆過程;兩個鈉離子交換一個鈣離子。如果水中的Na+交換已被吸附在固體顆粒表面的Ca2+(即Cax),則反應向右進行;反之,則向左進行。如反應向右進行,那麼,就鈣離子而言,是個解吸過程;就鈉離子而言,是個吸附過程。所以,陽離子交換反應,實際上是一個吸附-解吸過程。

在地下水系統中,Na-Ca交換是一種進行得最廣泛的陽離子交換。例如,當海水入侵到淡水含水層時,由於海水Na+遠高於淡水,而且淡水含水層顆粒表面可交換性的陽離子主要是Ca2+,因此產生海水中的Na+與顆粒表面的Ca2+產生交換,形成Na+被吸附而Ca2+被解吸,方程(1.146)向右進行。又如,如果在某個地質歷史里,淡水滲入海相地層,按上述類似的機理判斷,則產生Na+被解吸Ca2+被吸附的過程,方程(1.146)向左進行。

Na-Ca交換反應方向的判斷,以及對地下水化學成分的影響,仍至對土壤環境的影響,是水文地球化學及土壤學中一個很重要的問題,後面將作更詳細的介紹。

上述(1.145)式中都使用活度,水中的A和B離子活度可以按第一節所提供的方法求得,但如何求得被吸附的陽離子(Ax和Bx)的活度,目前還沒有太滿意的解決辦法。萬賽羅(Vanselow,1932)〔7〕提出,規定被吸附離子的摩爾分數等於其活度。

摩爾分數的定義為:某溶質的摩爾分數等於某溶質的摩爾數與溶液中所有溶質摩爾數和溶劑摩爾數總和之比。其數學表達式如下

水文地球化學基礎

式中,xB為B組分的摩爾分數,無量綱;mA為溶劑的摩爾數(mol/L);mB、mC、mD、……為溶質B、C、D……的摩爾數(mol/L)。就水溶液而言,溶劑是水,1mol H2O=18g,lL H2O=1000g,所以l升溶劑(H2O)的摩爾數=1000/18=55.56mol/L。

按照上述摩爾分數的定義,Ax和Bx的摩爾分數的數學表達式為:

水文地球化學基礎

式中,NA和NB分別為被吸附離子A和B的摩爾分數;(Ax)和(Bx)分別為被吸附離子A和B的摩爾數(mol/kg)。

以摩爾分數代替被吸附離子A和B的活度。則(2.145)的交換平衡表達式可寫成:

水文地球化學基礎

式中,

稱為選擇系數,其他符號含義同前。選擇系數已為許多學者所應用。從理論上講,該方程(1.150式)提供了一個預測陽離子交換反應對地下水陽離子濃度影響的有效方法。

從理論上講,

基本上是一個常數,但隨水的離子強度的改變,稍有變化。它的數值的大小,能說明各種離子在競爭吸附中,優先吸附何種離子。如

說明B離子比A離子更易被吸附;反之,則相反。選擇系數方面的信息在文獻中已很普遍。就

來說,在(Mgx)/(Cax)和水中離子強度變化比較大的范圍內,

在0.6—0.9間,變化很小。

值的范圍說明,Ca2+比Mg2+更易被吸附。

在研究陽離子交換反應時,人們關心的問題是,在地下水滲流過程中,從補給區流到排泄區,由於陽離子交換反應,地下水中的陽離子濃度將會產生何種變化?為了簡化問題起見,假定其他反應對陽離子濃度的變化都可忽略,那麼從理論上講,地下水從原來的地段進入一個具有明顯交換能力的新地段後,必然會破壞其原有的陽離子交換平衡,而調整到一個新的交換平衡條件。達到新的平衡後,其陽離子濃度的變化主要取決於:(1)新地段固體顆粒表面各種交換性陽離子的濃度,以及它們互相間的比值;(2)進入新地段地下水的原有化學成分,特別是陽離子濃度。隨著地下水的不斷向前流動,陽離子交換平衡不斷被打破,又不斷地建立新的平衡。其結果是,不但水的陽離子濃度變化了,含水層固體顆粒表面有關的交換性陽離子濃度也改變了。為了定量地說明上述理論上的判斷,特列舉下列例題的計算。

例題1.8

在某一地下水流動系統中,有一段具有明顯陽離子交換能力且含有大量粘土礦物的地段,試利用陽離子交換質量平衡方程(2.150),計算地下水達到新的交換平衡後,水中Ca2+和Mg2+濃度的變化,含水層粘土礦物顆粒表面交換性陽離子(被吸附的陽離子)濃度的變化。

假定:(1)含粘土礦物地段的陽離子交換容量為100meq/100g,交換性陽離子只有Ca2+和Mg2+,且Cax=Mgx,即Cax=Mgx=50meq/100g;(2)進入該地段前,地下水中的Ca2+和Mg2+濃度也相等,即Ca2+=Mg2+=1×10-3mol/L;(3)該含水層地段的有關參數:孔隙度n=0.33;固體顆粒密度ρ=2.65g/cm3;(4)地下水與該地段粘土礦物顆粒相互作用後,達到平衡時,選擇系數

計算步驟:

(1)求新的地下水進入該地段前的NCa和NMg

按題意所給,Cax=Mgx=50meq/100g。把它們換算為以mol/g表示,則Cax=Mgx=0.25×10-8mol/g;將此數據代入(1.149)式,則

NCa=NMg=0.5

(2)求新的地下水剛進入該地段時,起始狀態的

按質量作用定律,Ca-Mg交換方程為:

水文地球化學基礎

交換平衡後,雖然各自的摩爾分數有所增減,但其總數仍然不變,即NCa+NMg=1。

設達到新交換平衡時,NCa=Y,那麼,NMg=1-Y。

把上述假設代入(1.151)式,則

水文地球化學基礎

因達到新的交換平衡時,

把它代入(1.152)式,經整理後,得:

水文地球化學基礎

因達到新交換平衡時,Cax和Mgx雖然有變化,那其總和仍然不變,即Cax+Mgx=0.5。設那時的Cax=Z,那麼:

水文地球化學基礎

把(1.154)式代入(1.153)式,得:

水文地球化學基礎

由於達到交換平衡前後,固相中的交換性鈣離子(Cax)和液相中的溶解鈣離子的總和不變。就一升水及其所接觸的岩土而論,達到交換平衡前,一升水的Ca2+為1mmol;岩土中的Cax=0.25mmol/g,-升水所佔據的岩土體積=5379.5g。達交換平衡後,一升水的Ca2+摩爾數為x,岩土中交換性鈣離子(Cax)濃度為Z。那麼,其均衡方程為:

水文地球化學基礎

式的左邊,為交換平衡前固液相中鈣離子總量(mmol);式的右邊,為交換平衡後固液相中鈣離子總量(mmol)。

整理(1.156)式,得:

水文地球化學基礎

把(1.157)式代入(1.155)式,整理後得:

水文地球化學基礎

解方程(1.158),得:

Z=0.250046,即交換平衡後,Cax=0.250046mmol/g

那麼,Mgx=0.5-0.250046=0.249954mmol/L

按上述計算摩爾分數的方法,得:

NCa=0.50009,NMg=0.49991

把所算得的Z值代入(1.157),得:

x=0.7525,即交換平衡後,〔Ca2+〕=0.7525mmol/L

那麼,〔Mg2+〕=2-0.7525=1.2475mmol/L

上述計算結果說明,當新的地下水通過交換地段,達到交換平衡時,吸附的陽離子(Ca2+和Mg2+)的濃度或摩爾分數的比值變化極小;相比之下,地下水中Ca2+和Mg2+的濃度變化很大,〔Mg2+〕/〔Ca2+〕從1約增至1.7。如果隨後進入該地段的地下水〔Mg2+〕/(Ca2+)仍然是1的話,地下水再次破壞了剛建立起來的交換平衡,交換反應又繼續進行,直至NMg/NCa=O.6為止。此時,新流入地下水的Ca2+和Mg2+的濃度才不會改變。然而,要達到此種狀態,必需通過無數個孔隙體積的水,甚至要幾百萬年時間才能完成。

上述計算還說明,陽離子的交換方向,從左向右進行(2.151式),水中的Ca2+被吸附,而固相表面所吸附的Mg2+不斷被解吸。交換反應方向不僅取決於水中兩種離子的濃度比,同時也取決於吸附離子的摩爾分數比。如若交換的起始條件為NMg=0.375和NCa=0.625,流入的水,其鈣鎂活度比為1,那麼流過該地段的地下水,其Ca2+和Mg2+的濃度就沒有變化了。如若交換的起始條件為NMg/NCa<0.6,其交換方向則與上述相反,從右向左進行(2.151式)。

(三)地下水系統中的Na-Ca交換

地下水中Na-Ca交換在地下水化學成分形成和演變過程中,是一個很重要的陽離子交換過程,它無論在深層地下水形成和演變,或者在淺層潛水水化學成分的改變,特別是硬度升高等方面,都具有重要意義;在土壤科學中,它對鹽鹼土的形成,也有重要作用。

地下水系統中,固液相間的Na-Ca交換也服從質量作用定律,但其質量作用方程的表達形式不同。其交換反應如下:

水文地球化學基礎

(2.159)反應最常用的質量作用方程是Gappn方程:

水文地球化學基礎

在Gapon方程的基礎上,又有許多學者提出類似於此方程的各種表達式。例如,美國鹽實驗室〔17〕在研究灌溉水與土壤間的Na-Ca交換時,提出類似於Gapon方程的表達式:

水文地球化學基礎

式中,Nax為達到交換平衡時土壤的交換性鈉量(meq/100g);CEC為土壤的陽離子交換容量(meq/100g);Na+、Ca2+和Mg2+是達交換平衡時水中這些離子的濃度(meq/L);K為平衡常數。

(1.161)式左邊項表示為:

水文地球化學基礎

式中的ESR稱為「交換性鈉比」。

(1.16l)式右邊項表示為:

水文地球化學基礎

式中的「SAR」稱為鈉吸附比,它是Na-Ca交換中一個很重要的參數。(1.161)式可改寫成:

水文地球化學基礎

(1.164)式說明,ESR與SAR線性相關,水中的SAR越高,岩土中的ESR值也越大,岩土中的Nax也越高。許多學者通過岩土的Na-Ca交換試驗,得出了有關回歸方程,列於表1.20。

表1.20Na-Ca交換的回歸方程

表1.20中的Na-Ca交換方程是實驗方程,應用起來當然有其局限性。其中,美國鹽實驗室的回歸方程是用美國西部12個土壤剖面59個土樣試驗得出的,所以其代表性較好。盡管有其局限性,但是,應用此類方程判斷Na-Ca交換的方向,定量化計算其交換量,還是比較有效的。表1.21的數據充分說明這一推斷。

表1.21Na-Ca試驗中某些參數的變化〔2〕

表1.21中是一組Na-Ca交換試驗數據,其中包括實測值與計算值的對比。表中的數據可說明以下幾點;

(1)Na-Ca交換反應方向取決於水中的起始SAR值,及岩土中的起始ESR值。例如,用SAR值分別為0.73和9.81的水淋濾ESR值為0.046的同一種土壤時,淋濾後,前者的(Cax+Mgx)從8.56增至8.76meq/100g,水中的Ca2+和Mg2+被吸附,而固體顆粒表面的交換性Na+解吸到水中,按(1.159)式,其交換反應方向朝左進行;相反,後者的(Cax+Mgx)從8.56減至7.52meq/100g,水中的Na+被吸附,而固體顆粒表面的交換性Ca2+和Mg2+解吸進入水中,按(1.159)式,其交換反應向右進行。如果起始條件已知,即水中的SAR值及岩土中的ESR值已知,也可判斷其反應方向。例如,把表1.21中的SAR值0.73和9.81分別代入表1.20中的3號方程,ESR值的計算值分別為0.038和0.1379。前者的ESR計算值(0.038)小於土壤的起始ESR值(0.046,見表1.21),反應按(1.159)式向左進行;後者的SER計算值(0.1379)明顯大於土壤的起始ESR值(0.046),反應按(1.159)式向右進行。也就是說;如果ESR計算值小於岩土的ESR值,反應向左進行;反之,則相反。當然,如果土壤的起始ESR值為0.038,與S4R值為0.73的水相互作用時,Na-Ca交換處於平衡狀態,水中的Na+、Ca2+和Mg2+濃度不會改變。表1.22是現場試驗結果,結果說明,SAR值越高,固體表面解吸出來的Ca2+和Mg2+就越多,水的硬度增加就越大。這些數據充分證明了上述理論。

表1.22SAR值不同的污水現場試驗結果〔2〕

註:硬度以CaCO3計(mg/L)。

(2)把Na-Ca交換方程應用於實際是比較可靠的。表1.21中(Cax+Mgx)的實測值及計算值相差很小,說明了這一點。其計算方法如下:以計算SAR=0.73的水為例,將0.73代入表1.20中的方程3,求得ESR=0.038;將此值及CEC值(8.96)代入(1.162)式,求得Nax=0.328meq/100g;將CEC值減去Nax值,即為(Cax+Mgx)值(因為土中吸附的陽離子主要是Na+、Ca2+和Mg2+),其值為8.63meq/100g。

SAR值不僅在研究Na-Ca交換反應中是重要的,而且它是灌溉水質的一個重要參數。前面談到,SAR高的水,在水岩作用過程中,引起水中的Na+被吸附到固相顆粒表面上,2個Na+交換一個Ca2+或Mg2+(等當量交換)。因為2個Na2+的大小比一個Ca2+或Mg2+大,因而引起土壤的透氣性減小,產生板結及鹽鹼化。有關SAR值的灌溉水質標准可參考有關文獻。本書不詳述。

Ⅱ 含蛭石晶層間層礦物的陽離子交換容量及酸浸研究

彭同江 劉福生 張寶述 孫紅娟

(西南科技大學礦物材料及應用研究所,四川綿陽 621010)

摘要 對采自新疆尉犁蛭石礦、河南靈寶-陝西潼關蛭石礦的工業蛭石礦物樣品進行了可交換性陽離子、交換容量和酸處理試驗研究。結果發現新疆尉犁蛭石礦金雲母-蛭石中的可交換性陽離子主要為Na和Ca2+,其次有Mg2+和K、Ba2+和Sr2+。而河南靈寶-陝西潼關蛭石礦工業蛭石樣品主要為Ca2+和Mg2+,其次為Na、K等。金雲母-蛭石和綠泥石-蛭石間層礦物的陽離子交換容量隨間層結構中蛭石晶層的含量增加而增大,一般在56.92~98.95 m mol/100 g之間,僅為蛭石最大陽離子交換容量的一半。金雲母-蛭石樣品陽離子交換容量大小與K2O含量呈負相關關系,與(Na2O+CaO)含量呈正相關關系。層間可交換性陽離子的氧化物CaO和Na2O的酸浸取率最高,層間不可交換性陽離子的氧化物 K2O次之,八面體中陽離子的氧化物MgO、Fe2O3和Al2O3具有較高的酸浸取率,而四面體陽離子的氧化物SiO2的酸浸取率最低;金雲母-蛭石間層礦物中蛭石晶層含量高的樣品酸浸取率高,金雲母-蛭石間層礦物的耐酸蝕性能不如金雲母。

關鍵詞 金雲母-蛭石;間層礦物;陽離子交換容量;酸浸取物;酸浸取率。

第一作者簡介:彭同江,男,1958年4月出生,博士,教授,礦物晶體化學專業。E-mail:[email protected]

一、含蛭石晶層間層礦物的陽離子交換容量

(一)原理

根據工業蛭石樣品的化學成分研究,蛭石晶層中可交換性陽離子的種類主要有:K、Na、Ca2+、Mg2+、Ba2+、Sr2+等。用醋酸銨(NH4Ac)作為淋洗劑,

離子可將工業蛭石中的可交換性陽離子交換出來:

中國非金屬礦業

相關系數為0.90。

圖1 金雲母-蛭石樣品陽離子交換容量(CEC) 隨K2O 和Na2O+CaO 含量(質量分數) 的變化

可以看出,隨著K2O含量的增加,樣品的陽離子交換容量減小;隨(Na2O+CaO)含量的增加,陽離子交換容量增加。從而表明,隨K2O含量的增加,蛭石晶層的含量降低;隨(Na2O+CaO)含量的增加,蛭石晶層的含量增加。由此可以得出,在金雲母變化為金雲母-蛭石的過程中,溶液中富含Na和Ca2+離子組分。

對於金雲母-蛭石樣品來說,我們發現其陽離子交換容量的大小與樣品的粉末X射線衍射譜特徵有一定關系。一般說來,陽離子交換容量小於75 m mol/100 g的樣品,其粉末X射線衍射圖上發現有較強的金雲母的衍射峰;高於95 m mol/100 g樣品,發現有蛭石的衍射峰。這進一步表明對樣品陽離子交換容量的貢獻主要來自於間層結構中蛭石晶層的含量。蛭石晶層的含量越高,間層礦物的陽離子交換容量越大。

二、酸浸實驗研究

(一)酸處理實驗與酸浸取物分析

酸處理試驗步驟與實驗方法如下:

1)將燒杯在100℃下烘乾1 h後稱重。

2)分別在燒杯中加0.5 g樣品。

3)將盛樣品的燒杯放在烘箱中在100℃下烘乾2 h。

4)從烘箱中取出燒杯在乾燥器中涼至室溫後稱重,計算出樣品除去吸附水後的質量。

5)將燒杯中分別加入0.5 mol/L,1.0 mol/L,1.5 mol/L,2.0 mol/L稀鹽酸30 mL,攪拌均勻後靜止作用12 h。

6)過濾、洗滌、定溶後用原子吸收光譜法測定濾液中K、Na、Mg、Si、Fe、Al的含量。

利用上述方法對所選的3個樣品進行了酸處理和酸浸取物的分析。測定結果轉換成氧化物百分含量後列入表2中。

表2 不同濃度的稀鹽酸對樣品不同氧化物的腐蝕量(wB/%)

註:X為鹽酸溶液的濃度,單位mol/L。

(二)酸蝕量與酸浸取物的變化規律

由表2可以看出,在不同鹽酸濃度溶液的情況下金雲母樣品主要氧化物的酸蝕量都大大低於金雲母-蛭石樣品主要氧化物的酸蝕量,這表明金雲母的耐酸性能高於金雲母-蛭石間層礦物。

金雲母-蛭石間層礦物兩個樣品不同氧化物的酸浸取率大致相同。按氧化物的酸浸取率的大小可分為三種情形。

(1)處於蛭石晶層層間域中的水化陽離子

劉福生等(2002)給出的金雲母-蛭石間層礦物樣品的可交換性陽離子氧化物的含量(不考慮H2O)分別為,Wv-6a:CaO 0.612%,Na2O 1.30%;Wv-16:CaO 0.394%,Na2O 1.79%,考慮所含H2O後樣品的可交換性陽離子氧化物的含量分別為,Wv-6a:CaO 0.580%,Na2O 1.231%;Wv-16:CaO 0.375%,Na2O 1.702%,這些數值與表2中CaO和Na2O的腐蝕量非常相近(其差別來源於對樣品進行不同的處理及分析的誤差)。由於水化陽離子與結構層間的結合最弱,故CaO和Na2O的酸浸取率最高,其中CaO幾乎全部浸出,Na2O的浸取率在82.27%~89.24%之間。

(2)在結構中以離子鍵相結合的陽離子

在結構中與陰離子呈離子鍵結合的陽離子主要有:K、Mg2+、Fe2+、Al3+。相應氧化物酸浸取率分別為 K2O 6.33%~13.80%,Al2O33.67%~12.45%,Fe2O34.44%~11.75%,MgO 3.44%~10.03%。離子鍵的結合力高於蛭石晶層層間水化陽離子與結構層之間的結合力,而又小於硅氧四面體內的共價鍵結合力,因此,以離子鍵結合的陽離子氧化物的酸浸取率低於層間水化陽離子氧化物,而又高於以共價鍵結合的陽離子氧化物。

(3)在結構中以共價鍵結合的陽離子

在結構中與陰離子呈共價鍵結合的陽離子只有Si4+,SiO2的酸浸取率最低,為2.15%~3.02%。

蛭石晶層的水化陽離子最容易被酸淋濾出來,即使在低濃度的鹽酸溶液中,且它們的酸蝕量隨鹽酸濃度的增大變化很小;其次是處於金雲母晶層的層間K離子。MgO、Fe2O3和Al2O3也具有較高的酸蝕量百分數,其中MgO、Al2O3的酸蝕量隨鹽酸濃度的增大而急劇增大,Fe2O3酸蝕量隨鹽酸濃度的增大而緩慢增大;SiO2的酸蝕量最低,且酸蝕量隨鹽酸濃度的增大變化很小。

金雲母-蛭石樣品與金雲母樣品相比較,層間陽離子、八面體陽離子、四面體陽離子都具有較高的氧化物酸蝕量百分數。這表明金雲母-蛭石的結構穩定性較金雲母差,即使是金雲母-蛭石間層結構中的金雲母晶層也是如此。這一結果與熱分析所得出的結果(彭同江等,1995)是完全一致的。

(三)金雲母-蛭石間層礦物酸蝕機理

對於蛭石及含蛭石晶層的間層礦物酸蝕機理的研究不多。但對於蒙脫石酸活化機理研究已經很深入,並得出比較一致的結論。即當用酸處理蒙脫石時 蒙脫石層間的可交換性陽離子(如Ca2+、Mg2+、Na、K等)可被氫離子交換而溶出,同時隨之溶出的還有蒙脫石八面體結構中的鋁離子及羥基。因此,活化後的蒙脫石比表面積增大,形成多孔活性物質,使其吸附性及離子交換性進一步增強(張曉妹,2002)。下面結合前面的試驗與分析結果對金雲母-蛭石間層礦物酸蝕機理進行討論。

1.酸浸取反應機理

金雲母-蛭石間層礦物中蛭石晶層的結構和陽離子佔位與蒙脫石的大致相同,只是蛭石晶層八面體中的陽離子主要是Mg2+,而蒙脫石則主要是Al3+,而與蛭石晶層相間排列的還有金雲母晶層。因此,金雲母-蛭石間層礦物的酸蝕機理可以看成是蛭石晶層和金雲母晶層分別與酸進行作用。

蛭石晶層與鹽酸產生離子交換反應和酸腐蝕反應,後者導致結構的局部破壞。其中離子交換反應是氫離子將樣品中蛭石晶層的層間可交換陽離子如K、Na、Ca2+、Mg2+等置換出來。

氫質蛭石晶層在酸的繼續作用下結構產生局部破壞,溶出八面體中的陽離子及羥基,硅氧四面體轉化為偏硅酸。

金雲母晶層與鹽酸產生酸腐蝕反應,產生局部結構被破壞,溶出層間陽離子、八面體中的陽離子及羥基,硅氧四面體轉化為偏硅酸。

上述反應可歸三類:H離子與蛭石晶層層間可交換陽離子的交換反應;H離子與結構中八面體片上的(OH)-和四面體片中Si-OH上的(OH)-中和形成H2O的反應;陽離子從結構上解離形成鹽和偏硅酸的反應。

2.酸浸取規律的晶體化學分析

金雲母-蛭石間層礦物屬三八面體層狀硅酸鹽礦物。由金雲母的晶體結構特點可知,結構中陽離子與陰離子結合有兩種化學鍵,即離子鍵和共價鍵。其中,四面體陽離子(主要為 Si4+)與陰離子(氧)的化學鍵主要為共價鍵,因而在結構中的聯結力最強;八面體陽離子(主要為Mg2+)以離子鍵與陰離子(氧和羥基)結合,聯結力相對較強;層間陽離子位於層間域內與底面氧以弱離子鍵結合,聯結力較弱。金雲母-蛭石間層礦物結構中金雲母晶層的情形與金雲母相類似,蛭石晶層的八面體和四面體兩種位置的化學鍵特點與金雲母的情形也相類似。在金雲母-蛭石間層結構中聯結力相對最弱的位置是蛭石晶層層間水化陽離子的位置,由於水分子的存在,層間陽離子與結構層的聯結力比金雲母的更弱。

上述晶體化學特點決定了四面體陽離子Si4+的酸浸取率最小,八面體陽離子Mg2+、Al3+、Fe2+酸浸取率較大,層間可交換性陽離子Na、Ca2+最大。

因此,金雲母-蛭石間層礦物樣品不同氧化物酸浸取率的大小取決於晶體結構的強度和陰陽離子之間的化學鍵強度的大小。

3.酸蝕作用歷程與結構破壞

根據酸蝕試驗和分析結果,結合金雲母-蛭石的晶體結構特點,得出金雲母-蛭石酸蝕作用和結構破壞的過程如下。

酸蝕過程中各種酸蝕反應首先沿礦物顆粒邊緣和結構缺陷部位進行。H離子與層間可交換陽離子產生交換反應,形成氫質蛭石,交換出來的陽離子Na、Ca2+、K等形成鹽;H離子與八面體中的(OH)-作用,形成H2O,其結果導致與(OH)-呈配位關系的Mg2+和其他陽離子隨(OH)-的解離而裸露於外表面並變得不穩定,從而脫離結構表面並進入溶液形成鹽;H離子與四面體片邊緣的Si-O(或OH)作用,中和後形成H2O,並使Si4+裸露,進一步使Si4+解離並形成偏硅酸配陰離子;伴隨著H離子的這些反應,還會導致金雲母晶層邊緣的層間陽離子(主要為K)從結構中解離出來;整個結構的破壞程度和酸蝕量隨H濃度增大和反應時間的增長而增大。酸蝕反應主要發生在結構層的邊緣、層間域和結構缺陷部位。

X射線分析結果表明,金雲母-蛭石間層礦物具有較好的耐酸蝕性能,層間可交換性陽離子的氫交換反應和邊緣與缺陷部位離子的解離和浸取,沒有導致金雲母-蛭石間層結構的破壞。但結合酸浸取物和酸浸取殘留物的研究,金雲母-蛭石間層礦物的耐酸蝕性能不如金雲母。

三、結論

金雲母-蛭石間層礦物具有良好的陽離子交換性。因此,它可用於環保,吸附水中的重金屬離子或有機污染物,回收有用物質;在農業上用作儲水和儲肥載體,改良土壤等等。含蛭石晶層礦物結構中的Ca、Mg、K、Fe等元素在酸性條件下易被淋濾出來。因此,它可在農業上用作儲水和儲肥載體,同時又是長效肥料。一方面可為植物提供K、Mg、Ca、Si、Fe等有用元素;另一方面可以起到改良土壤的作用,即增加土壤的保水,保肥性能,降低土壤的密度,提高土壤的透氣性能等等。

酸浸取的結果導致金雲母-蛭石間層礦物中蛭石晶層的可交換性陽離子幾乎全部被淋濾交換出來,同時也在結構層邊緣和結構缺陷部位淋濾出其他組分。其結果導致金雲母-蛭石間層礦物比表面積增大,形成多孔活性物質,使其吸附性及離子交換性進一步增強(Suquet et al.,1991;Suquet et al.,1994)。因此,酸處理後的金雲母-蛭石間層礦物可用於環保方面作污水處理劑。

An Experimental Study on Cation Exchange Capacity and Acid Soaking of Vermiculite Containing Interstratified Minerals

Peng Tongjiang,Liu Fusheng,Zhang Baoshu,Sun Hongjuan

(The Research Institute of Mineral Materials and Their Application,Southwest University of Sciences and Technology,Mianyang Sichuan 621010,China)

Abstract:The changeable cations,the exchange capacity and acid erodibility of instrial vermiculite samples from Weli Mine,Xinjiang Autonomous Region,Lingbao Mine,Henan Province,and Tongguan Mine,Shanxi Province are studied.It is found that the changeable cations of phlogopite-vermiculite samples from Weli Mine are mainly Na,Ca2+,and Mg2+,K,Ba2+,Sr2+in the next place.The changeable cations of phlogopite vermiculite samples from Tongguan Mine are mainly Mg2+,Ca2+,and Na,Kin the next place.The cation exchange capacity of phlogopite-vermiculite and chlorite-vermiculite increases with the increase of content of ver miculite crystal layer in interstratified structure.The cation exchange capacity is commonly between 56.92 m mol/100 g and 98.95 m mol/100 g,which is only a half of the maximal value of cation exchange capacity of vermiculite.The cation exchange capacity of phlogopite-vermiculite is negatively related to the content of K2O and positively related to the content of Na2O and CaO.The acid soak-out ratios of CaO and Na2O are the highest and that of K2O is lower slightly,the acid soak-out ratios of MgO,Fe2O3and Al2O3are relatively higher,but the acid soak-out ratios of SiO2are the lowest.The acid corroding contents of the samples with more vermiculite layer are higher.The acid-resistant property of the phlogopite-vermiculite interstratified mineral is not as good as the phlogopite.

Key words:phlogopite-vermiculite,interstratified minerals,cation exchange capacity,acid soak-out-substances,acid soak-out-ratio.

Ⅲ 立頁增氧發酵污水處理系統怎麼維護

以嗜熱細菌和光合細菌處理為例。 嗜熱細菌採用堆肥機理處理污水。 高溫好氧堆肥是在污泥中加入一定比例的膨鬆劑和調理劑(如秸稈、稻草、粉煤灰或生活垃圾等),其作用包括通過反稀釋降低污泥水份和膨鬆兩個方面。好氧微生物群落在潮濕、有氧環境下對廢物中的多種有機物吸收、氧化、分解,轉化為腐殖質。研究表明,經過好氧堆肥的污泥質地疏鬆,陽離子交換量(CEC)顯著增加、容重減小、可被植物利用的營養成分增加。好氧分解主要是利用嗜熱細菌群,分解氧化有機物,同時釋放出大量的能量。有機物生化降解的同時伴有熱量產生,堆肥物料溫度上升至60~70℃,致使病原菌和寄生蟲卵死亡。美國環保署公布的503 法案中,控制生物固體致病菌對時間—溫度的最低要求:55℃通氣靜態倉式堆肥系統堆體至少保持3 天,翻垛式堆肥系統至少持續15 天並翻堆5 次,可以滅活病原菌。試驗證明污泥在好氧堆肥裝置中可達到55℃以上的高溫並維持3 天以上的時間,充分殺滅病原微生物,達到無害化標准。目前世界各國採用的方法有靜態和動態堆肥兩種,如自然堆肥法,圓柱形分格封閉堆肥法,滾筒堆肥法,豎式多層反應堆肥法以及條形靜態通風等堆肥工藝。發達國家多採用現代工業化的筒倉發酵工藝,以適應環境敏感地區污泥堆肥無害化處理的要求。 堆肥的意義 高溫好氧堆肥工藝作為污泥無害化處理的手段具有一次性投資小,運營成本低,處理量大,操作維修簡便等優勢。現代容積式堆肥裝置和生物技術的發展與進步,有效克服了傳統堆肥技術佔地面積大、臭氣不易收集處理、發酵周期長等缺陷,拓展了高溫好氧堆肥技術的應用領域與環境。 光合細菌處理污水 光合細菌是一種古老微生物,在維持地球水生態系統平衡過程中起著極其重要的作用,是一種不可多得的有益菌群。光合細菌是最為復雜的自然菌群之一,共分四科:1、紅色非硫磺細菌。2、紅色硫磺細菌。3、綠色硫磺細菌。4、滑行絲狀綠色硫磺細菌。現已分離獲得四個科屬61種光合細菌。 光合細菌是自然水生生態系統食物鏈及物質循環的重要組成部分,水生生物的排泄物、餌料殘渣及排入的有機污染物被簡單分解為有機酸、氨基酸、氨等後,光合細菌會把這些分解物質作為光合原料加以利用,起到凈化水質的作用,同時,其自身也成為輪蟲、蚤類的食物,而後者又是養殖生物的重要餌料。 光合細菌能直接消耗利用水中有機物、氨態氮和硫化氫,並可通過反硝化作用除去水中的亞硝酸鹽,並能將池內的殘餌、糞便等完全分解並加以吸收利用,避免沉積池底後發酵而產生有害物質。多數光合細菌具有脫氮,固氮,產氫,同化一定濃度H2S的能力以及凈化高濃度有機廢水的作用。所以光合細菌是一種很好的水質改良劑,能為水產動物提供非常有利的生活和生長環境。 光合細菌還有間接增氧的作用。

Ⅳ 思考題及習題

1.一個沒有防滲的污水滲坑,污水中的常規離子濃度中等,但NH4-N、細菌及有機質含量很高,下伏為埋深4m的砂礫石含水層。監測結果表明,潛水硬度、NO3-N及

濃度大大高於隨近的天然水含量,但NHt-N濃度很低。試述潛水化學成分變化的水文地球化學假設(提示:從陽離子交換、氮轉化及氧化還原反應去解析)。

2.在野外進行80×80cm,深180cm的大型土柱試驗。土表面種植作物。灌溉水及175cm深處滲出水的分析結果如下:

水文地球化學基礎

表中所列為試驗開始後頭20天滲出水的平均值,R-N為有機氮。試述什麼樣的水文地球化學作用使水滲過土柱後組分濃度變化?

3.某潛水含水層,上部為10m厚的粗砂,下部為夾有粘性土透鏡體的中細砂,水位埋深4.5m。勘探及取樣分析表明:上層水向下層流動,上部水中DO(溶解氧)為2—6mg/

為30—50mg/L,並已證明水中的

來自肥料;下部水中DO=0mg/L,

為微跡量。潛水主要受大氣降水補給。試述水從上部含水層向下部含水層流動時,為什麼

和DO急驟降低。

4.設用含NH4-N50mg/L、Ca2+=60mg/L、Mg2+=12mg/L的污水灌溉,灌區潛水埋深2m,包氣帶土的CEC=7.2meq/100g,連續灌溉稻田100天,灌溉面積為100m2,共灌污水1000m3,包氣帶土的容重為ρb=1.5g/cm3。假設污水中的

全部被包氣帶土層吸附,100m2灌區下包氣帶土層的

吸附容量是多少?地下水是否受

污染?(提示:參考本章例題l;答案:包氣帶土層的

吸附容量為89.64kg。)

5.為什麼Cr比Hg、Pb、Cd更易污染地下水?

6.某一鉛鋅礦酸性礦坑排水pH=3,Pb2+=4mg/L,當酸性礦坑排水流過灰岩時,產生下列反應:

水文地球化學基礎

結果,pH上升到7.8,Pb2+降至0.3mg/L。流動過程中Eh變化很小。試述pH上升,Pb2+下降的原因,並列出相應的化學反應式。

7.在實驗室進行F-的吸附平衡試驗,取得下列數據:C,溶液中F-的平衡濃度;S土中吸附的F-

水文地球化學基礎

請用作圖法(或回歸法),求得Langmuir等溫吸附方程,並求得Sm。(答案:Langm-uir等溫吸附方程,C/S=0.0184+0.00439C,r=0.9980,Sm=227.8mg/kg)。

8.德國某地,潛水被含砷的煙道沖洗水污染。1971年,地下水中As的平均值為22.7mg/L,Fe2+為0.2—140mg/L;1976.10—1977.5期間,將KMnO4濃度為2000mg/L的水通過17個灌注孔注入含水層,共注入KMnSO429kg。結果地下水中As濃度迅速下降到0.06mg/L。問:(1)處理前(1971年),地下水中砷的存在形式;(2)注入KMnO4後,地下水中砷的存在形式,地下水中砷濃度為什麼迅速降低。

9.已知沉積物中的f0c=0.01,三氯乙烯、四氯乙烯、林丹及DDT的lgK0wc值分別為2.29、2.60、3.72和6.19。計算這四種有機化合物的K0c和Kd值,並說明哪種有機化合物在沉積物中最易遷移,哪種最難遷移。〔提示:應用公式5.23及5.15;答案:三氯乙烯、四氯乙烯、林丹及DDT的K0c及Kd值分別為(L/kg):419.5、618.5、2515.8、55508.1和4.20、6.19、25.16、555.1〕。

10.為什麼微生物(細菌和病毒)不會形成大面積的地下水污染?為什麼地下水的微生物污染常出現在雨後?

11.下述為研究區的背景值(或背景區間值),以及水樣A、B和C的實測濃度,請評價三個水樣的污染程度(用綜合污染指數法)。

12.地下水污染評價與地下水環境質量評價有何異同?

13.地下水水源地保護帶中,一級防護帶及二級附護帶劃分原則及方法有何異同?

14.地質環境元素豐度對人體健康有何影響?並舉例說明。

水文地球化學基礎

單位lmg/L。

Ⅳ 凹凸棒土的用途有那些

一、建材行業

白雲石凹凸棒石粘土作為塗料的填充劑、流平劑、增稠劑和穩定劑,其性能好,成本低,可代替傳統的輕鈣。凹凸棒石塗料的塗膜在電鏡里觀察,其晶體呈網狀排列,均勻地分布在有機粘結劑中,所以塗膜耐洗擦。

二、輕工

揉革,用凹土代替蘇打揉革,可節約20-30%貴重紅礬的用量,降低成本。

三、農業、畜牧業、多種經營

凹土粉作為混合飼料的添加劑,以其特有的物理性能,能促進動物機體的新陳代謝,提高飼料轉化率,使動物食慾旺盛,皮毛豐潤,增重快,出欄早,降低飼養成本。

四、紡織

作為染料的懸浮劑填料,具有不掉色,著色力強,耐擦洗,色彩鮮艷,生產成本低等優點,還可作紡織行業的塗布刮漿。作印花糊料,在紡織印染行業中,活性染料常用的印花糊料為海藻酸鈉。

五、地質勘探、海洋鑽井

膠體級凹凸棒石粘土經進一步進行物理化學加工,增加其造漿率,可製成符合OCMA和API標準的抗鹽粘土,而應用於地質鑽探、地熱鑽井、石油鑽井。

六、釀造工業

用凹土來澄清葡萄酒、蘋果酒、啤酒等酒類製品,可以除去酒中的各種殘渣雜質,使酒質純凈。

Ⅵ 能凈化生活污水的細菌有哪些

以嗜熱細菌和光合細菌處理為例。嗜熱細菌採用堆肥機理處理污水。 高溫好氧堆肥是在污泥中加入一定比例的膨鬆劑和調理劑(如秸稈、稻草、粉煤灰或生活垃圾等),其作用包括通過反稀釋降低污泥水份和膨鬆兩個方面。好氧微生物群落在潮濕、有氧環境下對廢物中的多種有機物吸收、氧化、分解,轉化為腐殖質。研究表明,經過好氧堆肥的污泥質地疏鬆,陽離子交換量(CEC)顯著增加、容重減小、可被植物利用的營養成分增加。好氧分解主要是利用嗜熱細菌群,分解氧化有機物,同時釋放出大量的能量。有機物生化降解的同時伴有熱量產生,堆肥物料溫度上升至60~70℃,致使病原菌和寄生蟲卵死亡。美國環保署公布的503 法案中,控制生物固體致病菌對時間—溫度的最低要求:55℃通氣靜態倉式堆肥系統堆體至少保持3 天,翻垛式堆肥系統至少持續15 天並翻堆5 次,可以滅活病原菌。試驗證明污泥在好氧堆肥裝置中可達到55℃以上的高溫並維持3 天以上的時間,充分殺滅病原微生物,達到無害化標准。目前世界各國採用的方法有靜態和動態堆肥兩種,如自然堆肥法,圓柱形分格封閉堆肥法,滾筒堆肥法,豎式多層反應堆肥法以及條形靜態通風等堆肥工藝。發達國家多採用現代工業化的筒倉發酵工藝,以適應環境敏感地區污泥堆肥無害化處理的要求。 堆肥的意義 高溫好氧堆肥工藝作為污泥無害化處理的手段具有一次性投資小,運營成本低,處理量大,操作維修簡便等優勢。現代容積式堆肥裝置和生物技術的發展與進步,有效克服了傳統堆肥技術佔地面積大、臭氣不易收集處理、發酵周期長等缺陷,拓展了高溫好氧堆肥技術的應用領域與環境。光合細菌處理污水光合細菌是一種古老微生物,在維持地球水生態系統平衡過程中起著極其重要的作用,是一種不可多得的有益菌群。光合細菌是最為復雜的自然菌群之一,共分四科:1、紅色非硫磺細菌。2、紅色硫磺細菌。3、綠色硫磺細菌。4、滑行絲狀綠色硫磺細菌。現已分離獲得四個科屬61種光合細菌。 光合細菌是自然水生生態系統食物鏈及物質循環的重要組成部分,水生生物的排泄物、餌料殘渣及排入的有機污染物被簡單分解為有機酸、氨基酸、氨等後,光合細菌會把這些分解物質作為光合原料加以利用,起到凈化水質的作用,同時,其自身也成為輪蟲、蚤類的食物,而後者又是養殖生物的重要餌料。 光合細菌能直接消耗利用水中有機物、氨態氮和硫化氫,並可通過反硝化作用除去水中的亞硝酸鹽,並能將池內的殘餌、糞便等完全分解並加以吸收利用,避免沉積池底後發酵而產生有害物質。多數光合細菌具有脫氮,固氮,產氫,同化一定濃度H2S的能力以及凈化高濃度有機廢水的作用。所以光合細菌是一種很好的水質改良劑,能為水產動物提供非常有利的生活和生長環境。光合細菌還有間接增氧的作用。

Ⅶ 污水處理廠的污泥怎麼處理

目前大多數城市污水處理廠都採用活性污泥法去除污泥。

生物處理的原理回是通過生物作用,尤其答是微生物的作用,完成有機物的分解和生物體的合成,將有機污染物轉變成無害的氣體產物(CO2)、液體產物(水)以及富含有機物的固體產物(微生物群體或稱生物污泥);多餘的生物污泥在沉澱池中經沉澱池固液分離,從凈化後的污水中除去。

(7)污水中的CEC是什麼意思擴展閱讀

污水處理工藝分三級:

一級處理:物理處理,通過機械處理,如格柵、沉澱或氣浮,去除污水中所含的石塊、砂石和脂肪、油脂等。

二級處理:生物化學處理,污水中的污染物在微生物的作用下被降解和轉化為污泥。

三級處理:污水的深度處理,它包括營養物的去除和通過加氯、紫外輻射或臭氧技術對污水進行消毒。可能根據處理的目標和水質的不同,有的污水處理過程並不是包含上述所有過程。

閱讀全文

與污水中的CEC是什麼意思相關的資料

熱點內容
來賓市哪裡有反滲透殺菌劑 瀏覽:89
凈水器多少g代表什麼 瀏覽:887
離子交換層析法分離蛋白質實驗報告 瀏覽:490
協同過濾系統案例 瀏覽:304
如何更換剃須刀清潔濾芯 瀏覽:876
進水管過濾器什麼樣 瀏覽:202
超濾濃縮腹水回輸裝置報價 瀏覽:160
ro膜凈水機廢水有毒嗎 瀏覽:949
污水提升泵玻璃鋼材質 瀏覽:184
家用凈水機壓力桶沒水是怎麼回事 瀏覽:341
提升泵現詢上海陽光泵業製造正規 瀏覽:75
藍蒲樹脂應用技術有限公司 瀏覽:774
吉利ec718如何更換空氣濾芯 瀏覽:642
污水處理站出水水質要求 瀏覽:615
20l的飲水機一天用多少電 瀏覽:987
安慶污水迴流是什麼原因 瀏覽:19
什麼是血液濾過超濾 瀏覽:962
樹脂娃眼製作 瀏覽:453
創義美凈水器有什麼功能 瀏覽:614
紅酒過濾需要多少目 瀏覽:152