導航:首頁 > 廢水知識 > 廢水處理微生物一般細胞分子式

廢水處理微生物一般細胞分子式

發布時間:2025-10-01 19:07:47

廢水厭氧生物處理的原理

1. 在厭氧處理過程中,廢水中的有機物被大量微生物共同作用,最終轉化為甲烷、二氧化碳、水、硫化氫和氨等。這一過程中,不同微生物的代謝過程相互影響,相互制約,形成了復雜的生態系統。
2. 高分子有機物的厭氧降解過程可以被分為四個階段:水解階段、發酵(或酸化)階段、產乙酸階段和產甲烷階段。
3. 水解階段是指復雜的非溶解性聚合物被轉化為簡單的溶解性單體或二聚體的過程。高分子有機物因相對分子量巨大,不能透過細胞膜,因此不可能被細菌直接利用。它們在第一階段被細菌胞外酶分解為小分子。例如,纖維素被纖維素酶水解為纖維二糖與葡萄糖,澱粉被澱粉酶分解為麥芽糖和葡萄糖,蛋白質被蛋白質酶水解為短肽與氨基酸等。這些小分子的水解產物能夠溶解於水並透過細胞膜為細菌所利用。水解過程通常較緩慢,因此被認為是含高分子有機物或懸浮物廢液厭氧降解的限速階段。多種因素如溫度、有機物的組成、水解產物的濃度等可能影響水解的速度與水解的程度。水解速度的可由以下動力學方程加以描述:ρ=ρo/(1+Kh.T)ρ ——可降解的非溶解性底物濃度(g/L);ρo———非溶解性底物的初始濃度(g/L);Kh——水解常數(d^-1);T——停留時間(d)。
4. 發酵(或酸化)階段是指有機物化合物既作為電子受體也是電子遲差供體的生物降解過程,在此過程中溶解性有機物被轉化為以揮發性脂肪酸為主的末端產物,因此這一過程也稱為酸化。在這一階段,上述小分子的化合物發酵細菌(即酸仿此化菌)的細胞內轉化為更為簡單的化合物並分泌到細胞外。發酵細菌絕大多數是嚴格厭氧菌,但通常有約1%的兼性厭氧菌存在於厭氧環境中,這些兼性厭氧菌能夠起到保護像甲烷菌這樣的嚴格厭氧菌免受氧的損害與抑制。這一階段的主要產物有揮發性脂肪酸、醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等,產物的組成取決於厭氧降解的條件、底物種類和參與酸化的微生物種群。與此同時,酸化菌也利用部分物質合成新的細胞物質,因此,未酸化廢水厭氧處理時產生更多的剩餘污泥。在厭氧降解過程中,酸化細菌對酸的耐受力必須加以考慮。酸化過程pH下降到4時能可以進行。但是產甲烷過程pH值的范圍在6.5~7.5之間,因此pH值的下降將會減少甲烷的生成和氫的消耗,並進一步引起酸化末端產物組成的改變。
5. 產乙酸階段是指在產氫產乙酸菌的作用下,上一階段的產物被進一步轉化為乙酸、氫氣、碳酸以及新的細胞物質。其某些反應式如下:CH3CHOHCOO-+2H2O —> CH3COO-+HCO3-+H++2H2 ΔG』0=-4.2KJ/MOL;CH3CH2OH+H2O-> CH3COO-+H++2H2O ΔG』0=9.6KJ/MOL;CH3CH2CH2COO-+2H2O-> 2CH3COO-+H++2H2 ΔG』0=48.1KJ/MOL;CH3CH2COO-+3H2O-> CH3COO-+HCO3-+H++3H2 ΔG』0=76.1KJ/MOL;4CH3OH+2CO2-> 3CH3COO-+2H2O ΔG』0=-2.9KJ/MOL;2HCO3-+4H2+H+->CH3COO-+4H2O ΔG』0=-70.3KJ/MOL。
6. 甲烷階段是指乙酸、氫氣、碳酸、甲酸和備旦迅甲醇被轉化為甲烷、二氧化碳和新的細胞物質。甲烷細菌將乙酸、乙酸鹽、二氧化碳和氫氣等轉化為甲烷的過程有兩種生理上不同的產甲烷菌完成,一組把氫和二氧化碳轉化成甲烷,另一組從乙酸或乙酸鹽脫羧產生甲烷,前者約占總量的1/3,後者約佔2/3。最主要的產甲烷過程反應有:CH3COO-+H2O->CH4+HCO3- ΔG』0=-31.0KJ/MOL;HCO3-+H++4H2->CH4+3H2O ΔG』0=-135.6KJ/MOL;4CH3OH->3CH4+CO2+2H2O ΔG』0=-312KJ/MOL;4HCOO-+2H+->CH4+CO2+2HCO3- ΔG』0=-32.9KJ/MOL。
7. 在甲烷的形成過程中,主要的中間產物是甲基輔酶M(CH3-S-CH2-SO3-)。需要指出的是:一些書把厭氧消化過程分為三個階段,把第一、第二階段合為一個階段,稱為水解酸化階段。在這里我們則認為分為四個階段能更清楚反應厭氧消化過程。
8. 上述四個階段的反應速度依廢水的性質而異,在含纖維素、半纖維素、果膠和脂類等污染物為主的廢水中,水解易成為速度限制步驟;簡單的糖類、澱粉、氨基酸和一般蛋白質均能被微生物迅速分解,對含這類有機物的廢水,產甲烷易成為限速階段。
9. 雖然厭氧消化過程可分為以上四個過程,但是在厭氧反應器中,四個階段是同時進行的,並保持某種程度的動態平衡。該平衡一旦被pH值、溫度、有機負荷等外加因素所破壞,則首先將使產甲烷階段受到抑制,其結果會導致低級脂肪酸的積存和厭氧進程的異常變化,甚至導致整個消化過程停滯。

Ⅱ 廢水生物處理方法有哪些

主要藉助微生物的分解作用把污水中有機物轉化為簡單的無機物,使污水得到凈化.
1.按對版氧氣需求情況可分為厭權氧生物處理和好氧生物處理兩大類.厭氧生物處理系利用厭氧微生物把有機物轉化為有機酸,甲烷菌再把有機酸分解為甲烷、二氧化碳和氫等,如厭氧塘、化糞池、污泥的厭氣消化和厭氧生物反應器等.好氧生物處理系採用機械曝氣或自然曝氣(如藻類光合作用產氧等)為污水中好氧微生物提供活動能源,促進好氧微生物的分解活動,使污水得到凈化,如活性污泥、生物濾池、生物轉盤、污水灌溉、氧化塘的功能.
2,.按微生物的懸浮狀態分為活性污泥法和生物膜法.活性污泥法微生物懸浮在污水中,如氧化溝,a2o,傳統活性污泥法,sbr等等.生物膜法微生物附著在載體上,如生物轉盤法,生物流化床等等.

Ⅲ 乳製品企業廢水處理工藝,方案,需氧,微生物培養,達標情況.

利用微生物的代謝作用除去廢水中有機污染物的一種方法,亦稱廢水生物化學處理法,簡稱廢水生化法,分需氧生物處理法和厭氧生物處理法兩種。

需氧生物處理法 利用需氧微生物在有氧條件下將廢水中復雜的有機物分解的方法。

生活污水中的典型有機物是碳水化合物、合成洗滌劑、脂肪、蛋白質及其分解產物如尿素、甘氨酸、脂肪酸等。這些有機物可按生物體系中所含元素量的多寡順序表示為COHNS。在廢水需氧生物處理中全部反應可用以下兩式表示:

微生物細胞+COHNS+O2—→較多的細胞+CO2+H2O+NH3

生物體系中這些反應有賴於生物體系中的酶來加速。酶按其催化反應分為:氧化還原酶:在細胞內催化有機物的氧化還原反應,促進電子轉移,使其與氧化合或脫氫。可分為氧化酶和還原酶。氧化酶可活化分子氧,作為受氫體而形成水或過氧化氫。還原酶包括各種脫氫酶,可活化基質上的氫,並由輔酶將氫傳給被還原的物質,使基質氧化,受氫體還原。水解酶:對有機物的加水分解反應起催化作用。水解反應是在細胞外產生的最基本的反應,能將復雜的高分子有機物分解為小分子,使之易於透過細胞壁。如將蛋白質分解為氨基酸,將脂肪分解為脂肪酸和甘油,將復雜的多糖分解為單糖等。此外還有脫氨基、脫羧基、磷酸化和脫磷酸等酶。

許多酶只有在一些稱為輔酶和活化劑的特殊物質存在時才能進行催化反應,鉀、鈣、鎂、鋅、鈷、錳、氯化物、磷酸鹽離子在許多種酶的催化反應中是不可缺少的輔酶或活化劑。

在需氧生物處理過程中,污水中的有機物在微生物酶的催化作用下被氧化降解,分三個階段:第一階段,大的有機物分子降解為構成單元——單糖、氨基酸或甘油和脂肪酸。在第二階段中,第一階段的產物部分地被氧化為下列物質中的一種或幾種:二氧化碳、水、乙醯基輔酶A、α-酮戊二酸(或稱α-氧化戊二酸)和草醋酸(又稱草醯乙酸)。第三階段(即三羧酸循環,是有機物氧化的最終階段)是乙醯基輔酶A、α-酮戊二酸和草醋酸被氧化為二氧化碳和水。有機物在氧化降解的各個階段,都釋放出一定的能量。

在有機物降解的同時,還發生微生物原生質的合成反應。在第一階段中由被作用物分解成的構成單元可以合成碳水化合物、蛋白質和脂肪,再進一步合成細胞原生質。合成能量是微生物在有機物的氧化過程中獲得的。

厭氧生物處理法 主要用於處理污水中的沉澱污泥,因而又稱污泥消化,也用於處理高濃度的有機廢水。這種方法是在厭氧細菌或兼性細菌的作用下將污泥中的有機物分解,最後產生甲烷和二氧化碳等氣體,這些氣體是有經濟價值的能源。中國大量建設的沼氣池就是具體應用這種方法的典型實例。消化後的污泥比原生污泥容易脫水,所含致病菌大大減少,臭味顯著減弱,肥分變成速效的,體積縮小,易於處置。

城市污水沉澱污泥和高濃度有機廢水的完全厭氧消化過程可分為三個階段(見圖)。在第一階段,污泥中的固態有機化合物藉助於從厭氧菌分泌出的細胞外水解酶得到溶解,並通過細胞壁進入細胞中進行代謝的生化反應。在水解酶的催化下,將復雜的多糖類水解為單糖類,將蛋白質水解為縮氨酸和氨基酸,並將脂肪水解為甘油和脂肪酸。第二階段是在產酸菌的作用下將第一階段的產物進一步降解為比較簡單的揮發性有機酸等,如乙酸、丙酸、丁酸等揮發性有機酸,以及醇類、醛類等;同時生成二氧化碳和新的微生物細胞。

第一、二階段又稱為液化過程。第三階段是在甲烷菌的作用下將第二階段產生的揮發酸轉化成甲烷和二氧化碳,因此又稱為氣化過程,其反應可用下式表示:

一些有機酸或醇的氣化過程舉例如下:

乙酸:CH3COOH—→CO2+CH4

丙酸:4CH3CH2COOH+2H2O—→5CO2+7CH4

甲醇:4CH3OH—→CO2+3CH4+2H2O

乙醇:2CH3CH2OH+CO2—→2CH3COOH+CH4

為了使厭氧消化過程正常進行,必須將溫度、pH、氧化還原電勢等保持在一定的范圍內,以維持甲烷菌的正常活動,保證及時地和完全地將第二階段產生的揮發酸轉化成甲烷。

生物化學反應的速率直接受溫度的影響。進行厭氧消化的微生物有兩類:中溫消化菌和高溫消化菌。前者的適應溫度范圍為17℃~43℃,最佳溫度為32℃~35℃;後者則在50℃~55℃具有最佳反應速率。

近年來,厭氧消化處理法發展到應用於處理高濃度有機廢水,如屠宰場廢水、肉類加工廢水、製糖工業廢水、酒精工業廢水、罐頭工業廢水、亞硫酸鹽制漿廢水等,比採用需氧生物處理法節省費用。

利用生物法處理廢水的具體方法有活性污泥法、生物膜法、氧化塘法、土地處理系統和污泥消化等。

Ⅳ 廢水厭氧生物處理原理

廢水厭氧生物處理原理涉及復雜的生態系統,其中微生物共同作用,將廢水中的有機物轉化為多種產物,如甲烷、二氧化碳、水、硫化氫和氨。


高分子有機物的厭氧降解分為四個階段:水解、發酵(或酸化)、產乙酸、產甲烷。


水解階段,復雜的聚合物被分解為小分子,這些小分子能溶解於水並供細菌利用,水解速度受多種因素影響。


發酵階段,溶解性有機物轉化為以揮發性脂肪酸為主的產物,酸化菌利用部分物質合成新的細胞物質,產生剩餘污泥。


產乙酸階段,乙酸、氫氣、碳酸等進一步轉化為甲烷、二氧化碳和新的細胞物質。


產甲烷階段,乙酸、氫氣、碳酸等轉化為甲烷,主要通過兩組生理上不同的產甲烷菌完成。


四個階段反應速度依據廢水性質不同,水解階段在含纖維素、半纖維素、果膠和脂類等污染物為主的廢水中易成為速度限制步驟,而簡單的糖類、澱粉、氨基酸和一般蛋白質的分解則可能使產甲烷階段成為限速步驟。


在厭氧反應器中,四個階段同時進行,保持動態平衡。平衡被破壞,如pH值、溫度、有機負荷等外加因素影響,將首先抑制產甲烷階段,導致低級脂肪酸積存,厭氧進程異常變化,甚至導致消化過程停滯。


(4)廢水處理微生物一般細胞分子式擴展閱讀

廢水厭氧生物處理是指在無分子氧的條件下通過厭氧微生物(包括兼氧微生物)的作用,將廢水中各種復雜有機物分解轉化成甲烷和二氧化碳等物質的過程。

閱讀全文

與廢水處理微生物一般細胞分子式相關的資料

熱點內容
如何判斷空氣濾芯從哪邊進氣 瀏覽:287
四川凈水器設備哪裡有 瀏覽:545
廢水排放標准叫什麼 瀏覽:793
純水系統里加鹼起什麼作用 瀏覽:99
為什麼純水機的濾芯次序不一樣 瀏覽:366
沁園過濾器qqt3怎麼樣 瀏覽:126
上部過濾製作 瀏覽:425
景觀邊界半透膜 瀏覽:895
沁園凈水器濾瓶尺寸是多少 瀏覽:674
長春生活污水處理設備多少錢一次 瀏覽:860
核級混床陽離子交換樹脂 瀏覽:666
濾芯螺絲滑絲怎麼擰緊 瀏覽:627
樹脂眼鏡被熱水燙後的修補方法6 瀏覽:79
凈水機多少個壓力才停機 瀏覽:1000
新捷達汽油濾芯怎麼拆視頻 瀏覽:884
污水提升泵運營管理 瀏覽:662
南陽景區污水處理電話多少 瀏覽:477
空氣凈化器什麼牌子好點知乎 瀏覽:375
廢水處理微生物一般細胞分子式 瀏覽:897
凌渡換空氣濾芯怎麼換 瀏覽:194