㈠ 葉綠素分子的數量大有多少
葉綠素分子的數量大得驚人,一個層膜單位里約有一百萬個葉綠素分子,這樣,一片綠葉中的葉綠素分子的數量是很多很多的了。如果按重量計算,它又小得出奇,平均只佔葉片重量的千分之一。一平方厘米綠葉面積內,只有0.2毫克葉綠素;一公頃土地的綠色植物,也只有13公斤左右的葉綠素。
㈡ 水華發生水體的葉綠素濃度 最大能達到多少
(1)從化學式中可以看出,元素的角標表示了分子中的原子個數,故答案為:53:8;導致水體富營養化的元素是氮、磷元素,故答案為:N、P;(2)氮磷元素會使水體富營養化,氮磷主要來自生活污水中的磷和化肥中的氮磷,故答案為:合理使用化肥,生。
㈢ 地表水葉綠素a含量
葉綠素a的量越多,說明水體富營養化越嚴重。
當葉綠素a的含量大於10微克每升則說明水體已富營養化。
水體富營養化一般採用的指標是:氮含量超過0.0.3 mg/L ,磷含量大於0.01~0.02mg/L ,BOD大於10 mg/L ,pH值7~9的淡水中細菌總數超過10萬個/毫升,葉綠素a含量大於10 ug/L。
解析
葉綠素a,是一種有機化合物,分子式為C55H72MgN4O5,分子量為893.489,臘狀固體。葉綠素a的分子結構由4個吡咯環通過4個甲烯基(=CH—)連接形成環狀結構,稱為卟啉(環上有側鏈)。
葉綠素A是一種包含在浮游植物的多種色素中的重要色素。在浮游植物中,佔有機物乾重的1%〖KG-1.3mm〗~2%,是估算初級生產力和生物量的指標,也是赤潮監測的必測項目。
㈣ 海水中葉綠素a的含量大概是多少
大約在0.3 μg/L 左右
㈤ 污水中包括哪些雜質
不同的污水,雜質是不同的.
主要污染物
病原體污染物?
生活污水、畜禽飼養場污水以及製革、洗毛、屠宰業和醫院等排出的廢水,常含有各種病原體,如病毒、病菌、寄生蟲.水體受到病原體的污染會傳播疾病,如血吸蟲病、霍亂、傷寒、痢疾、病毒性肝炎等.歷史上流行的瘟疫,有的就是水媒型傳染病.如1848年和1854年英國兩次霍亂流行,死亡萬餘人;1892年德國漢堡霍亂流行,死亡750餘人,均是水污染引起的. 污水處理
受病原體污染後的水體,微生物激增,其中許多是致病菌、病蟲卵和病毒,它們往往與其他細菌和大腸桿菌共存,所以通常規定用細菌總數和大腸桿菌指數及菌值數為病原體污染的直接指標.病原體污染的特點是:(1)數量大;(2)分布廣;(3)存活時間較長;(4)繁殖速度快;(5)易產生抗葯性,很難絕滅;(6)傳統的二級生化污水處理及加氯消毒後,某些病原微生物、病毒仍能大量存活.常見的混凝、沉澱、過濾、消毒處理能夠去除水中99%以上病毒,如出水濁度大於0.5度時,仍會伴隨病毒的穿透.病原體污染物可通過多種途徑進入水體,一旦條件適合,就會引起人體疾病.
耗氧污染物?
在生活污水、食品加工和造紙等工業廢水中,含有碳水化合物、蛋白質、油脂、木質素等有機物質. 污水中的魚
這些物質以懸浮或溶解狀態存在於污水中,可通過微生物的生物化學作用而分解.在其分解過程中需要消耗氧氣,因而被稱為耗氧污染物.這種污染物可造成水中溶解氧減少,影響魚類和其他水生生物的生長.水中溶解氧耗盡後,有機物進行厭氧分解,產生硫化氫、氨和硫醇等難聞氣味,使水質進一步惡化.水體中有機物成分非常復雜,耗氧有機物濃度常用單位體積水中耗氧物質生化分解過程中所消耗的氧量表示,即以生化需氧量(BOD)表示.一般用20℃時,五天生化需氧量(BOD5)表示.
植物營養物?
植物營養物主要指氮、磷等能刺激藻類及水草生長、干擾水質凈化,使BOD5升高的物質.水體中營養物質過量所造成的"富營養化"對於湖泊及流動緩慢的水體所造成的危害已成為水源保護的嚴重問題. 富營養化(eutrophication)是指在人類活動的影響下,生物所需的氮、磷等營養物質大量進入湖泊、河口、海灣等緩流水體,引起藻類及其他浮游生物迅速繁殖,水體溶解氧量下降,水質惡化,魚類及其他生物大量死亡的現象.在自然條件下,湖泊也會從貧營養狀態過渡到富營養狀態,沉積物不斷增多,先變為沼澤,後變為陸地.這種自然過程非常緩慢,常需幾千年甚至上萬年.而人為排放含營養物質的工業廢水和生活污水所引起的水體富營養化現象,可以在短期內出現.? 植物營養物質的來源廣、數量大,有生活污水(有機質、洗滌劑)、農業(化肥、農家肥)、工業廢水、垃圾等.每人每天帶進污水中的氮約50g.生活污水中的磷主要來源於洗滌廢水,而施入農田的化肥有50%~80%流入江河、湖海和地下水體中.天然水體中磷和氮(特別是磷)的含量在一定程度上是浮游生物生長的控制因素.當大量氮、磷植物營養物質排入水體後,促使某些生物(如藻類)急劇繁殖生長,生長周期變短.藻類及其他浮游生物死亡後被需氧生物分解,不斷消耗水中的溶解氧,或被厭氧微生物所分解,不斷產生硫化氫等氣體,使水質惡化,造成魚類和其他水生生物的大量死亡.藻類及其他浮游生物殘體在腐爛過程中,又把生物所需的氮、磷等營養物質釋放到水中,供新的一代藻類等生物利用.因此,水體富營養化後,即使切斷外界營養物質的來源,也很難自凈和恢復到正常水平.水體富養化嚴重時,湖泊可被某些繁生植物及其殘骸淤塞,成為沼澤甚至乾地.局部海區可變成"死海",或出現"赤潮"現象. 常用氮、磷含量,生產率(O2)及葉綠素-α作為水體富營養化程度的指標.表3-7是用總磷、無機氮劃分水體富養化程度的指標.防治富營養化,必須控制進入水體的氮、磷含量.
有毒污染物
有毒污染物指的是進入生物體後累積到一定數量能使體液和組織發生生化和生理功能的變化,引起暫時或持久的病理狀態,甚至危及生命的物質.如重金屬和難分解的有機污染物等.污染物的毒性與攝入機體內的數量有密切關系.同一污染物的毒性也與它的存在形態有密切關系.價態或形態不同,其毒性可以有很大的差異.如Cr(Ⅵ)的毒性比Cr(Ⅲ)大;As(Ⅲ)的毒性比As(Ⅴ)大;甲基汞的毒性比無機汞大得多.另外污染物的毒性還與若干綜合效應有密切關系.從傳統毒理學來看,有毒污染物對生物的綜合效應有三種:(1)相加作用,即兩種以上毒物共存時,其總效果大致是各成分效果之和.(2)協同作用,即兩種以上毒物共存時,一種成分能促進另一種成分毒性急劇增加.如銅、鋅共存時,其毒性為它們單獨存在時的8倍.(3)拮抗作用,兩種以上的毒物共存時,其毒性可以抵消一部分或大部分.如鋅可以抑制鎘的毒性;又如在一定條件下硒對汞能產生拮抗作用.總之,除考慮有毒污染物的含量外,還須考慮它的存在形態和綜合效應,這樣才能全面深入地了解污染物對水質及人體健康的影響.? 污水
有毒污染物主要有以下幾類:(1)重金屬.如汞、鎘、鉻、鉛、釩、鈷、鋇等,其中汞、鎘、鉛危害較大;砷、硒和鈹的毒性也較大.重金屬在自然界中一般不易消失,它們能通過食物鏈而被富集;這類物質除直接作用於人體引起疾病外,某些金屬還可能促進慢性病的發展.(2)無機陰離子,主要是NO2-、F-、CN-離子.NO2-是致癌物質.劇毒物質氰化物主要來自工業廢水排放.(3)有機農葯、多氯聯苯.目前世界上有機農葯大約6000種,常用的大約有200多種.農葯噴在農田中,經淋溶等作用進入水體,產生污染作用.有機農葯可分為有機磷農葯和有機氯農葯.有機磷農葯的毒性雖大,但一般容易降解,積累性不強,因而對生態系統的影響不明顯;而絕大多數的有機氯農葯,毒性大,幾乎不降解,積累性甚高,對生態系統有顯著影響.多氯聯苯(PCB)是聯苯分子中一部分氫或全部氫被氯取代後所形成的各種異構體混合物的總稱. 多氯聯苯劇毒,脂溶性大,易被生物吸收,化學性質十分穩定,難以和酸、鹼、氧化劑等作用,有高度耐熱性,在1000~1400℃高溫下才能完全分解,因而在水體和生物中很難降解.(4)致癌物質.致癌物質大體分三類:稠環芳香烴(PAHs),如3,4-苯並芘等;雜環化合物,如黃麴黴素等;芳香胺類,如甲、乙苯胺,聯苯胺等.(5)一般有機物質.如酚類化合物就有2000多種,最簡單的是苯酚,均為高毒性物質;腈類化合物也有毒性,其中丙烯腈的環境影響最為注目.
石油類污染物?
石油污染是水體污染的重要類型之一,特別在河口、近海水域更為突出.排入海洋的石油估計每年高 黃河幹流石油污染嚴重
數百萬噸至上千萬噸,約佔世界石油總產量的千分之五.石油污染物主要來自工業排放,清洗石油運輸船隻的船艙、機件及發生意外事故、海上採油等均可造成石油污染.而油船事故屬於爆炸性的集中污染源,危害是毀滅性的.? 石油是烷烴、烯烴和芳香烴的混合物,進入水體後的危害是多方面的.如在水上形成油膜,能阻礙水體復氧作用,油類粘附在魚鰓上,可使魚窒息;粘附在藻類、浮游生物上,可使它們死亡.油類會抑制水鳥產卵和孵化,嚴重時使鳥類大量死亡.石油污染還能使水產品質量降低.
放射性污染物?
放射性污染是放射性物質進入水體後造成的.放射性污染物主要來源於核動力工廠排出的冷卻水,向海洋投棄的放射性廢物,核爆炸降落到水體的散落物,核動力船舶事故泄漏的核燃料;開采、提煉和使用放射性物質時,如果處理不當,也會造成放射性污染.水體中的放射性污染物可以附著在生物體表面,也可以進入生物體蓄積起來,還可通過食物鏈對人產生內照射. 水中主要的天然放射性元素有40K、238U、286Ra、210Po、14C、氚等.目前,在世界任何海區幾乎都能測出90Sr、137Cs.
酸、鹼、鹽無機污染物
各種酸、鹼、鹽等無機物進入水體(酸、鹼中和生成鹽,它們與水體中某些礦物相互作用產生某些鹽類),使淡水資源的礦化度提高,影響各種用水水質.鹽污染主要來自生活污水和工礦廢水以及某些工業廢渣.另外,由於酸雨規模日益擴大,造成土壤酸化、地下水礦化度增高. 水體中無機鹽增加能提高水的滲透壓,對淡水生物、植物生長產生不良影響.在鹽鹼化地區,地面水、地下水中的鹽將對土壤質量產生更大影響.
熱污染
熱污染是一種能量污染,它是工礦企業向水體排放高溫廢水造成的.一些熱電廠及各種工業過程中的冷卻水,若不採取措施,直接排放到水體中,均可使水溫升高,水中化學反應、生化反應的速度隨之加快,使某些有毒物質(如氰化物、重金屬離子等)的毒性提高,溶解氧減少,影響魚類的生存和繁殖,加速某些細菌的繁殖,助長水草叢生,厭氣發酵,惡臭. 魚類生長都有一個最佳的水溫區間.水溫過高或過低都不適合魚類生長,甚至會導致死亡.不同魚類對水溫的適應性也是不同的.如熱帶魚適於15~32℃,溫帶魚適於10~22℃,寒帶魚適於2~10℃的范圍.又如鱒魚雖在24℃的水中生活,但其繁殖溫度則要低於14℃.一般水生生物能夠生活的水溫上限是33~35℃. 除了上述八類污染物以外,洗滌劑等表面活性劑對水環境的主要危害在於使水產生泡沫,阻止了空氣與水接觸而降低溶解氧,同時由於有機物的生化降解耗用水中溶解氧而導致水體缺氧.高濃度表面活性劑對微生物有明顯毒性. 京航大運河北段遭污染
水體污染的例子很多,如京杭大運河(杭州段)兩岸有許多工廠,每天均有大量廢水排入運河,使水體中固體懸浮物、有機物、重金屬(Zn,Cd,Pb,Cu等)及酚、氰化物等含量大大超過地面水標准,有的超過幾十倍,使水體處於厭氧的還原狀態,烏黑發臭,魚蝦絕跡,不能用於生活、農業等用水;水體自凈能力差,若不治理,並控制污染源,水體污染還會進一步擴大. 水環境中的污染物,總體上可劃分為無機污染物和有機污染物兩大類.在水環境化學中較為重要的,研究得較多的污染物是重金屬和有機物.我國水污染化學研究始於70年代,從重金屬、耗氧有機物、DDT、六六六等農葯污染開始,目前研究的重點已轉向有機污染物,特別是難降解有機物,因其在環境中的存留期長,容易沿食物鏈(網)傳遞積累(富集),威脅生物生長和人體健康,因而日益受到人們重視.本章著重介紹重金屬和有機污染物在水體中遷移轉化的環境化學行為.
㈥ 葉綠素的單位
在文獻中常見的葉綠素含量單位有兩種:一是以單位葉面積表示的,二是以單位葉片鮮重表示的。比較起來,還是以單位葉面積表示的較為合理、適用,因為它不受葉片含水量變化的干擾,而且也便於與以單位葉面積表示的光合速率聯系起來分析兩者關系。以單位葉片鮮重表示的葉綠素含量尤其不適用於不同生長光強、不同供水條件下生長的植物材料。在以單位葉面積表示的葉綠素含量相同時,如果以單位葉片鮮重表示,含水量高的葉片葉綠素含量值會低於那些含水量低的葉片。在水分脅迫條件下,這種偏差尤其大。遺憾的是,許多人沒有意識到這個問題,總是通過稱鮮重取樣提取和測定葉綠素含量。也許他們以為這樣做簡便。其實,准確稱量一定重量的葉片絕對不比取一定面積的葉片來得快。
㈦ 水中葉綠素含量的高低有什麼影響
水中葉綠素含量的高低有什麼影響?不明白你的問題。請重新解釋一遍好嗎?
葉綠素為脂溶性色素,不明白你問的「水中」是什麼意思。
這里應該主要指一些藻類。如果葉綠素含量過高,可能就產生了水華或者赤潮。水質會下降。
㈧ 廢水中有哪些有機物
總體上分為顆粒狀有機物和溶解性有機物,顆粒狀有機物在普通顯微鏡下可以觀察到,它包括有生命的有機體(浮游動植物、細菌菌團等)和無生命的有機物顆粒,後者在水中可逐漸沉降。溶解性有機物包括真溶液狀態和膠體狀態兩種,又可分為類脂物質、氨基酸、烴類、碳水化合物、維生素及腐殖質等。主要的有機物有以下幾種:(1)碳水化合物 天然水體中的碳水化合物包括各種單糖和復雜的多糖類,海水中碳水化合物的總濃度為200-600ug*L-1。天然水中碳水化合物主要來源於浮游植物的光合作用,它是許多微生物和水生生物的營養物,易被分解,其水解產物為五碳糖和六碳糖;(2)腐殖質 在天然水域和土壤中,尤其是泥碳和腐泥中,廣泛存在著分子組成復雜、性質較為穩定、而化學成分不十分確定的一類有機化合物,通常稱為腐殖質,顯然是多種物質的綜合體,它們中大部分的成分和結構至今尚不十分清楚,有些研究者認為,由於成因不同海水和淡水中腐殖質有所差異。但是這類物質基本均是動植物屍體經過一系列物理、化學和生物過程形成的。腐殖質通常可以看作是低聚物(相對分子質量為300-30000),含有酚羥基和羥基,有較低數量的脂族羥基。根據其在鹼x性和酸性溶液中的溶解度,腐殖質通常劃分為以下三種:①腐殖酸,在鹼性溶液中溶解,但酸化後即沉澱;②富里酸,這是腐殖質中在酸化水溶液中存在的部分,也是在整個pH范圍內都溶解的部分;③腐黑物,以酸或鹼都不能提取的部分。這三種腐殖質結構相似,但相對分子質量和官能團含量不同,富里酸相對分子質量可能低於腐殖酸和腐黑物,但親水基團較多。Schnitzer根據分級分離和降解研究指出,富里酸是由酚和苯羧酸以氫鍵結合而成,形成聚合物結構,具有相當的穩定性。子對河水中腐殖酸鹽的凝聚作用有關。
(3)類脂化合物 類脂化合物是能被非極性或弱極性有機溶劑萃取的組分,如長鏈脂肪酸、脂肪酸酯或蠟酯、長鏈醇、磷脂、甾族化合物等,萃取時,雖然烴類可同時被萃取,但習慣上將它們另歸一類。
(4)含氮有機物 水體中含氮有機物主要是氨基酸和多肽,氨基酸是蛋白質的基本組成單元,其主要來源於浮游生物的代謝和分解產物,它能為異養微生物提供有機物質和能源,通常存在於淡水、海水中的是低分子量的氨基酸(如甘氨酸,丙氨酸和絲氨酸等),總氨基酸含量一般為10-100ug/L。此外水體中存在的含氮化合物還有尿素、嘌
呤和尿嘧啶等,它們也是水生生物的降解產物。
(5)烴類 烴類能與類脂物同時被有機溶劑萃取,在環境污染的監測中,水體中烴類有其特殊的重要性。石油烴類的存在與人類活動有關,進入水體中的石油可導致水體缺氧,從而造成對生物的威脅,而鹵代烴類農葯和多氯聯苯是人工合成物,而自然界中又不存在分解這些化合物的酶類,因此它們在水體中滯留時間很長,不易被分解,具有很高的生物毒性。
(6)維生素 在天然水體中已檢出的維生素有硫胺素(維生素B1)、鈷胺素(維生素B12)和生物素(維生素H),它們在水體中的含量極微,但與生物生長關系十分密切。(7)其它化合物 除了上述幾種主要化合物外,在水體中已檢出的還有丙酮、丁酮、甲乙酮、丁醛、糠醛、核酸、甲烷、乙烷、丙烷、乙酸乙酯和某些刺激素和生長抑制劑等有機化合物。
㈨ 植物葉綠素含量大約為多少 單位有是多少呢 有沒有人知道 急求
首先要看是哪種植物,再做測量!
我告訴你方法可以測量
1.原子吸收光譜法:通過測定鎂元素的含量,進而間接計算葉綠素的含量。
2.分光光度法:利用分光光度計測定葉綠素提取液在最大吸收波長下的吸光值,即可用朗伯—比爾定律計算出提取液中各色素的含量。
葉綠素a 和葉綠素b 在645nm 和663nm 處有最大吸收,且兩吸收曲線相交於652nm 處。因此測定提取液在645nm、663nm、652nm 波長下的吸光值,並根據經驗公式可分別計算出葉綠素a、葉綠素b和總葉綠素的含量。
單位就是nm
㈩ 葉綠素高於多少認為處於水華高發期
溶解氧(Dissolved Oxygen)是指溶解於水中分子狀態的氧,即水中的O2 ,用DO表示。溶解氧是水生生物生存不可缺少的條件。溶解氧的一個來源是水中溶解氧未飽和時,大氣中的氧氣向水體滲入;另一個來源是水中植物通過光合作用釋放出的氧。溶解氧隨著溫度、氣壓、鹽分的變化而變化,一般說來,溫度越高,溶解的鹽分越大,水中的溶解氧越低;氣壓越高,水中的溶解氧越高。
溶解氧除了被通常水中硫化物、亞硝酸根、亞鐵離子等還原性物質所消耗外,也被水中微生物的呼吸作用以及水中有機物質被好氧微生物的氧化分解所消耗。所以說溶解氧是水體的資本,是水體自凈能力的表示。
天然水中溶解氧近於飽和值(9ppm),藻類繁殖旺盛時,溶解氧含量下降。水體受有機物及還原性物質污染可使溶解氧降低,對於水產養殖業來說,水體溶解氧對水中生物如魚類的生存有著至關重要的影響,當溶解氧低於4mg/L時,就會引起魚類窒息死亡,對於人類來說,健康的飲用水中溶解氧含量不得小於6mg/L。當溶解氧(DO)消耗速率大於氧氣向水體中溶入的速率時,溶解氧的含量可趨近於0,此時厭氧菌得以繁殖,使水體惡化,所以溶解氧大小能夠反映出水體受到的污染,特別是有機物污染的程度,它是水體污染程度的重要指標,也是衡量水質的綜合指標。因此,水體溶解氧含量的測量,對於環境監測以及水產養殖業的發展都具有重要意義。