❶ 關於葯廠污水處理的資料
污水處理方法代碼簡表
1000 物理處理法
1100 過濾
1200 離心
1300 沉澱分離
1400 上浮分離
1500 其它
2000 化學處理法
2100 化學混凝法
2110 化學混凝沉澱法
2120 化學混凝氣浮法
2200 中和法
2300 化學沉澱法
2400 氧化還原法
2500 其它
3000 物理化學處理法
3100 吸附
3200 離子交換
3300 電滲析
3400 反滲透
3500 超過濾
3600 其它
4000 生物處理法
4100 好氧生物處理
4110 活性污泥法
4111 普通活性污泥法
4112 高濃度活性污泥法
4113 接觸穩定法
4114 氧化溝
4115 SBR
4120 生物膜法
4121 普通生物濾池
4122 生物轉盤
4123 生物接觸氧化法
4200 厭氧生物處理法
4210 厭氧濾器工藝
4220 上流式厭氧污泥床工藝
4230 厭氧折流板反應器工藝
4300 厭氧/好氧生物組合工藝
4310 兩段好氧生物處理工藝
4320 A/O工藝
4330 A2/O工藝
4340 A/O2工藝
5000 組合工藝處理法
5100 物理+化學
5200 物理+生物
5210 物理+好氧生物處理
5220 物理+厭氧生物處理
5230 物理+組合生物處理
5200 化學+物化
5300 化學+生物
5310 化學+好氧生物處理
5320 化學+厭氧生物處理
5330 化學+組合生物處理
5400 物化+生物
5410 物化+好氧生物處理
5420 物化+厭氧生物處理
5430 物化+組合生物處理
❷ 中成葯制葯廠廢水處理那種工藝最好
中成葯制葯廠可採用CASS工藝。CASS(CyclicActivatedSludgeSystem)是周期循環活性污泥法的簡稱,又稱為循環活性污泥工藝CAST()
CASS原理::在預反應區內,微內生物能通過酶的快速轉移機理迅速吸附污水中大部分可溶性有機物,經歷一個高負荷的基質快速積累過程,這對進水水質、水量、PH和有毒有害物質起到較好的緩沖作用,同時對絲狀菌的生長起到抑製作用,可有效防止污泥膨脹;隨後在主反應區經歷一個較低負荷的基質降解過程。CASS工藝集反應、沉澱、排水、功能於一體,污染物的降解在時間上是一個推流過程,而微生物則處於好氧、缺氧、厭氧周期性變化之中,從而達到對污染物去除作用,同時還具有較好的脫氮、除磷功能。
CASS法工作原理:在容反應器的前部設置了生物選擇區,後部設置了可升降的自動潷水裝置。其工作過程可分為曝氣、沉澱、潷水、閑置四個階段,周期循環進行。污水連續進入預反應區,經過隔牆底部進入主反應區,在保證供氧的條件下,使有機物被池中的微生物降解。根據進水水質可對運行參數進行調整。
❸ 葯廠污水處理的方法有哪些
氨蛋酶技術使用於制葯污水
❹ 請問10000立方米制葯廠污水處理工藝用哪種好COD.BOD去除率90%以上
看水質吧,一般的COD高,肯定是厭氧+好氧的多,但要針對水質情況考慮是否需要用到水解酸化或者高級氧化類工藝
❺ 目前制葯廠污水處理工藝那種最好
制葯廢水來的處理工藝及選擇
制葯源廢水的水質特點使得多數制葯廢水單獨採用生化法處理根本無法達標,所以在生化處理前必須進行必要的預處理。一般應設調節池,調節水質水量和pH,且根據實際情況採用某種物化或化學法作為預處理工序,以降低水中的SS、鹽度及部分COD,減少廢水中的生物抑制性物質,並提高廢水的可降解性,以利於廢水的後續生化處理。
預處理後的廢水,可根據其水質特徵選取某種厭氧和好氧工藝進行處理,若出水要求較高,好氧處理工藝後還需繼續進行後處理。具體工藝的選擇應綜合考慮廢水的性質、工藝的處理效果、基建投資及運行維護等因素,做到技術可行,經濟合理。總的工藝路線為預處理-厭氧-好氧-(後處理)組合工藝。如陳明輝等[28]採用水解吸附—接觸氧化—過濾組合工藝處理含人工胰島素等的綜合制葯廢水,處理後出水水質優於GB8978-1996的一級標准。氣浮-水解-接觸氧化工藝處理化學制葯廢水、復合微氧水解-復合好氧-砂濾工藝處理抗生素廢水、氣浮-UBF-CASS工藝處理高濃度中葯提取廢水等都取得了較好的處理效果
❻ 制葯廠廢水水質COD8000,BOD500,SS600可以選用什麼污水處理工藝
由於制葯廢水具有難降解的特點,單一處理工藝有時不能保證出水效果,因此國內外採用組合工藝處理制葯廢水的研究都比較多。組合工藝主要以化學法和生物法為主體工藝進行展開,達到較好的處理效果。劉香蘭等採用超聲波混凝工藝處理重慶市北碚區大新葯業的制葯廢水,制葯廢水COD為6~9g/L,pH為5左右。在超聲波輻射時間為1000s,PAC投加量為0.3g/L時處理效果最佳,COD和NH3——N的去除率分別為61.24%、58.63%。施加超聲波,可加快廢水中有機物的熱運動、提高比表面積,有機物與混凝劑碰撞形成共沉物的速率提高,從而強化混凝效果。李亞峰等以100mL的硝基苯原水為研究對象,採用微波——Fenton工藝得到優化實驗條件為:微波輻照功率為125W,輻照時間為5min,Fe3+的濃度為20mmol/L,腐殖酸的質量濃度為20mg/L,H2O2的濃度為3.5mmol/L,pH為3~6。此條件下,初始質量濃度為75mg/L的硝基苯降解率達到96.1%,出水質量濃度低於2.0mg/L。Fenton以其氧化快速、省時節能、不帶入新的污染物、礦化度高、操作簡單等優點受到廣大學者的青睞,以Fenton為主體的聯合工藝更是近年來研究的熱點。
單獨採用一般的好氧工藝處理高含量制葯廢水,對有機物含量有一定的限制,有機物含量過高會對好氧微生物有一定抑製作用,也容易出現供氧不足的狀況,曝氣電耗大,氧利用率低,處理效果不理想。微電解——混凝組合工藝預處理制葯廢水,生物處理和活性炭吸附深度處理的研究表明,微電解混凝預處理可減少污染物的毒性,提高廢水可生化性,生物處理去除大部分的COD,活性炭吸附法作為處理進一步去除剩餘的非生物降解的顆粒。預處理後COD和SS的去除率分別為66.9%和98.9%,組合處理工藝的COD去除率達96%,出水水質達到GB8978——1999三級標准各項指標。周俊採用催化氧化預處理+水解酸化+接觸氧化組合工藝處理合成類制葯廢水,進水COD=25g/L,預處理後COD去除率為85%,處理後出水COD≤0.5g/L,pH為6~9,該系統合理的流程組合充分體現工藝設計的合理性和先進性,並能有效的達到處理制葯廢水的目的。
宋吉娜等採用Fenton氧化——混凝沉澱——水解酸化——好氧工藝處理COD為高達16~20g/L的制葯廢水,好氧工藝之前去除了部分COD並提高了可生化性,再與低COD為1.8~2.2g/L的設備清洗排水和生活廢水混合,最後經過好氧工藝處理,出水COD達標。MABR中試實驗系統,包括水解酸化預處理,MABR工藝和活性炭吸附深度處理,用於處理高負荷制葯廢水。對MABR工藝的研究表明,MABR工藝能有效去除98%以上的COD和90%的氨。單膜曝氣的條件下,COD和NH4+——N容積負荷分別能夠達到1311g/(m3・d)和48.2g/(m3・d),氧的利用率可高達45%。深度處理後,MABR系統出水保持穩定,COD低於200mg/L,NH4+——N的質量濃度低於3mg/L。
本文引用來自網頁鏈接
❼ 葯廠污水處理後的污泥怎麼處理
在污泥濃縮、調理和脫水等實現污泥減量化的常規處理工藝基礎上,根據污泥處置要求和相應的泥質標准,選擇適宜的污泥處理技術路線。污泥以園林綠化、農業利用為處置方式時,鼓勵採用厭氧消化或高溫好氧發酵(堆肥)等方式處理污泥。 厭氧消化處理污泥。鼓勵城鎮污水處理廠採用污泥厭氧消化工藝,產生的沼氣應綜合利用;厭氧消化後污泥在園林綠化、農業利用前,還應按要求進行無害化處理。 高溫好氧發酵處理污泥。鼓勵利用剪枝、落葉等園林廢棄物和礱糠、谷殼、秸桿等農業廢棄物作為高溫好氧發酵添加的輔助填充料,污泥處理過程中要防止臭氣污染。污泥以填埋為處置方式時,可採用高溫好氧發酵、石灰穩定等方式處理污泥,也可添加粉煤灰和陳化垃圾對污泥進行改性。 高溫好氧發酵後的污泥含水率應低於40%。 鼓勵採用石灰等無機葯劑對污泥進行調理,降低含水率,提高污泥橫向剪切力。污泥以建築材料綜合利用為處置方式時,可採用污泥熱干化、污泥焚燒等處理方式。 污泥熱干化。採用污泥熱干化工藝應與利用余熱相結合,鼓勵利用污泥厭氧消化過程中產生的沼氣熱能、垃圾和污泥焚燒余熱、發電廠余熱或其他余熱作為污泥干化處理的熱源;不宜採用優質一次能源作為主要干化熱源;要嚴格防範熱干化可能產生的安全事故。 污泥焚燒。經濟較為發達的大中城市,可採用污泥焚燒工藝。鼓勵採用干化焚燒的聯用方式,提高污泥的熱能利用效率;鼓勵污泥焚燒廠與垃圾焚燒廠合建;在有條件的地區,鼓勵污泥作為低質燃料在火力發電廠焚燒爐、水泥窯或磚窯中混合焚燒。污泥焚燒的煙氣應進行處理,並滿足《生活垃圾焚燒污染控制標准》(GB18485)等有關規定。污泥焚燒的爐渣和除塵設備收集的飛灰應分別收集、儲存、運輸。鼓勵對符合要求的爐渣進行綜合利用;飛灰需經鑒別後妥善處置。
❽ 請問葯廠的污水處理一般是什麼流程是不是都差不多啊
不好處理,葯廠的污水復雜多變,還要常規的處理根本沒用,說簡單的那隻能說經驗不多了,這種水很難生化,常規的厭氧好氧根本沒用