① 銅川礦區地質環境保護規劃及關鍵技術研究
根據銅川礦區煤炭開發引起的地質環境的變化,從水資源保護、地面塌陷和地裂縫的治理、矸石山的治理、煤矸石資源化及煤礦瓦斯利用的角度,探討了銅川礦區地質環境保護技術方案。
一、現有的地質環境保護技術方案
1.礦井水處理
銅川礦區現有的8對生產礦井中,僅有4對礦井有污水處理設施,處理後的礦井水一部分用於井下灑水降塵,一部分排放到河流。沒有污水處理的4個礦井的礦井水排到地面,經簡單沉澱處理後,大部分用於井下生產,其餘部分排放。
2.地面塌陷和地裂縫
銅川礦區的采空區全部存在地面塌陷和地裂縫的問題,這些問題的產生給人民的生產和生活帶來了困難。為了了解採煤沉陷的規律,制定合理的防治和治理措施,銅川礦務局委託遼寧工程技術大學和采礦損害和控制中心進行了銅川礦區地面沉陷規律的研究,編制了「陝西省銅川礦區採煤沉陷情況報告」。報告中分析了地面沉陷的原因及地表移動規律,為防治地面沉陷提供了理論依據。對礦區中的地面沉陷和地裂縫進行了調查、觀測,對出現的地裂縫進行了及時回填。
銅川礦區現生產礦井「三下」壓煤十分嚴重(表5-6),占保有地質儲量的21.8%,以鴨口礦最為嚴重,佔32.8%。「三下」壓煤中,建築物下壓煤所佔比例最大,為總壓煤量的89.8%,而建築物下壓煤中又以村莊下壓煤為主,占其總量的74.1%。在目前的情況下,分布於各井田未采區的村莊不可能實施搬遷,嚴重影響礦井生產接續和開采效益。為了合理規劃開采,提高煤炭資源的回收率和煤礦開采效益,將開采造成的影響降到最低,實現資源開發與環境保護協調發展。為此,銅川礦務局聯合西安科技大學進行了「銅川礦區開采沉陷規律及水源地破壞研究」。報告總結了銅川礦區建築物下不動遷試采工作面和大采深、小采高、小工作面的地表移動變形特徵,從理論和實驗兩方面論證了其機理和可行性,同時,提出了在不同地質、開采條件下的工作面安全開采尺寸。
表5-6 礦區現生產礦井儲量及「三下」壓煤情況表單位:萬t
3.煤矸石的治理和利用
銅川礦區的煤矸石主要以堆存的方式存在於各個溝谷之中,大部分未做任何處理,少部分進行了填埋處理。隨著資源的日益緊張,煤矸石資源化已經成了綠色礦山的必然選擇。銅川礦務局從20世紀70年代就開始了進行煤矸石利用的探索。據有關資料記載,1978年王家河礦在沸騰爐中使用煤矸石;20世紀80年代,曾建設了三里洞內燃矸石磚廠,但現在這兩個礦井已經破產關閉。
現在,銅川礦務局下設有奧博公司水泥廠,每年用煤矸石作為原料燒制水泥,年利用煤矸石量為1.52萬t。銅川礦務局每年還作為燃料出售部分黑矸,年利用量約為3.5萬t。2006年建立了石節礦免燒磚廠,2007年3月建成並投入試生產,年利用煤矸石1.8萬t。銅川礦區的矸石山大都處於自燃中或是已經自燃過,自燃過後產生的紅矸出售給水泥廠,作為水泥的添加料。
雖然經過了上述各個途徑的煤矸石綜合利用,但是利用量與產生量相比,微不足道。2006年銅川礦區煤炭產量為967萬t,產生煤矸石108.9萬t。加大煤矸石的利用量,實現煤矸石的資源化仍是十分艱巨的任務。
二、銅川礦區地質環境保護關鍵技術方案
1.水資源保護的技術方案
銅川礦區水資源保護技術包括兩個方面:一是礦井水的循環利用;一是保護煤炭開采區水資源少受破壞。
銅川區的礦井缺水問題突出,礦井水以酸性水為主。由於酸性礦井水的處理費用較高,而礦井的井下生產用水質量要求較低。當前對酸性礦井水的處理方法以化學中和法最為有效,因而,銅川區的礦井水以中和法為基礎,結合各個礦井的具體情況,可採用直接投入法、膨脹過濾法和滾筒處理法。直接投入法是在酸性礦井水中直接加入石灰粉或石灰乳等鹼性中和劑;膨脹過濾法是利用石灰石等固體中和劑,採用升流式膨脹濾池中和酸性礦井水;滾筒處理法是將石灰石等固體中和劑置於處理機滾筒內,使之在不斷滾動、碰撞和磨碎過程中達到中和的目的。
圖5-16 洗水閉路循環工藝流程
焦坪區的礦井水都是處理達標後排放,這里不再贅述。玉華礦洗煤廠採用洗水閉路循環技術,防止煤泥水排至廠外造成危害。選煤廠的洗水主要包括壓濾機濾液水、高效濃縮機溢流水和煤泥沉澱池溢流水3部分,通過實施煤泥廠內回收,洗水閉路循環技術,達到洗水平衡、洗水全部復用的目標。下面是某礦的洗水閉路循環工藝流程(圖5-16)。
煤炭開采對地表水資源的影響,主要是煤炭開采引起的地下水位的下降,泉水乾涸,致使部分河流斷流。煤炭開采中不達標的礦井水排放,引起地表水體的污染。煤矸石等礦井廢棄物隨意堆放,不採取處理措施,也會引起地表水的污染。因此,對地表水資源保護的主要問題就是對礦井水和煤矸石的治理,消除污染。
煤炭開采對地下水資源的影響主要為含水層、隔水層破壞,致使地下水的補給來源和徑流途徑發生變化,造成區域地下水位下降,甚至降低到隔水層。因此,對地下水資源的保護的技術方案就是要保護含水層和隔水層免遭破壞。這就要求改進採掘方式、頂板管理辦法,防止和減少塌陷的產生,導水裂隙帶的發育不要觸及上覆含水層。如何防止地面塌陷的產生及裂隙帶的發育高度問題,我國已經做了很多這方面的工作,為銅川礦區的各個礦井提供了依據。但是,每個礦的具體條件各不相同,銅川礦務局各礦井的水文地質條件也各不相同,具體的保護技術方案還要結合各個礦井的水文地質條件和採煤方法來確定。因此,為了盡可能地使地下水資源免受破壞,還需要產學研相結合,尋找地下水資源保護和煤炭回採率的最佳結合點。
2.地面塌陷和地裂縫災害治理的技術方案
銅川礦區地面塌陷和地裂縫災害的治理技術方案也包括兩個方面:一是對已經產生地塌陷、地裂縫的治理技術方案;一是為了減少未來地面塌陷和地裂縫的產生的技術方案。
對於銅川市區的沉陷區,復墾後還是以工業用地為主,主要把沉陷區充填即可,因此,可以採用充填復墾。充填復墾可以利用礦區附近的煤矸石、粉煤灰、露天礦剝離廢物等充填採煤塌陷地。
對於銅川市區以外的其他地方的沉陷區復墾以生態復墾、生物復墾為主。生態復墾是將土地復墾工程技術與生態工程技術結合起來,綜合運用生物學、生態學、經濟學、環境科學、農業科學、系統工程的理論,運用生態系統的物種共生和物質循環再生等原理,結合系統工程方法,針對破壞土地所設計的多層次利用的工藝技術。其目的在於促進各生產要素的優化配置,實現物質、能量的多級分層利用,不斷提高其循環轉換效率和土地生產力,獲得較好的經濟、生態和社會綜合效益,走可持續發展的道路。它包括各種土地復墾工程技術的優選,農業立體種植、養殖、食物鏈結構、農林牧副漁業一體化等生態工程技術的選擇,常常通過平面設計、食物鏈設計和復墾工程設計來實現。生物復墾技術是新興的土地復墾技術,是當前國內外研究熱點。生物復墾是根據復墾區土地利用方向,採取包括肥化土壤、微生物培肥等在內的生物方法,改變土壤新耕作層養分狀況和土壤結構,增加蓄水、保水、保肥能力,創造適合農作物正常生長發育的環境,維護礦區生態平衡的技術體系。比如綠肥法,是改良復墾土壤、增加有機質和氮磷鉀等多種營養成分的最有效方法。綠肥多為豆科植物,一般含有15%~25%的有機質和0.3%~0.6%的氮素,其生產力旺盛,在自然條件較差、較貧瘠的土地上都能很好的生長,根系發達,能吸收深層土壤的養分,綠肥腐爛後還有膠結和團聚土粒的作用,從而改善土壤的理化特性。其施用方法是在工程復墾地種植綠肥作物,待其成熟後壓青翻入土壤,可採取單種、間種、套種等種植方式。對於地面塌陷區存在的地裂縫要及時回填,防止土壤養分和水分的流失。
防止地面塌陷和地裂縫的產生的技術就是改進採掘方法和頂板管理辦法。我國在這方面已經做了很多的工作,銅川礦務局也做了很多的工作,力求減少地面塌陷的地裂縫的產生。20世紀90年代初,銅川礦務局根據已設7個觀測站的實測最大下沉值,應用最小二乘法原理求得的回歸預測經驗公式,可以比較准確地預計一般開采工作面采後地表最大下沉值,在相似地質、開采條件下可以繼續使用。銅川礦務局曾經聯合遼寧工程大學和西安科技大學進行了「陝西省銅川礦區採煤沉陷情況報告」和「銅川礦區開采沉陷規律及水源地破壞研究」,對銅川礦區採煤沉陷的規律和主要影響因素進行模擬分析,並給出了研究結論。主要研究結論有:①銅川礦區地表下沉系數影響程度的排序為擾動程度系數—覆岩綜合硬度—表土層厚度—工作面傾向長度—采厚。其中,擾動程度系數、工作面傾向長度、采厚與地表下沉系數正相關,覆岩綜合硬度與地表下沉系數負相關。②采深是影響地表動態變形的主要因素,當采深較小時,開采影響傳播到地表較快,地表下沉變化連續性差,最大下沉速度快,活躍期短,累計下沉量反而更大,地表移動總時間縮短;而當采深大時,地表移動啟動較慢,下沉曲線平緩連續,下沉速度小,且變化也小,活躍期短或無活躍期。③開采速度與開采厚度對地表下沉速度及持續時間有重要影響。開采速度與厚度越大,最大下沉速度越大,活躍期越短而累計下沉量越大,移動總時間相應縮短。④黃土層厚度是影響地表動態移動規律的重要因素。隨著土岩比的增加,地表下沉速度有增大的趨勢,移動持續時間縮短。即土層越厚,活躍期內地表的移動變形會越激烈,由移動變形而產生的地表裂縫也將越多、越大。
3.煤矸石利用的技術方案
(1)黑矸和紅矸作為水泥混合材料
銅川礦區的煤矸石山大部分存在自燃現象,甚至有的矸石山已經自燃了幾十年,燃燒過的煤矸石變成了紅矸,目前對於紅矸的利用,一般情況下是作為水泥的混合材料,銅川礦區的部分紅矸已出售給水泥廠作為配料使用。
生產不同種類的水泥,用作水泥混合材料的煤矸石要求是炭質泥岩和泥岩、砂岩、石灰岩(CaO含量>70%),通常選用煅燒煤矸石或是煤矸石自燃,煅燒煤矸石或自燃煤矸石含有活性二氧化硅和氧化鋁,可以作為活性火山灰質混合材料使用。銅川礦區的煤矸石屬於火山灰沉積蝕變而成的質量較高的矸石,其特點是化學成分穩定,硅鋁含量較高的粘土類礦物,其化學成分見表5-7。
表5-7 銅川礦區煤矸石化學成分(wB/%)
用煤矸石作混合材料生產火山灰水泥的生產工藝流程與生產普通水泥的工藝流程基本相同,其生產流程見圖5-17。
圖5-17 煤矸石作水泥混合材料的工藝流程
(2)生產硅酸鹽水泥
以煤矸石作為原料生產水泥,主要是根據煤矸石和粘土的化學成分相近,可代替粘土提供硅鋁質原料,而且煤矸石能釋放一定的熱量,可節省部分燃料。煤矸石代替黃土配料特別易燒,主要是因為煤矸石中含有多種微量元素,如硫、氟、鈦、釩、硼、鍶、鋇等,具有礦化作用,同時煤矸石含有熱能,進入預熱器後能加速物料的預分解,使產量大幅度增長,操作時各級預熱器筒溫度相應降低,不用投資就能達到8級預熱器的效果。
根據陝西華峰建材公司生產火山灰質硅酸鹽水泥中的經驗,用煤矸石替代黃土作為原料生長硅酸鹽水泥,具有眾多的優點。煤矸石配料、摻加混合材料後的水泥早期、後期強度降低幅度小。相比混合材料摻量提高15%以上,減少孰料用量15%,增加紅矸用量15%。孰料價格為180元/t,紅矸價格按20元/t計,火山灰質硅酸鹽水泥與普通硅酸鹽水泥的差價為10元/t,計算可知每噸水泥的成本降低14元,年產8.5萬t水泥,節約119萬元。
利用煤矸石代替黃土作為水泥配料,能提高回轉窯、水泥磨的台時產量和水泥質量,具有良好的經濟效益和社會效益。
(3)煤矸石作混凝土摻合料
自燃煤矸石或燃燒煤矸石作為混凝土摻合料使用有3個方面的優勢。一是能降低水泥用量,從而降低能源消耗;二是能大量利用煤矸石,降低對環境的污染;三是能改善水泥混凝土的性能,增加水泥混凝土的抗碳化和抗硫酸鹽侵蝕等能力,提高混凝土製品質量和工程質量。這是實現煤矸石資源化、無害化處理的一個重要途徑。
自燃煤矸石或燒煤矸石具有火山灰活性,活性二氧化硅和氧化鋁能與水泥水化過程中析出的氫氧化鈣發生緩慢的「二次反應」,生成水化硅酸鈣和水化鋁酸鈣,與水泥漿硬化體堅固地結合起來,提高混凝土的抗摻性和耐久性。粉狀煤矸石在混凝土中具有超出火山灰活性的特殊物理功能,如增加漿體的體積功能、填充漿體孔隙功能等,使煤矸石混凝土物理化學作用達到動態平衡,起到了使混凝土性能改善和質量提高的作用。
(4)煤矸石作混凝土集料
煤矸石中含有大量的硅鋁物質,其中的可燃物質和菱鐵礦在焙燒過程中析出氣體並膨脹,因此,煤矸石是生產輕骨料的理想原料。煤矸石輕骨料一般是由含碳量不高的碳質岩類、泥質岩類煤矸石經破碎、粉磨、成球、燒脹、篩分而成,也可以將煤矸石直接破碎到一定比例直接焙燒而成。利用煤矸石製造的輕骨料,是具有良好保溫性能的新型輕質建築材料。
(5)白矸作為水泥混合材料和建築材料
銅川礦區煤炭生產中產生的白矸,其主要成分為石灰岩和砂岩。砂岩經過加工可以作為建築材料,也可以作為井下充填材料利用。石灰岩經過加工也可以作為建築材料使用,同時也可以作為生產水泥或生石灰的原材料加以利用。
(6)煤矸石免燒磚
傳統的燒結磚工藝對環境造成二次污染,而且對煤矸石有較強的選擇性。採用煤矸石做原料生成免燒磚,原料選用重點是燒磚困難或不能燒磚的含鐵、硫、鈣、鎂等較高的煤矸石。利用煤矸石制免燒磚,避免了傳統制磚工藝造成的二次污染,同時顯著提高了煤矸石原料的適應性,是今後煤矸石制磚的重要方向。
免燒是以自燃煤矸石或燃燒煤矸石為主要原料,用水泥、石及外加劑等與之配合,經攪拌、半干法壓製成型、自然養護製成的一種砌築材料,其主要工藝流程見圖5-18。
(7)煤矸石混凝土砌塊
以自燃或人工煅燒煤矸石為骨料,水泥等為膠結材料,加入少量外加劑,加水攪拌並經成型、自然養護而成的實心或空心砌塊稱為煤矸石混凝土砌塊。煤矸石混凝土砌塊性能穩定,具有質輕、高強、工藝簡單、成本低、利廢率高、使用效果好的優點,是一種很有發展前途的新型牆體材料。煤矸石混凝土砌塊生產工藝簡單易行,其工藝流程如圖5-19所示。
煤矸石混凝土砌塊的原材料包括集料、膠結料和外加劑。集料為自燃的煤矸石或燒煤矸石,符合JC/T541—94《自燃煤矸石輕集料》的要求即可。膠結料包括水泥、粉煤灰、自燃可燒煤矸石粉等。外加劑為石膏、生石灰等。
(8)煤矸石發電技術
含碳量高的煤矸石(含碳量≥20%,熱值在6270~12550kJ/kg)可以直接作為流化床鍋爐的燃料用來發電。用煤矸石燃燒產能發電工藝簡單:首先,將煤矸石和劣質煤的混合物破碎,粉磨至粒徑小於8mm;然後,由皮帶機送入鍋爐內在循環流化床上進行燃燒,流化床燃燒是靠從床底送進的高壓氣流使煤矸石粉粒在爐床上「沸騰」運動,形成一定高度的流化狀態;最後,燃燒產生的煙塵經除塵器後送入煙道,燃燒產生的灰渣經水冷後泵入灰場。
圖5-18免燒磚工藝流程
圖5-19煤矸石砌塊生產工藝流程圖
4.瓦斯發電技術
瓦斯發電是以瓦斯氣為能源、將瓦斯氣中蘊含的熱能轉化為電能的能量轉換過程。目前實用的瓦斯發電方式主要有燃氣發動機、燃氣輪機和汽輪發電機3種方式。下石節礦於2005年5月建立了3000kWh的瓦斯自備電廠。
5.煤與瓦斯共采技術煤層的采動會引起其周圍岩層產生「卸壓增透」效應,即引起周圍岩層地應力封閉的破壞(地應力降低—卸壓、孔隙與裂縫增生張開)、層間岩層封閉的破壞(上覆煤岩層垮落、破裂、下沉;下伏煤岩層破裂、上鼓)以及地質構造封閉的破壞(封閉的地質構造因采動而開放、鬆弛),三者綜合導致圍岩及其煤層的透氣性系數大幅度增加,為卸壓瓦斯高產高效抽采創造前提條件。
從卸壓瓦斯流動通道觀點看,采動破壞的造縫作用在采空區上方垂向方向上形成「三帶」:垮落帶(形成貫通采場的空洞與裂縫網路通道)、斷裂帶(形成層向與垂向裂縫網路通道)和彎曲下沉帶(形成層內層向裂縫網路通道)。從卸壓瓦斯流動觀點看,岩層的垮落、自然充填的支撐和壓實等作用,在采空區上方的橫向方向上也產生「三帶」:初始卸壓增透增流帶、卸壓充分高透高流帶和地壓恢復減透減流帶,這橫向的「三帶」在垂向的「斷裂帶」和「彎曲下沉帶」內都存在。
煤層卸壓時采動形成的煤(岩)體變形、破裂和裂隙伸張將大幅度地提高煤(岩)體瓦斯運移的透氣性,產生「卸壓增透增流」效應,形成瓦斯「解吸—擴散—滲流」活化流動的條件。因處在不同區域內的煤岩裂隙分布不同,瓦斯的解吸及流動條件不同,採用合理高效的瓦斯抽采方法和抽采系統,可實現瓦斯資源的安全、高效開采。瓦斯資源的開采減少了卸壓煤層的瓦斯含量,消除了卸壓煤層煤與瓦斯突出危險性,減少了瓦斯向工作面風流中的湧出量,從而為卸壓煤層的安全高效開采創造了必要的條件。
以上只是煤與瓦斯共采技術的理論知識,具體的煤礦的地質條件和煤層情況各異,理論還要與實際相結合,進行產學研相結合,探討焦坪區煤與瓦斯共采技術。煤礦瓦斯治理國家工程研究中心、淮南礦業集團、中國礦業大學、安徽建築工程學院、安徽理工大學等單位產學研相結合,在淮南礦區進行合作攻關,系統地提出留巷鑽孔法煤與瓦斯共采新方法,根據煤層群賦存條件,首采關鍵卸壓層,沿采空區邊緣沿空留巷實施無煤柱連續開采,在留巷內布置上、下向高、低位鑽孔,抽采頂底板卸壓瓦斯和采空區富集瓦斯的煤層瓦斯開采技術,並通過創新快速構建沿空留巷巷旁充填牆體技術,實現與綜采工作面同步推進的煤與瓦斯高效共採的開采方法。創新了「沿空留巷圍岩結構穩定性控制」、「巷旁充填材料研製與快速留巷充填工藝系統集成創新」和「留巷鑽孔瓦斯抽采」等3項留巷鑽孔煤與瓦斯共采技術。焦坪區可以參照淮南礦區的經驗,結合焦坪礦區的地質條件、煤層特徵和瓦斯特徵及下石並進行科學研究,探討適合的煤與瓦斯共采技術。
② 垃圾填埋場里的污水處理技術方案是什麼
比武結束。於生看透這險惡渾混的一切,放棄武狀元榮耀,與僕人成伯策馬而去。
③ 煤礦污水處理方案
僅能提供一些資料。具體應讓有資質的單位設計。
煤礦污水處理廠設計探討
為了加強煤礦污水治理,保護水環境,新建礦井非常重視環保建設,並投入了大量的資金。設計部門也對生活污水處理進行了多工藝、多方案比較與探索。針對目前煤礦污水處理中有關建設規模和工藝技術談一些個人的看法。
1合理確定建設規模
對一個礦井來說,需根據礦井總體規劃和排水規劃,分期分批地建設污水管網和污水處理廠,要根據水環境保護的目標,分期實施,逐步到位。
(1)目前部分煤礦工業場地和居住區各建一座污水處理廠,兩處征地,重復建設,投資增加,運行能耗高,管理費用高,技術力量分散,噸水處理成本高。一般來說,礦井工業場地和居住區相距不是很遠,合建一座一定規模的污水處理廠更合理,考慮從居住區向工業場地排水,管道埋設太深,可在中間設置污水提升泵站,或者在工業場地與居住區中間地段征地建設污水處理廠。採取合建方式,不但可節省投資,且可大大降低運行成本。
(2)目前許多新建礦井設計中根據規范及全員效率,勞動定員數量較少,而實際建成後煤礦招聘大量的勞務人員,以及隨著煤礦的發展,涌進大批的外來人員,使得煤礦的用水量增加,污水量也隨之增大。因此,對於新建煤礦污水處理廠的設計,在建設規模時應考慮予留系數。
(3)由於煤礦污水水質水量變化較大,合理地確定設計的污水水量和污水水質,直接涉及工程的投資、運行費用和費用效益。生產污水與生活污水通盤考慮,不使留餘地過大,避免增加投資、使設備閑置或低效運行。
2煤礦污水處理設計常用流程
一般來說,不同煤礦對出水的要求差異較大,應根據我國環保部門的要求確定處理程度,以確保出水水質。由於生活污水中的氮和磷對水體有富營養化的影響,污水處理要求有脫氮除磷的效果。
煤礦污水水質與一般城市污水性質類似,但不同於城市污水(城市污水中常包括部分工業廢水)。其特徵可概括為:水質水量變化較大,污染物濃度偏低,污水可生化性好,處理難度小。
煤礦污水處理廠設計時在80年代採用活性污泥法處理工藝的較多,由於污水中有機物含量太低,在運轉過程中微生物得不到最低限度的營養物質,形不成活性污泥,運轉不起來。氧化溝污水處理工藝,也存在同樣的問題,迴流活性污泥迴流不起來,致使原氧化溝系統變成了附加曝氣的帶狀平流沉澱池,達不到要求的處理目標。
90年代許多礦井採用二級生物接觸氧化法處理煤礦生活污水,效果很好。此工藝的特點是能適應礦區低濃度、變化大的污水,同時投資省,操作維護也比活性污泥法簡單,但該法對脫氮除磷效果較差。
90年代以來污水生物處理新工藝、新技術的研究開發應用取得了很大成就,許多新工藝應運而生,這些新工藝的共同特點是:高效、穩定、節能,並具有脫氮除磷等多功能。較典型的工藝有:
(1)A2/O工藝該工藝是厭氧,缺氧,好氧生物脫氮除磷工藝的簡稱,是70年代由美國專家在厭氧-好氧除磷工藝(A/O)的基礎上開發的。
(2)SBR工藝序列間歇式活性污泥法的簡稱,是一種按間歇曝氣方式來運行的活性污泥污水處理技術,又稱序批式活性污泥法。SBR實際上是出現最早的活性污泥法,70年代出現於美國,經過
20年的研究開發革新,將可變容積活性污泥法過程和生物選擇器原理進行有機結合,成為改良型的SBR工藝。
(3)BAF工藝即曝氣生物濾池工藝,是90年代初開發的新型微生物附著型污水處理技術,能同時完成生物處理與固液分離,通過調整濾池結構形式而成為具有脫氮除磷功能的組合工藝。
3BAF工藝處理煤礦污水
3.1工藝流程
曝氣生物濾池是最先在歐美發展起來的在歐美和日本等發達國家廣為流行,近些年來在我國已有數十家污水處理廠應用。如大連、慈溪、新會、楊凌,在山西的煤礦生活污水處理中也有應用。
該技術綜合了過濾、吸附和生物代謝等多種凈化作用。污水從濾池底部進入濾料層,濾料層下部設有供氧的曝氣系統進行曝氣,氣水為同向流。在濾池中,有機物被微生物氧化分解,NH3-N被氧化成NO3-N;另外,由於在堆積的濾料層內和微生物膜的內部存在厭氧/缺氧環境,在硝化的同時實現部分反硝化,從濾池上部的出水可直接排出系統。
3.2工藝特點
BAF作為一種膜法污水處理新工藝,與傳統活性污泥法和接觸氧化法相比,具有以下的優點:
(1)具有較高的生物濃度和較高的有機負荷。曝氣生物濾池採用粗糙多孔的球狀濾料,為微生物提供了較佳的生長環境,易於掛膜及穩定運行,可在濾料表面和濾料間保持較多的生物量,單位體積內微生物量遠遠大於活性污泥法中的微生物量(可達10~15g/l),高濃度的微生物量使得BAF
的容積負荷增大,減少了池容積和佔地面積,使基建費用大大
降低。
(2)工藝簡單、出水水質好。由於濾料的機械截留作用以及濾料表面的微生物和代謝中產生的粘性物質形成的吸附作用,使得出水的SS很低,一般不超過15mg/l。因進行周期性的反沖洗,生物膜得以有效更新,表現為生物膜較薄,活性較高。有時即使生物處理發生故障,在短期內其物理作用機理仍可保證高質量的出水。BAF的處理出水不但可以滿足排放標准,同時可用於回用。
(3)抗沖擊負荷能力強。由於整個濾池中分布著較高濃度的微生物,其對有機負荷、水力負荷的變化不象傳統活性污泥那麼敏感,同時無污泥膨脹問題。
(4)氧的傳輸效率高。曝氣生物濾池中氧的利用率可達20%-30%,曝氣量明顯低於一般生物處理。其主要原因是:1因濾料粒徑小,氣泡在上升過程中不斷被切割成小氣泡,加大了氣液接觸面積,提高了氧的利用率;2氣泡在上升過程中,由於濾料的阻擋和分割作用,使氣泡必須經過濾料的縫隙,延長了其停留時間,同樣有利於氧的傳質;3理論研究表明,BAF中氧氣可直接滲入生物膜,因而加快了氧氣的傳輸速度,減少了供氧量。
(5)易掛膜、啟動快。BAF調試時間短,一般只需7~12天,而且不需接種污泥,採用自然掛膜馴化。由於微生物生長在粗糙多孔的濾料表面,微生物不易流失,使其運行管理簡單。BAF在短時間內不使用的情況下可關閉運行,一旦通水並曝氣,可在很短時間內恢復正常運行,這一特點說明曝氣生物濾池非常適合一些水量變化大的地區的污水處理。
(6)菌群結構合理。傳統活性污泥法中,微生物分布相對均勻,而在BAF中從上到下形成了不同的優勢菌種,因此使得除碳、硝化/反硝化能在一個池子中發生。
(7)自動化程度高。由於相關工業技術的發展,一些先進的自動化設備如液位感測器、在線溶氧測定儀、定時器、變頻器及微電腦等產品的出現,使得曝氣生物濾池系統運行管理自動化得以順利實現。
曝氣生物濾池系統可以對進水水質、水量以及污水中溶解氧濃度進行在線檢測,並通過PLC控制系統方便地調整曝氣時間的長短,控制風機的供氧量,做到優化運行,PLC系統對濾池進行自動反沖洗。
(8)脫氮效果好。通過不同功能的濾池組合或同一濾池中的不同功能區分布,使濾池在除碳的同時可進行硝化和反硝化。其原理是通過對兩組濾池或同一座濾池內分別人為地造成好氧、兼氧的生物環境,不僅能去除一般有機物和懸浮固體,而且具有較好脫氮功能。
在一級濾池(C/N池)和二級濾池(N池)中的曝氣階段需要不斷調節溶解氧水平,使溶解氧達到較高水平(約2~3mgO2/l),而在DN池中使溶解氧達到較低水平(約0.2~0.5mgO2/)。
BAF工藝的缺點是需要定期反沖洗:
隨著過濾的進行,濾料表面新產生的生物量越來越多,截留的SS不斷增加,在開始階段濾池水頭損失增加緩慢,當固體物質積累達到一定程度,使水頭損失達到極限水頭損失或導致SS
發生穿透,此時就必須對濾池進行反沖洗,以除去濾床內過量的微生物膜及SS,恢復其處理能力。
4BAF工藝的出水回用
眾所周知,水資源緊缺已經成為世界性問題。我國也同樣面臨水資源短缺的現實。污水再生利用是提高水資源綜合利用率、緩解水資源短缺矛盾、減輕水體污染、實現有限水資源的可持續利用的有效途徑之一。煤礦污水經過處理消毒後,可用於綠化、沖洗、工業用水。採用BAF工藝處理煤礦污水,出水水質穩定,優於一般傳統生物處理工藝,其出水消毒處理後,就可以作為中水回用。
5結論
曝氣生物濾池工藝具有體積小、佔地省、效率高、出水水質好、流程簡單、操作管理方便等特點,實際運行中可以實現中央集中控制和現場手動自動控制,經過多個工程實際應用,日趨已經成熟,其出水經消毒處理後可以達到中水回用的標准。據了解,目前我國每處理
,1m3污水直接投資在1000元左右,而採用BAF工藝處理則可控制在500元左右,且能節省近4/5的佔地面積。煤礦污水水質水量變化較大,污染物濃度偏低,污水可生化性好,BAF
工藝比較適用。
作者簡介
殷同偉,高級工程師,1964年出生,女。1986年7月畢業於中國礦業大學煤化工專業。現任中煤國際工程集團南京設計研究院環保所所長,主要從事煤礦、電廠環境影響評價及煤礦礦井水、生活污水處理等環保工程設計。
④ 煤礦污水處理
煤礦廢水應該可以使用污水源熱泵系統進行換熱,從而為煤礦上專的建築進行供暖,可以說算屬是廢水利用了吧,但是估計使用的話要使用離心式污水換熱器了,煤礦廢水中應該含有很高比例的雜質。
你可以去咨詢一下雷諾公司,他們公司專業從事污水源熱泵系統和污水換熱器,應該能給你更專業的回復。
⑤ 生活污水處理技術方案
一、連續循環曝氣系統(CCAS)
A、CCAS工藝簡介
CCAS工藝,即連續循環曝氣系統工藝(Continuous Cycle Aeration System),是一種連續進水式SBR曝氣系統。這種工藝是在SBR(Sequencing Batch Reactor,序批式處理法)的基礎上改進而成。SBR工藝早於1914年即研究開發成功,但由於人工操作管理太煩瑣、監測手段落後及曝氣器易堵塞等問題而難以在大型污水處理廠中推廣應用。SBR工藝曾被普遍認為適用於小規模污水處理廠。進入60年代後,自動控制技術和監測技術有了飛速發展,新型不堵塞的微孔曝氣器也研製成功,為廣泛採用間歇式處理法創造了條件。1968年澳大利亞的新南威爾士大學與美國ABJ公司合作開發了「採用間歇反應器體系的連續進水,周期排水,延時曝氣好氧活性污泥工藝」。1986年美國國家環保局正式承認CCAS工藝屬於革新代用技術(I/A),成為目前最先進的電腦控制的生物除磷、脫氮處理工藝。
CCAS工藝對污水預處理要求不高,只設間隙15mm的機械格柵和沉砂池。生物處理核心是CCAS反應池,除磷、脫氮、降解有機物及懸浮物等功能均在該池內完成,出水可達標排放。
經預處理的污水連續不斷地進入反應池前部的預反應池,在該區內污水中的大部分可溶性BOD被活性污泥微生物吸附,並一起從主、預反應區隔牆下部的孔眼以低流速(0.03-0.05m/min)進入反應區。在主反應區內依照「曝氣(Aeration)、閑置(Idle)、沉澱(Settle)、排水(Decant)」程序周期運行,使污水在「好氧-缺氧」的反復中完成去碳、脫氮,和在「好氧-厭氧」的反復中完成除磷。各過程的歷時和相應設備的運行均按事先編制,並可調整的程序,由計算機集中自控。
CCAS工藝的獨特結構和運行模式使其在工藝上具有獨特的優勢:
(1)曝氣時,污水和污泥處於完全理想混合狀態,保證了BOD、COD的去除率,去除率高達95%。
(2)「好氧-缺氧」及「好氧-厭氧」的反復運行模式強化了磷的吸收和硝化-反硝化作用,使氮、磷去除率達80%以上,保證了出水指標合格。
(3)沉澱時,整個CCAS反應池處於完全理想沉澱狀態,使出水懸浮物(SS)極低,低的SS值也保證了磷的去除效果。
CCAS工藝的缺點是各池子同時間歇運行,人工控制幾乎不可能,全賴電腦控制,對處理廠的管理人員素質要求很高,對設計、培訓、安裝、調試等工作要求較嚴格。
B、國內外城市污水處理廠發展概況
水是經濟發展和社會可持續發展的一個重要因素。隨著城市規模的不斷擴大和人口的增加,水環境污染成了一大難題。城市污水是目前江河湖泊水域污染的重要原因,是制約許多城市可持續發展的主要原因之一。「環境保護」是我國的基本國策,中國可持續發展的戰略與對策制定的2000年治理目標,要求城市污水集中處理率達20%。目前,我國正處於城市污水處理事業的大發展時期,尤其隨著國家西部大開發戰略的實施,中國中西部環境與生態保護已被提上首要議事日程。
城市生活污水處理自200年前工業革命以來,越來越受到人們的重視。城市污水處理率已成為一個地區文明與否的一個重要標志。近200年來,城市污水處理已從原始的自然處理、簡單的一級處理發展到利用各種先進技術、深度處理污水,並回用。處理工藝也從傳統活性污泥法、氧化溝工藝發展到A/O、A2/O、AB、SBR(包括CCAS工藝)等多種工藝,以達到不同的出水要求。我國城市污水處理相對於國外發達國家、起步較晚,目前城市污水處理率只有6.7%。在我們大力引起國外先進技術、設備和經驗的同時,必須結合我國發展,尤其是當地實際情況,探索適合我國實際的城市污水處理系統。
結合我國實際情況,參考國外先進技術和經驗,建設城市污水處理廠應符合以下幾個發展方向:
(1)總投資省。我國是一個發展中國家,經濟發展所需資金非常龐大,因此嚴格控制總投資對國民經濟大有益處。
(2)運行費用低。運行費用是污水處理廠能否正常運行的重要因素,是評判一套工藝優劣的主要指標之一。
(3)佔地省。我國人口眾多,人均土地資源極其緊缺。土地資源是我國許多城市發展和規劃的一個重要因素。
(4)脫氮除磷效果。隨著我國大面積水體環境的富營養化,污水的脫氮除磷已經成為一個迫切的問題。我國最新實施的國家《污水綜合排放標准》(GB8978-1996)也明確規定了適用於所有排污單位,非常嚴格地規定了磷酸鹽排放標准和氨氮排放標准。這就意味著今後絕大多數城市污水處理廠都要考慮脫氮除磷的問題。
(5)現代先進技術與環保工程的有機結合。現代先進技術,尤其是計算機技術和自控系統設備的出現和完善,為環保工程的發展提供了有力的支持。目前,國外發達國家的污水處理廠大都採用先進的計算機管理和自控系統,保證了污水處理廠的正常運行和穩定的合格出水,而我國在這方面還比較落後。計算機控制和管理也必將是我國城市污水處理廠發展的方向。
C、幾種處理系統的工藝比較
為了選擇出工藝上最可靠,投資上最經濟,管理上最方便的城市污水處理系統,結合當地的實際情況,我們調研了國內外污水處理廠的成熟經驗和發展趨勢,並進行了比較。
目前,國內外城市污水處理廠處理工藝大都採用一級處理和二級處理。一級處理是採用物理方法,主要通過格柵攔截、沉澱等手段去除廢水中大塊懸浮物和砂粒等物質。這一處理工藝國內外都已成熟,差別不大。二級處理則是採用生化方法,主要通過微生物的生命運動等手段來去除廢水中的懸浮性,溶解性有機物以及氮、磷等營養鹽。目前,這一處理工藝有多種方法,歸結起來,有代表性的工藝主要有傳統活性污泥、氧化溝、A/O或A2/O工藝、SBR及CCAS工藝等。目前,這幾種代表工藝在國內外都有實際應用。
二、SPR高濁度污水處理技術
在天然淡水資源已被充分開發、自然災害日益頻繁暴發的今天,缺水已經對世界各國眾多城市的經濟和市民生活構成了十分嚴重的威脅,缺水危機已經是我們面臨的現實,解決城市缺水問題的重要途徑應該是將城市污水變為城市供水水源。城市污水就近可得,來源穩定,容易收集,是可靠且穩定的供水水源。城市污水經凈化後回用主要可作為市政綠化、景觀用水和工業用水。
城市污水再生回用工程包括污水收集系統、污水凈化處理技術及其系統、出水輸配系統、回用水應用技術和監測系統。其中污水凈化再生技術及其系統是關鍵,污水凈化處理的流程要簡單可靠,投資和運行費用要為該城市經濟實力所能承受,處理後出水的水質要滿足回用的要求。
沿用了許多年的傳統的「一級處理」及「二級處理」水處理工藝技術和設備已經難以適應當今的高濁度和高濃度污水的凈化處理要求,處理後出水更不能滿足城市對水回用的水質要求。沿著傳統的工藝技術路線只能進一步附加傳統的「三級處理」設備系統,既迴避不了龐大復雜的傳統二級生化處理系統,也迴避不了投資和運行費用都十分昂貴的傳統三級過濾吸附處理系統。這些恰恰是實現污水回用的忌諱之處。所以,環保市場十分迫切需要凈化效率更高、處理後出水能滿足現有環保標准並且能回用於城市,投資和運行費用又要為現有城市的經濟實力所能接受的污水處理新技術和新設備。
最新發明的「SPR高濁度污水凈化系統」(美國發明專利 )將污水的「一級處理」和「三級處理」程序合並設計在一個SPR污水凈化器罐體內 ,在30分鍾流程里快速完成 。它容許直接吸入懸浮物(濁度)高達500毫克/升至5000毫克/升的高濁度污水,處理後出水的懸浮物(濁度)低於3毫克/升(度);它容許直接吸入CODcr為200毫克/升至800毫克/升的高濃度有機污水,處理後出水CODcr可降為40毫克/升以下。只需用相當於常規的一 、二級污水處理廠的工程投資和低於常規二級處理的運行費用 ,就能夠獲得三級處理水平的效果 ,實現城市污水的再生和回用。
SPR污水處理系統首先採用化學方法使溶解狀態的污染物從真溶液狀態下析出,形成具有固相界面的膠粒或微小懸浮顆粒;選用高效而又經濟的吸附劑將有機污染物、色度等從污水中分離出來;然後採用微觀物理吸附法將污水中各種膠粒和懸浮顆粒凝聚成大塊密實的絮體;再依靠旋流和過濾水力學等流體力學原理,在自行設計的SPR高濁度污水凈化器內使絮體與水快速分離;清水經過罐體內自我形成的緻密的懸浮泥層過濾之後,達到三級處理的水準,出水實現回用;污泥則在濃縮室內高度濃縮,定期靠壓力排出,由於污泥含水率低,且脫水性能良好,可以直接送入機械脫水裝置,經脫水之後的污泥餅亦可以用來製造人行道地磚,免除了二次污染。
最新發明的SPR污水凈化技術以其流程簡單可靠、投資和運行費用低、佔地少、凈化效果好的眾多優勢將為當今世界的城市污水的再利用開創一條新路。城市污水實現再利用之後,為城市提供了第二淡水水源,為城市的可持續發展提供了必不可少的條件,其經濟效益和社會效益是不可估量的.
SPR污水處理系統與眾不同的技術特點
1.城市生活污水和處理葯劑的混合主要是在泵前吸葯管道 、污水泵 葉輪、蛇形反應管 和瓷球反應罐的組合作用下完成的 ,依照紊流速度 、混合時間 、和水力學結構數據設計 ,得以十分充分的混合 ,為取得最佳混凝凈化效果和最大限度地節省葯劑創造了前提條件 。這是過去常規的一級處理和二級處理之水工結構所做不到的 。
2.SPR系統處理城市污水時 ,採用五種以上污水處理葯劑及其最佳配方組合使用 ,靠化學反應使污水中溶解狀態的有機污染物 、重金屬離子 和有害的鹽類從水中析出 ,成為有固相界面的微小顆粒 (它包含有污水三級處理的作用)。其中還選用了一種吸附效果很好而價錢又很便宜的吸附劑,以吸附有機污染物和色度 。靠消毒劑在30分鍾的流程內殺滅細菌和大腸桿菌 。靠混凝的物理化學吸附作用將懸浮物及各類雜質凝聚成大而且密實的絮團 。這樣發揮各葯劑的單獨作用和它們之間的交聯作用的用葯方式是與常規的物理化學法不相同的 。而且SPR系統使用的組合葯劑配方 ,只能在具有十分精細的水動力學參數設計的SPR污水凈化器及其系統里才能充分發揮作用 ,在常規的水工系統里是無法使用的 。
3.SPR系統裝置能夠依照模擬試驗得出的配方 ,藉助大氣壓力和流量計 ,十分精確地投加混凝葯劑和絮凝葯劑 ,不致因加葯過量而造成葯劑殘留在凈化後的出水中,而且動力消耗很少 。
4.SPR污水凈化器內部結構是完全按照混凝機理精確設計的 ,形成的渦旋流動和各部位恰當的水流速度 ,使得膠體顆粒之間有最多的碰撞次數 ,並且有凝聚吸附所需的最佳流速環境 。從而在極小的容積內獲得了極充分的凝聚效果 。這也是常規水工裝置無法比擬的 。
5.根據混凝形成的絮團實際狀況 ,准確確定了SPR污水凈化器內部的水動力學數據 ,使得在罐體中上部形成了一個有幾十厘米厚的 、十分緻密的懸浮泥層 。所有經過混凝的出水都必須通過此懸浮泥層的過濾 ,才能升流到罐體上部的清水匯集區 。它十分成功地起到了污水高級處理工藝中極為重要的過濾作用 。
這個緻密的懸浮泥層是由污水中的污泥及混凝葯劑形成的絮體本身組成的 。隨著絮體由下向上運動 ,使泥層的下表層不斷增加 、變厚 ;同時 ,隨著過濾水力學原理形成的罐體的旁路流動,引導著懸浮泥層的上表層不斷流入中心接泥桶 ,上表層不斷減少 、變薄 。這樣 ,懸浮泥層的厚度達到一個動態的平衡 。當混凝後的出水由下向上穿過此懸浮泥層時 ,此絮體濾層靠界面物理吸附和電化學特性及范德華力的作用 ,將懸浮膠體顆粒 、絮體 、細菌菌體等等雜質全部攔截在此懸浮泥層上 ,使出水水質達到三級處理的水平 。由於泥層是由絮體組成 ,緻密度高 ,過濾效率遠遠高於常規的沙粒層過濾 ;由於是處於懸浮狀態的絮體泥層作濾層 ,其過濾的水頭(阻力)損失非常小 ,所以動力消耗遠遠低於常規的砂層過濾 、微孔過濾 、或反滲透膜過濾;又由於過濾泥層是凈化過程中由污水中的污泥自動補充添加 ,又自動被引走 ,即過濾泥層自身在不斷地更新 ,過濾泥層總是保持著穩定的厚度,而且總是保持著穩定的物理吸附和電化學吸附性能 ,因此能獲得穩定的過濾效果 。而且完全免去了常規系統中必不可少的過濾層的反沖洗以及反沖洗帶來的眾多麻煩 。這種結構和原理與常規的三級污水處理的過濾裝置是完全不同的 ,這里沒有價格昂貴的反滲透膜過濾 、微孔過濾 、或活性炭過濾等裝置 。所以 ,投資省 、動力消耗小 、運行費用低是SPR系統的必然優勢。
6.SPR系統選用的絮凝劑 ,同時也是良好的污泥助濾劑 ,所以 ,系統最後排出的污泥漿 ,其脫水性能良好 ,可以不另外添加助濾劑 ,就直接泵入壓濾機脫水 。泥餅可以製成人行道地磚再利用 ,不會帶來二次污染的問題 。它沒有傳統的生化法產生的污泥含水率很高、脫水性能很差的致命弱點。
7.本類型污水凈化器曾開機運行處理過養豬場污水 、養雞場污水 、煤礦礦井坑道污水 、生豬屠宰場污水 、高粱釀酒廠酒糟污水 、紡織印染污水、再生紙造紙污水和城市生活污水等等含有大量有機污染物和氨氮的污水;也成功應用於陶瓷廠污水、牆地磚廠污水、大理石水磨拋光污水、洗煤污水、燃煤鍋爐濕法除塵污水、石英砂洗砂污水等懸浮物含量極高的污水的凈化和回用。 各地權威檢測部門測試了污水凈化器進水和出水的有關數據 。測試報告單表明 :氨氮去除率可以達到85%,總氮去除率可達95% ,有機氮去除率可達96% ,BOD去除率可達95% ,懸浮物的去除率則高達98.3% ~ 99.6% ,出水濁度達到3 度(3 毫克 / 升)以下。這是本凈水系統在低投資 、低運轉費的前提下所獲得的出水指標 。 這是常規的物化法和生物化學法的一級 、二級處理系統都無法達到的 。
除發達國家有專門的城市生活污水管路系統外,實際的城市污水往往混入有許多工業污水,可生化性差和污染物成分不規則地快速變化是我們面臨的現實,而針對降解某種有機污染物的微生物生長、繁殖的過程卻太長,所以,傳統生化系統難以適應當今愈來愈工業化了的城市的污水。SPR系統已擁有處理眾多工業污水的適應能力和物化法具有的快速應變能力,容易通過自動化的手段應付系統入口污水水質的變化,保持穩定的凈化效果。
8.在SPR系統中投放殺菌消毒葯劑時 ,只要增加一些投氯量(無需另外增加設備)就可以起到用氯來氧化除氨的作用 ,進一步提高污水處理系統去除氨氮的效率 。
9.假如經過SPR系統處理後的出水氨氮含量還未達到較嚴格的要求(如某些發達國家或發達地區將排水標準定為含氨氮1毫克 / 升以下) ,也可以後續再串聯設置一級離子交換裝置 ,靠斜發沸石離子交換柱最終達到除氨氮的目標 。
因為斜發沸石離子交換系統要求進口水質的懸浮物含量要低於35毫克 / 升 ,否則會影響離子交換柱的功能和壽命 ,從而大大增加離子交換的運行費用 。過去 ,常規的一 、二 級污水處理裝置是難以長期穩定地達到這樣的前處理水平的 ,因而限制了離子交換法除氨氮技術的廣泛應用 。現在 ,SPR污水處理系統絕對可以保證凈化後出水的懸浮物含量低於3毫克 / 升(實際運行中出水的懸浮物含量多為1毫克 / 升) ,使得後續的斜發沸石離子交換系統去除氨氮的負荷減輕很多 ,交換柱的使用壽命會大大延長 ,即離子交換的運行費用會大大降低 ,將使離子交換法除氨氮技術的優點得到更充分的發揮 。
早在七十年代 ,美國Minnesota 州Minneapolis 市的羅茲芒污水廠就是用純粹的物理化學法處理城市生活污水的 ,其工藝流程是:化學混凝----沉澱----過濾和活性炭吸附----斜發沸石離子交換 。其最後出水水質標准為:氨氮1 毫克 / 升 ,BOD 10毫克 / 升 ,磷 1毫克 / 升,懸浮物 10毫克 / 升 ,pH 8.5 。證明純粹的物理化學法處理城市污水在技術上是可行的 。現在 ,依靠新發明的SPR凈水技術 ,將使這項工藝的經濟性更為圓滿 。
10 。其實 ,經過SPR污水凈化系統處理後的出水 ,其懸浮物的含量小於3 毫克 / 升 ,濁度也小於3 度 (毫克 / 升 ) ,達自來水標准 ,不再會堵塞輸水管路 ,並且已經經過了良好的消毒 。將此出水回送到城市各地 ,作為城市草坪綠地和樹木綠化澆灌用水是十分安全 、可靠的 。經過SPR系統處理後的出水中 ,殘存的氮含量已經很低 ,氮作為植物生長的營養物是不必去除 、或不必去除得那麼干凈 的。從而可以免去除氮的深度處理投資及其運行費用 ,既保證了環境質量 ,又為社會節省了大筆資金 。 用此回用水取代自來水作為城市綠化用水 ,將大大節省城市的淡水資源 ,減輕城市市政部門的供水壓力 ,對城市的整體經濟發展定會產生十分巨大的效益 。這是城市污水回用的新概念。
11 。這種純粹的物理化學法污水處理系統 ,受天氣 、環境 及人為因素的影響少 ,操作人員控制處理系統的能力和靈活性都大大優越於生物化學法 ,這是眾所周知的 。
城市生活污水處理廠的工藝流程可採用下列新模式 :
方案〔1〕:一般的城市:污水經SPR系統處理後 ,回用於城市綠化 、澆灌草地樹木,或作為工業用水 。
城市生活污水儲存調節池:SPR污水處理系統 ----污泥脫水------ 污泥製成人行道地
出水回用於澆灌城市草地、樹木,或作為工業用水
方案〔2〕:特殊要求的城市:生活污水經SPR系統處理後 ,再進行離子交換除氨氮 ,最後排海 ,或回用。
城市生活污水儲存調節池:SPR污水處理系統 ------ 污泥脫水 ------ 污泥製成人行道地磚
斜發沸石離子交換除氨氮,出水排入近海 、或回用於澆灌城市草地、樹木,或作為工業用水。
如果有關部門能協助創造一些現場表演的簡易條件 ,將可以運送一台處理水量為10 ~ 20 立方米 / 日的SPR污水凈化器及其完整的配套系統到現場作城市污水凈化處理的連續開機運行操作表演 ,並通過播放錄像和幻燈片詳細講解有關的凈化機理 ,同時請當地水質檢測的權威部門進行凈化效果的水質測試 。全套裝置輪廓最大尺寸為長3米 ,寬1.4米 ,高2.4米 ,總重量為一噸以下 。
在技術展示成功的基礎上 ,與當地的環保部門及環保產業密切合作 ,依靠當地自身的科技力量和自身的製造能力 ,建造城市生活污水處理廠 。 另外,SPR系統也可用於市區內的公園湖水的凈化及自循環 。希望將要興建的城市污水處理廠採用SPR污水處理技術後,能成為全球城市生活污水處理技術的典範 。 如果在已有的城市污水一級和二級處理系統的基礎上,附加採用SPR污水處理系統作為最後的深度處理裝置,使出水達到工業自來水的標准,以實現最後出水回用的目標,也是現有城市污水處理系統升級換代的極佳方案。
三、BIOLAK污水處理技術
l、百樂卡(BIOLA)工藝特點
百樂卡工藝是一種具有除磷脫氮功能的多級活性污泥污水處理系統。它是由最初採用天然土池作反應池而發展起來的污水處理系統。自1972年以來,經多年研究形成了採用土池結構、利用浮在水面的移動式曝氣鏈、底部掛有微孔曝氣頭的一種具有一定特色的活性污泥處理系統。
由於採用土池而大大減少了建設投資,採用曝氣鏈曝氣系統進一步強化了氧的磚移效率,並減少運行費用,大大提高了處理效果。工藝設計簡捷,不需復雜的管理,在適宜的條件下具有較大的經濟和社會效益.
1.1低負荷活性污泥工藝
百樂卡工藝污泥迴流量大,污泥濃度較高,生物量大,相對曝氣時間較長,所以污泥負荷較低。龍田污水廠BOD5污泥負荷率為 0?05kgBOD/kgMLSS.d,污泥濃度為400Omg/L,污泥齡為29d,所以剩餘污泥雖很少。
1.2 曝氣池採用士池結構
根據國家環保局1992年《工業廢水處理設施的調查與研究》,我國工業廢水處理設施資金的54%用於土建工程設施,而只有36%用於設備,造成這 種投資分配格局的主要原因是工藝池大都採用價格昂貴的鋼筋混凝土池。而龍田污水廠土建工程造價500萬元,僅占總投資的20%。
大的鋼筋混凝土池不僅價格昂貴,而且施工難度大。但對於許多種曝氣工藝來講,都不考慮採用土池,因為土池會造成地下水的侵蝕,同時也由於在土池基礎上安裝曝氣頭是十分困難的。
為了減少投資,百樂卡技術在研究土池結構的曝氣池上做了大量工作,首先是使用HDPE防滲膜隔絕污水和地下水,其次是懸掛在浮管上的微孔曝氣頭避免了在池底池壁穿孔安裝。
這種敷設HDPE防滲膜的土池不僅易於開挖、投資低廉,而且完全能滿足污水處理池功能上的要求,並能因地制宜,極好地適應現場的地形,存某些特殊的地質條件下,如地震多發地區、土質疏鬆地區,其優點得到更充分的體現。敷設HDPE防滲膜的土池使用壽命遠遠超過鋼筋混凝土池。
1.3 高效的曝氣系統
百樂卡曝氣系統的結構是,曝氣頭懸掛在浮鏈上,停留在水深4一5m處,氣泡在其表面逸出時,直徑約為50um。如此微小的氣泡意味著氧氣接觸面積的增大和氧氣傳送效率的提高。同時,因為氣泡向上運動的過程中,不斷受到水流流動,浮鏈擺動等擾動,因此氣泡並不是垂直向上的運動,而是斜向運動,這樣延長了在水中的停留時間,同時也提高氧氣傳遞效率。運行表明:百樂卡懸掛鏈的氧氣傳遞率,遠遠高於一般的曝氣工藝以及固定在底部的微孔曝氣工藝。百樂卡曝氣頭懸掛在浮動鏈上,浮動鏈被鬆弛地固定在曝氣池兩側,每條浮鏈可在池中的一定區域蛇形運動。在曝氣鏈的運動過程中,自身的自然擺動就可以達到很好的混合效果,節省了混合所需的能耗。
採用百樂卡系統的曝氣池中混合作用所需的能耗僅為1?5W/m3,而一般的傳統曝氣法中混合作用的能耗為l0一l5W/m3。由於百樂卡曝氣頭(BIOLAK)-Friox)特殊的結構,即使在很復雜的環境里曝氣頭也不至於阻塞,這意味著曝氣裝置可運行幾年不維修,所需維護費用很少。
曝氣系統與配套的高效鼓風機保證了很高的氧氣傳遞效率,供氧能力為2?5kgO2/kW?h),而傳統的污水處理廠該值為lkgO2/lkW?h)。鼓風機就設在池邊,減少了鼓風機房和空氣輸送管道的費用。
1.4 簡單而有效的污泥處理
百樂卡工藝的另一特點是迴流污泥量大,其剩餘污泥比傳統工藝少許多。
在恆定的負荷條件下,百樂卡工藝的污泥在曝氣池中的停留時間是傳統工藝的幾倍。由於污泥池中的污泥是完全穩定的,它不會再腐爛,即使長期存放也不會產生氣味,這就是它同傳統工藝相比污泥更容易處理的原因。而且污泥池完全可以做成土池結構,節省廠土建費用。
1.5 簡單易行的維修
百樂卡系統沒有水下固定部件,維修時不用排乾池中的水,而用小船到維修地點將曝氣鏈下的曝氣頭提起即可。實踐表明,曝氣頭運行幾年也不用任何維修,這主要是因為曝氣管是由很細的纖維(直徑約0?003mm)做成,並用聚合物充填,以達到防水和防臟物的目的。同時,曝氣頭有大約80%的自由空隙和20%的表面,和傳統曝氣頭剛好相反。因此,微生物可生長的面積很小,並很容易被去除。當曝氣頭必須維修時,也不影響整個污水處理場的運行。該工藝的移動部件和易老化部件都很少。在選擇設備和材料時,都採用了可靠耐用的材料。該工藝無需太多的自動化。它既不需要任何易損的探測器,也不需要任何復雜的控制系統,而操作這些控制系統還需要專門的技術和昂貴的配件。
1.6 二次曝氣和安全池
為了保證負荷變化時用水質量,百樂卡工藝利用一個相對獨立的池來進行二次曝氣,以保證出水清潔,保證水中有足夠的溶解氧。
1.7 二沉池
曝氣池中產生的污泥在二沉池中被分離,並重新回到曝氣池參與污水凈化。有的百樂卡工藝的二沉池和曝氣池合並到一起,進一步節省了土建費用和佔地面積。二沉池沉澱污泥由漂浮式刮泥機、吸泥機排入污泥槽迴流。
1.8 土地的利用
盡管百樂卡系統需要的曝氣池體積比所謂密集型的大,但所需的總面積並不大,有時甚至更小,這主要有以下原因:a\不需初沉池;b\二沉池可以和曝氣池合建在一起;c\池的設計和布置的自由度大,對地形的適應性強。
2、龍田污水處理廠工藝流程
污水在廠內首先經過粗格柵去除大的漂浮物,然後自流入集水池。污水經立式污水泵提升至組合式旋轉細格柵,組合式旋轉細格柵可把雜物及砂粒從廢水中分離出來,並濃縮址理。旋轉細格柵處理出水先進入厭氧池,由推進器將進水和厭氧污泥混合進行厭氧處理,然後自流入BIOLAK生化池,利用懸鏈式曝氣器曝氣充氧進行好氧處理,處理後的污水,經沉澱後再進行曝氣充氧穩定,污水自流入消毒池,消毒後排放。Bl0lAk反應池產生的剩餘污泥用污泥泵送入污泥濃縮池,污泥經濃縮後再由螺桿泵送人帶式壓濾機脫水。污泥濃縮池產生的上清液和壓濾機產生的濾液自流入集水池二次處理。BlOLAK反應池需要的氧氣由風機供給,預處理設施產生的機械雜物外運填埋處置,產生的剩餘污泥外運用作農肥。
3、山東招遠百樂卡工藝處理效果
一位哲學家曾經說過:所有的技術都是由簡單到復雜,再由復雜到簡單,百樂卡技術正是這樣一種由復雜到簡單的工藝,但這種高效、簡單的工藝,是在傳統活性污泥法的基礎上,集合了大量研究工作的先進成果,並在數百例工程實踐中不斷地完善改進提出的,它是一種較為成熟的工藝。
四、「WT--FG」生物法技術簡介
⑥ 污水處理廠整改施工方案
污水中水回用就是把生活污水或工業廢水經過深度的技術處理,去除污水中的各種雜質、有毒有害物質以及某些重金屬離子,進而進行消毒滅菌,實現污水的循環利用的過程。消毒滅菌後污水的水體不僅無色、無味、水質清澈透明,更能達到或者高於國家規定的雜用水標准。中水回用處理的主要途徑有以下幾種:
1、回用於工業
污水處理廠達標排放的廢水,根據用途的不同可直接或再經過進一步處理達到更高的水質後應用於工業生產過程中,如用做冷卻水,熄焦、熄爐渣用水,灰渣水力輸送用水,工廠綠地澆灑,地面、設備、車輛沖洗,消防用水,其中最具普遍性和代表性的用途是工業冷卻用水。
2、城市雜用
城市中水回用技術應用途徑主要有以下幾個方面:一是城市生活沖廁用水,二是城市部分商業用水(如洗車行業),三是道路噴灑用水與城市綠地灌溉,四是非接觸性景觀中水與消防用水等。其中,城市生活用水是比較穩定的用水渠道,道路噴灑用水與城市綠地灌溉具有一定的季節性。
3、農業灌溉
經過污水處理廠處理後排放的廢水只需再經過簡單的過濾即可達到農業灌溉用水的水質標准,其環境衛生和農產品的衛生學狀況均良好。中水用於灌溉農田,通過土壤過濾、吸附、離子交換、化學反應、土壤微生物代謝和作物根系的吸收等機理,也能進一步凈化水質,改良土壤結構,增加水分和肥分,使農作物增產,節省大量化肥,可獲得良好的經濟效益。中水回用處理於農業灌溉,一般尚需建設一定的調蓄、灌溉工程,才能達到充分利用的目的。農業灌溉用水受季節性的影響明顯。
4、水利工程
(1)城市二級河道景觀用水。國家對景觀水質制定了水質標准,二級污水處理廠的出水水質與河道景觀用水水質要求相似。在衛生指標上加以再處理即可達標。只要河道是流動的,其本身就具有一定的自凈能力,這樣不僅使城市景觀得到改善,也為河道兩岸中水處理公司提供了輸水渠道。
(2)用於地下含水層的存儲及恢復。由於地下水的開采量過大,引起地面下沉。為了控制下沉,除限制開采量或禁止開采外,還要採取回灌措施。中水可以作為回灌水的水源之一,但要經過進一步處理,以達到地下水回灌的水質要求方可回灌。
⑦ 煤礦廢水處理的幾種方法
煤礦廢水一般有兩種,一種是採煤時遇到了地下水層,通過泵抽上來的地下水回,這種無需處理答,回灌即可。
另一種是洗煤產生的廢水,這種單純沉澱過濾後即可回用。
有一種針對洗煤廢水的辦法是壓縮法,較沉澱法省土地,效果也不錯。
⑧ 礦井 井下水如何處理
礦井井下水處理方法根據水質的不同而定:
1、含懸浮物煤礦礦井水處理技術主要有混凝、沉澱和澄清、過濾和消毒。
①礦井水混凝階段所處理的對象主要是煤粉、岩粉等懸浮物及膠體雜質,它是礦井水處理工藝中一個十分重要的環節。實踐證明,混凝過程的程度對礦井水後續處理如沉澱、過濾影響很大。所以,在礦井水的處理中,應給予足夠的重視。
②沉澱和澄清:在煤礦礦井水處理中所採用的主要有平流式沉澱池、豎流式沉澱池和斜板(管式)沉澱池。澄清池主要有機械攪拌、水力循環和脈沖等。
③在煤礦礦井水處理過程中,過濾一般是指以石英砂等粒狀濾料層截留水中懸浮物。去除化學澄清和生物過程未能去除的細微顆粒和膠體物質,提高出水水質。礦井水處理可以採用過濾池。過濾池有普通快濾池、雙層濾料濾池、無閥濾池和虹吸濾池等。常採用濾料有石英砂、無煙煤、石榴石粒、磁鐵礦粒、白雲石粒、花崗岩粒等。
④水凈化處理後,細菌、病毒、有機物及臭味等並不能得到較好的去除。所以,必須進行消毒處理。消毒的目的在於殺滅水中的有害病原微生物(病原菌、病毒等),防止水致傳染病的危害。在以煤礦礦井水為生活水源水處理中,目前主要採用的是氯消毒法。消毒劑主要有:液氯、漂白粉、氯胺、次氯酸鈉等。
2、高礦化度煤礦礦井水處理技術
煤礦高礦化度礦井水的含鹽量一般在1000~3000mg/l⑴之間,屬於我國大部分地區的苦鹹水含鹽量范圍,所以,有些煤礦也稱高礦化度礦井水為苦鹹水。苦鹹水脫鹽方法主要有電滲析和反滲透技術。目前電滲析技術已成為一個大規模的化工單元過程,廣泛地用於各個行業。當進水含鹽量在500~4000mg/l時,採用電滲析是技術可行、經濟合理的;當進水含鹽量小於500mg/l時,應結合具體條件,通過技術經濟比較確定是採用電滲析還是採用離子交換或者兩者聯合。反滲透技術自從上世紀五十年代末六十年代初發展成為實用的化工單元操作以來正不斷地拓展其應用領域和規模,目前已廣泛地應用於各行業。國內外已廣泛應用於海水、苦鹹水淡化,鍋爐補給水、飲用水純化,在食品、制葯、化工、醫療、環保、礦井用水等行業中制備純透反滲水、超純水,以及各種水溶液的脫鹽、分離和濃縮。
3、煤泥水處理技術
含有煤泥等輕度污染的礦井水,這類礦井水水量不大穩定,常採用一體化凈水器進行處理,該凈水器是一種新型重力式自動沖洗式一體化凈水器,適合進水濁度≤3000mg/L,出水濁度≤3mg/l。該凈水器集絮凝、反應、沉澱、排污、反沖、污泥濃縮、集水過濾於一體,自動排泥、自動反沖洗。本裝置處理效果好,出水水質優良,自耗水量少,動力消耗省,佔地面積小,節水、節電,無需人員管理。處理後的水質達到生產和生活用水的要求。
4、煤礦生活污水處理技術
煤礦生活污水的凈化工藝:凈化裝置包括以下幾個主要環節:隔柵、破碎機、砂石捕集器、初級沉澱池、生物凈化裝置、次級沉澱池、加葯劑、消毒、再凈化、沉渣加工。在相應流程中各個環節的組合取決於污水的數量、污染組分的濃度和組成,對凈化水質量的要求以及其它條件。
5、酸性煤礦礦井水處理技術
酸性礦井水是指PH小於6.5的礦井排水,一般PH值在3.0-6.5之。其處理技術有石灰石中和法、石灰中和法、生物化學處理法、濕地生態工程處理法。