㈠ 熱電廠發電為什麼要用超純水
如果熱電廠鍋爐用水中若含有硬度鹽類,會在鍋爐受熱面上生成水垢,從而降低鍋爐熱效率、增大燃料消耗,甚至因金屬壁面局部過熱而損傷部件、引起爆炸。因此必須進行水的軟化與脫鹽處理。
㈡ 火力發電廠中給水加氧的原理
給水加氧處理(OT)是在高純度給水中加入適量的氧化劑(O2或H2O2)以達到減緩熱力設備腐蝕的目的,它與給水除氧的 AVT還原性水工況截然相反,是一種氧化性水工況。加氧處理是20世紀70年代德國開發出來的一種新型的爐水處理方式,不久便用於前蘇聯、義大利、丹麥等歐洲國家,近 20a來,澳大利亞、日本、美國等國家也相繼應用了這一技術。我國於20世紀80年代末首先在華東某電廠一台 300MW直流鍋爐上使用。OT 處理推廣應用較快,主要是由於該種處理方式有明顯的效益。採用OT處理後,鍋內沉積物量減少、腐蝕損壞降低、直流爐爐管和加熱器壓降快速升高問題得到了解決、鍋爐清洗頻率降低、凝結水凈化裝置運行周期延長、給水管道FAC大有改善等。因此,目前德國、日本、前蘇聯和中國等許多國家將OT 處理方式列入國家標准,如表1所示。
OT處理方式本身也在不斷發展。最初是中性處理(NWT),它是將O2加入中性的高純水中,由於NWT 處理對水的pH值不起任何緩沖性,少量酸性物就會引起 pH 值下降,甚至有導致酸性腐蝕和氫脆的可能,加之人們擔心碳鋼在低溫區的腐蝕速度高和銅合金的腐蝕等問題,研究開發了給水添加少量氨,將給水pH值由6.5-7.0提至8.0-8.5,同時加氧處理的方法,稱為聯合水處理(CWT)。從應用范圍來看,最初用於全鐵部件的直流爐,後又擴大到凝汽器和低壓加熱器是銅合金的直流爐,目前已用於汽包鍋爐。
1 加氧處理原理及主要控制指標
從熱力學觀點來看,鍋爐給水採用除氧的AVT處理時,碳鋼的腐蝕電位在-0.30V左右,給水pH在8.8-9.5之間,從Fe-H20 電位pH圖可以看到,處於鈍化區,鈍化膜是Fe3O4。給水加氧後,碳鋼的腐蝕電位會升高數百毫伏達到 0.15-0.30V,如圖 1所示,碳鋼表面原Fe3O4 膜中部分Fe 2+會進一步氧化生成 Fe2O3,其反應:
2Fe 2+ +1/2O2+2H2O——Fe2O3+4H+
因此,在有氧純水中,碳鋼表面形成雙層氧化膜,內層是磁性氧化鐵(Fe3O4)膜,外層是Fe2O3膜,這樣的雙層氧化膜能更有效阻止碳鋼的腐蝕。大量試驗證明:在中性純水(電導率〈0.1μS/cm)中,加氧使碳鋼的腐蝕速度降低 2-3個數量級。
在有氧的高純水中,影響碳鋼和銅合金腐蝕的主要因素有pH 值、氧濃度和電導率等。
1.1 給水pH 值
碳鋼在無氧除鹽水中的腐蝕速度與pH 值有關,隨著 pH 值的升高,碳鋼的腐蝕速度逐步降低;而在有氧的除鹽水中,碳鋼的腐蝕速度在 pH 值為7 時降得很低,並且不再隨著pH 值的升高有所改變,如圖2 所示。
從熱力學觀點來看,在無氧或有氧的高純水中,銅均處於鈍化狀態,不過在無氧的高純水中,銅表面形成淺黃色的氧化亞銅(Cu2O),在有氧的高純水中,形成黑色的氧化銅(CuO),後者在純水中的溶解度大於前者,且二者均受高純水pH 值的影響,pH值在 8.5-9.0 范圍內,銅合金的腐蝕速度可達很低(通常加氨量 100μg/l左右)。當 pH>10 時,由於生成銅氨絡合物,銅合金的腐蝕速度顯著增加。國內某電廠直流爐採用CWT處理結果表明:當給水pH 值控制在8.7±0.1范圍內,低壓加熱器出口水中銅含量均低於AVT處理時的5.0 μg/l水平,爐前給水的銅含量也可達到AVT處理時的 2.6μg/l 水平,而給水pH值降至 8.3 時,給水中銅含量將比AVT處理時增加60%。國內另一電廠實施 CWT處理時,pH值控制在8.7-8.9,低壓加熱器出口水中銅含量接近AVT處理時的 5.0μg/l 水平。
1.2 氧濃度
保持純水中的氧濃度是為了保證碳鋼的腐蝕電位高於其鈍化電位。日本等國在這方面做了一些有益的工作,圖 3為日本砂川電廠 4號機組採用CWT處理時,溶解氧量與腐蝕電位的關系,當水中溶解氧在 20-50 μg/l時,電位可以進入Fe2O3區域,加氧最低濃度為 20μg/l,但是世界上絕大多數採用CWT處理的國家推薦加氧最低濃度為50μg/l,此外,試驗還發現維持 Fe2O3 的電位所需氧濃度比生成 Fe2O3的電位所需氧濃度低得多。
圖4 為日本砂川電廠 4 號機組採用CWT處理時,在開、停爐期間腐蝕電位的變化情況。腐蝕電位在0-100mV 之間,變化最大值為100mV,電位仍然處於電位-pH 圖中 Fe2O3 區域,說明開、停機組期間也可採用 CWT處理。
在中性純水中,加氧會使銅合金的腐蝕速度急劇增大,如圖5 所示,因此,在低壓加熱器為銅合金材料的機組上採用 CWT 處理時,必須控制給水中氧濃度在合適的濃度。據原蘇聯介紹,通過低壓加熱器的給水氧濃度控制在70-120μg/l范圍,銅合金腐蝕速度最低;國內現場實驗結果表明:對於銅鐵部件的熱力系統,給水中氧濃度控制在100±20 μg/l 時,低壓加熱器系統出水和爐前給水中銅含量不會高於AVT處理時的值。可見兩者的實驗結果完全一致。
1.3 給水電導率
在加氧水中,電導率與碳鋼的腐蝕速度近似於線性關系,如圖 6 所示。隨著給水的電導率增加,碳鋼的腐蝕速度會顯著增加。實際上,水的電導率是水中雜質含量的綜合反映,電導率高,雜質含量就多,水中的雜質特別是氯離子妨礙正常的磁性氧化鐵保護膜的生成,反應如下:
2Fe 2+ +H2O +1/2O2 +8Cl- ——2[FeCl4]- +2OH-
研 究 結 果 表 明 : 當 水 的 陽 離 子 電 導 率 為0.1μS/cm 時,隨著氧濃度的增加(超過 50μg/l),碳鋼的腐蝕速度會顯著下降;而當陽離子電導達到0.3μS/cm 時,腐蝕速度開始增大,這就是為什麼世界各國將陽離子電導率=0.3 做為門限值,當給水陽離子電導率大於此值時,應停止加氧處理。
2 汽包鍋爐加氧處理
目前,加氧處理已開始在汽包爐上使用,表2是美國和我國汽包爐加氧處理給水和爐水控制指標。可以看出,與直流爐加氧處理相比,汽包鍋爐加氧處理有以下不同。
(1) 汽包鍋爐採用 OT 處理比直流爐要高些,前者要求給水陽離子電導率<0.1μS/cm,而後者只要求陽離子電導率<0.2μS/cm。
(2) 汽包鍋爐有爐水濃縮問題,因此,嚴格控制爐水水質是實施 OT處理的關鍵之一。美國規定爐水陽離子電導率<3μS/cm,我國空冷機組規定爐水陽離子電導率<1μS/cm,兩國標准中對爐水氯離子都有規定,且相同,即Cl-<100μg/l。
(3) 汽包鍋爐加氧處理還對下降管和底部水冷壁氧濃度有要求,規定必須小於 5μg/l,否則爐水中雜質發生濃縮時可能產生點蝕。
3 OT處理優點
長期現場應用證明OT處理具有以下優點:
3.1 汽水系統中 Fe濃度顯著降低
日本直流鍋爐採用 CWT處理後,熱力系統各部位的鐵濃度大大降低,僅為 AVT處理時的1/2-1/4。國內某電廠 1 台 500MW超臨界直流鍋爐採用CWT處理後,給水鐵離子平均值由過去AVT處理的5.6μg/l 下降至0.3μg/l,下降80%,凝結水和高加疏水的鐵離子濃度也有顯著下降,其濃度僅為 AVT 處理時間的 10-20%。
3.2 鍋爐的結垢速度明顯降低
日本現場使用發現,CWT處理時,鍋爐各部位的結垢速度僅為 AVT 處理時的 1/2-1/3。國內某電廠 1 台 300MW亞臨界直流鍋爐採用CWT 處理僅 1a,檢查發現:CWT處理期間鍋爐結垢速率為39.99g/(m2 a),與AVT 處理相比,結垢速度降低了54.6%。國內另一電廠直流鍋爐採用 CWT處理後,省煤器和水冷壁垢的沉積速度比 AVT處理時分別下降69%和87%。
3.3 鍋爐和給水加熱器的壓降顯著降低
國內某電廠 1台 500MW直流鍋爐,AVT處理運行 2 年多,鍋爐壓差從 4.4MPa上升至7.6MPa;而在CWT處理運行半年後,壓差已由原來的7.6MPa下降至 6.1MPa,給水泵轉速隨鍋爐壓差下降而減慢,滿負荷時汽泵轉速從4425r/min 下降到 4222r/min,耗汽量相應減少,機組效率提高。
日本某電廠運行經驗也證明:與AVT處理相比,CWT處理的鍋爐壓降和給水加熱器壓降分別減少 15kg/cm2 和 5kg/cm2。
3.4 凝結水除鹽設備運行周期延長
採用CWT處理後,凝結水除鹽設備再生頻率只有AVT 處理時的 1/5-1/10,從而減少了再生劑用量,降低了運行費用,也有利於環境保護。
㈢ 火力發電廠和天然氣發電廠的鍋爐補給水系統水處理上有什麼區別
火力發電來廠簡稱火電自廠,是利用煤、石油、天然氣作為燃料生產電能的工廠,它的基本生產過程是:燃料在鍋爐中燃燒加熱水使成蒸汽,將燃料的化學能轉變成熱能,蒸汽壓力推動汽輪機旋轉,熱能轉換成機械能,然後汽輪機帶動發電機旋轉,將機械能轉變成電能。
㈣ 電廠循環水處理系統都包括哪些系統
火力發電廠循環冷卻水處理系統大多採用水質穩定劑加硫酸或水質穩定內劑與弱酸處理相容結合,以達到防止系統形成碳酸鈣垢及防止產生腐蝕狀況為目的。
電廠循環水系統分開式和閉式循環水系統,一般要根據電廠容量大小、水源、冷去系統水量等因素確定冷卻水系統,一般有加葯系統、冷卻塔、風機、收水器、配水系統、填料、計量泵等組成。
㈤ 火力發電的循環水系統非常重要,都包含什麼設備
一、燃燒系統
燃燒系統由輸煤、磨煤、燃燒、風煙、灰渣等環節組成
㈥ 火力發電廠化學水處理(鍋爐補給水方面)的工藝流程,簡單點就是:自來水—鍋爐
來水-生水加熱-機械過濾器-生水箱-自清洗過濾器-超濾-超濾水箱-一級反滲透-一反水箱-二級反滲透-二反水箱-EDI除鹽裝置-除鹽水箱-鍋爐.
這是現在新建電廠普遍用的,其中我省略了水泵.
㈦ 核電站冷卻水為什麼用海水,火力發電為什麼不能用海水
火力發電站冷卻水也可以用海水,只是鍋爐蒸汽用水不能用海水,火電廠專門有一個車間就是凈化水質的,並且在運行時還要定時監控,防止超標,該專業的主要工作就是對淡水進行置換、再生、軟化、除鹽、達到純凈水水質要求,再進行除氧,在運行時還要根據參數加入化學葯品,讓鹽類固化沉澱通過排污管道排走以凈化水質。你知道在家中澆水用的茶壺,用久了裡面會結垢,因為水質太硬即含鹽分太多了,如果用到每小時蒸發量百噸或千噸的鍋爐,那直接的後果是鍋爐管道堵塞,鍋爐報廢。如果採用海水作為鍋爐蒸汽用水,那水處理的工作將會更加嚴格。
核電站冷卻水用海水,主要因為大部分核電站建在海邊,用海水比較方便。
當然,無論是核電站還是火電站,用海水冷卻水都要注意防腐問題,海水中電解質成分很多,腐蝕能力比淡水強得多。
㈧ 誰知道火力發電廠廢水種類及處理方法
火力發電廠脫硫廢水為含有高濃度懸浮物、高氯根、高鹽、高濃度重金屬廢水,對環境污染性極強,處理難度也較大,也是火力發電廠實現零排放的最大難點。
廢水量太大是導致零排放成本過高的主要原因,這個因素在閉式冷卻循環機組尤為明顯。以閉式循環冷卻機組為例:在目前電廠零排放的路線是將循環冷卻水濃水排出做脫硫工藝用水,而脫硫系統水消耗量非常有限,特別是在發電低峰情況下煙氣不足導致脫硫塔水消耗降低,最後導致循環水排濃無處可排。
火力發電廠廢水處理系統,該廢水處理系統包括循環冷卻塔、脫硫塔、進口與脫硫塔相連的脫硫廢水澄清器:
循環水處理系統,所述循環水處理系統的進口通過管道分別與循環冷卻塔的出口、脫硫廢水澄清器的出口連通,循環水處理系統的產水出口與循環冷卻塔的進口相連,濃縮系統的濃水出口與脫硫塔的進口相連;
脫硫廢水處理系統,所述脫硫廢水處理系統的進口通過管道與脫硫廢水澄清器的出口連通;
產水回收器,所述產水回收器的進口通過管道與循環水處理系統的產水出口連通,產水回收器的出口通過管道連接至電廠生產補水系統。
預處理裝置,所述預處理裝置的進口通過管道分別與循環冷卻塔的出口、脫硫廢水澄清器的出口連通。
㈨ 火力發電廠中無筏濾池、灰水池、除灰水泵房的功能是什麼安裝什麼設備工作原理是怎樣的
(熱)電廠將江河提取的原水處理成為比較干凈的生活消防水的凈化裝置。灰水池是小型發(熱)電廠將鍋爐除塵裝置收集的煤灰,用水沖到灰水池,經過沉澱,撈出灰分,水則重復使用,閉式循環。
除灰系統不同的電廠差別較大,還是按照以上小型發(熱)電廠來說,除灰水泵就是提取灰水池中經過沉澱的灰水,將其泵到煙囪旁邊的除塵水箱,這種屬於「濕法除塵」,利用煙囪四周噴水形成的水膜,將煙氣中的灰塵沾附在水滴上,最後集中留進灰水池。
㈩ 火力發電循環水處理用到的水處理劑有哪些
整理了一下,這些產品可以用於火力發電廠的水處理
氨基三甲叉膦酸 ATMP、羥基乙叉二膦酸 HEDP、乙二胺四甲叉膦酸鈉 EDTMPS、2-膦酸基丁烷-1,2,4-三羧酸PBTCA、2-羥基膦醯基乙酸HPAA、氨基三甲叉膦酸四鈉ATMP•Na4、羥基乙叉二膦酸鈉HEDP•Na、羥基乙叉二膦酸二鈉HEDP•Na2、羥基乙叉二膦酸四鈉HEDP•Na4、乙二胺四甲叉膦酸五鈉EDTMP•Na5、聚丙烯酸PAA、聚丙烯酸鈉PAAS、TH-613丙烯酸-丙烯酸酯-磺酸鹽三元共聚物、羧酸鹽-磺酸鹽-非離子三元共聚物、聚環氧琥珀酸(鈉)PESA、十二烷基二甲基苄基氯化銨1227、聚季銨鹽、TH-401復合型殺菌劑、TH-402復合型殺菌劑、TH-406復合型殺菌劑、TH-604型電廠專用緩蝕阻垢劑、TH-610高效灰水阻垢劑、TH-628型緩蝕阻垢劑
以上信息來源與:山東省泰和水處理有限公司