A. 污水處理中氨氮的過分處理對脫氮有影響嗎
對脫氮(反硝化)的影響因素中,
硝酸鹽濃度算不上,因此氨氮再低,如果只是被硝化細菌轉化高價態的氮,
也不會對TN有多少影響,自然跟脫氮沒啥關系,也談不上多大影響.
B. 污水處理過程中脫氮除磷活性污泥法的影響因素有哪些
影響因素主要有三類:
(1)環境因素,如溫度、PH、溶解氧;
(2)工藝因素,如泥齡、各反應區的水力停留時間;
(3)污水成分,如BOD5與N、P的比值。
C. 污水處理中脫氮原理反硝化、硝化的順序,不明白,(我是個外行)
在污水處理中按脫氮原理,或者說要達到脫氮的目標,順序是先硝化細菌在好氧環境下進行硝化作用,把污水污泥中的氮轉化為硝酸鹽和亞硝酸鹽,然後在缺氧條件下反硝化細菌進行反硝化反應,把硝酸鹽和亞硝酸鹽氮轉化為氮氣,以達到脫氮的目的。
但是,污水處理中,不僅要脫氮,而且還要除磷,而磷在好氧條件下才聚磷,厭氧和缺氧要在好氧之前。但這對脫氮影響不大,因為污水處理中的經過好氧處理的大部分污泥還要迴流利用,所以厭氧——缺氧——好氧是個循環的過程,經過循環過程,氮在缺氧去除,磷在好氧去除。
(3)污水處理cn比對脫氮影響擴展閱讀:
A2/O工藝(AAO工藝、AAO法:厭氧-缺氧-好氧),是一種很常用的二級污水處理工藝,具有脫氮除磷的作用,用於二級污水處理或者三級污水處理,後續增加深度處理後,可作為中水回用,具有良好的脫氮除磷效果。
首先,污水與迴流污泥進入厭氧池進行混合,經一定時間厭氧分解作用,去除部分BOD,並使部分含氮化合物轉化成氮氣(反硝化作用)而釋放,迴流污泥中的聚磷微生物(聚磷菌等)釋放出磷,滿足細菌對磷的需求。
然後,污水流入缺氧池,池中的反硝化細菌以污水中的含碳有機物為碳源,將好氧池內通過內循環迴流進來的硝酸根和亞硝酸根還原為氮氣而釋放。
接下來,污水流入好氧池,水中的氨氮進行硝化反應生成硝酸根或亞硝酸根,同時水中的有機物氧化分解供給吸磷微生物能量,微生物從水中吸收磷,則磷富集在微生物內,最後經沉澱分離後以富磷污泥的形式從系統中排出。
網路:A2O
D. 請問大家個污水處理脫氮迴流的問題
污水脫氮除磷生物處理法TP是通過細胞過量吸收去除的;
氮的去除不是靠細胞過量吸收去除的。其主要機理如下:
顆粒性不可生物降解有機氮通過生物絮凝作用成為活性污泥組分,通過排除剩餘活性污泥從系統中去除;顆粒性可生物降解有機氮通過水解轉化為溶解性可生物降解有機氮。溶解性不可生物降解有機氮,隨處理出水排出,決定出水的有機氮濃度;溶解性可生物降解有機氮通過異養細菌的氨化作用轉化為氨氮,其中尿素可迅速水解成碳酸銨。好氧條件下硝化菌將氨氮氧化為硝態氮,缺氧條件下反硝化菌將硝酸鹽異化還原成氣態氮,從水中除去。
由於缺氧區反硝化需要大量碳源,因此一般缺氧區都放置在生物處理的前端(進水端),但是進水中多為氨氮,少有硝態氮,無法進行發硝化,因此需要內迴流。生反池出水中的總氮濃度和內迴流是一樣的,因此,即使是理論狀態下,最大的脫氮率也只能達到(r+R)/(1+r+R),其中,r為內迴流比,R為污泥迴流比。
E. 污水處理工藝對脫氮除磷不好
污水處理工藝 是一個流程系統 並不能簡單的稱為什麼方法
這個流程包括預處理專+生物處理(物化)+深度處屬理
脫氮除磷無非就是厭氧除磷和消化反硝化
如果不考慮脫氮除磷,也要根據COD、BOD的水質情況選用生化處理部分的工藝
如果水質生化性好的話,不必考慮水解酸化
COD很高的話,則需要考慮厭氧處理
針對不同的污水(生活污水、工業廢水)、還有水量,選用的工藝都不一樣
F. 急急急!!!污水中氮和磷對環境有哪些危害分析生物脫氮除磷過程中不同階段微生物作用的特點
第1 卷第1 期
2 0 0 0 年2 月
環境污染治理技術與設備
Techniques and Equipment for Environmental Pollution Control
Vol . 1 , No . 1
Feb . , 2 0 0 0
生物脫氮除磷工藝中的
微生物及其相互關系
X
郭勁松 黃天寅 龍騰銳
(重慶建築大學城市建設學院,重慶400045)
摘 要
本文著重對近年來脫氮除磷微生物學方面的研究進展進行了綜述,分析了生物脫氮除磷
反應器中各類功能微生物間的相互作用關系,營養物代謝機理和對處理效率的貢獻,討論了
脫氮除磷生物學應深入研究的一些問題。
關鍵詞:廢水處理 脫氮除磷 微生物
一、前 言
生物方法脫氮除磷由於其處理效率高、運行成本較低、污泥相對易處理,受到廣泛重
視。目前已經發展了諸如A/ O、A2/ O、Bardenpho 、UCT、VIP、SBR 及氧化溝等較為成功
的脫氮除磷工藝。在生物脫氮除磷過程中,微生物的種類、數量和代謝活性以及它們之間
相互作用關系所形成的微生態系統的特徵,直接影響著廢水處理的效率。因此,分析研究
脫氮除磷微生物的種類及其相互作用的關系,對於生物脫氮除磷工藝的優化控制管理和
開發新工藝將會起到重要作用。
二、生物脫氮除磷活性污泥微生物組成
11 脫氮微生物
一般生物廢水處理反應器內的微生物都能降解蛋白質、多肽、氨基酸、尿素等含氮化
合物以獲得生命活動所需能量和其它小分子物質,並生成氨氮,這個過程稱為氨化[1 ] 。
蛋白質的分解過程如下[2 ] :
蛋白質
蛋白酶
蛋白腖
蛋白酶
多肽
肽酶
氨基酸
不同微生物所具有的蛋白酶也不盡相同,如枯草桿菌有明膠酶和酪蛋白酶,而大腸桿
菌沒有這兩種酶,因此不能分解明膠和酪蛋白。污水中能分解蛋白質的微生物種類很多,
特別是假單胞菌屬、牙孢菌屬中某些種均能產生蛋白酶。真菌中的麴黴、毛霉和木霉也能
X 本研究得到國家自然科學基金資助(59838300)
&; 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
產生蛋白酶分解蛋白質。
氨基酸被吸收進入微生物細胞後,有的轉化為另一種氨基酸用於合成菌體蛋白質或
某些含氮化合物的合成。而另一部分氨基酸的降解主要通過脫氨基和脫羧基兩種方式。
由於微生物類型、氨基酸種類與環境條件不同,脫氨方式也不同,主要有:
a. 氧化脫氮:在有氧條件下好氧微生物將氨基酸氧化成酮基酸和氨。
b. 還原脫氮:在厭氧條件下,專性厭氧菌和兼性厭氧菌將氨基酸還原成飽和脂肪酸和
氨。
c. 水解脫氮和減飽和脫氮:不同氨基酸經此兩種方式脫氨生成不同的產物。如大腸
桿菌及變形桿菌水解色氨酸,生成吲哚、丙酮酸及氨;糞鏈球菌使精氨酸產生瓜氨酸;大腸
桿菌、變形桿菌、枯草桿菌和酵母菌等能將半胱氨酸分解為丙酮酸、氨和硫化氫。
硝化反應是在好氧狀態下由亞硝酸菌( Nit rosomonas ) 與硝酸菌( Nit robacter) 共同完
成的。亞硝酸菌有亞硝酸單胞菌屬、亞硝酸螺桿菌屬和硝酸球菌屬等,硝酸菌有硝酸桿
菌、螺菌屬和球菌屬等,兩者都屬專性好氧菌。硝化細菌幾乎生活在所有污水處理過程
中,它們都是革藍氏染色陰性,具有強烈的好氧性,不能在酸性條件下生長,由於這兩類細
菌不需要有機物作為養料,且是通過氧化無機的氮化合物得到所需的能量,故它們是化能
自養型的細菌[3 ] 。亞硝酸菌和硝酸菌以無機化合物CO2 -
3 、HCO -
3 及CO2 等為碳源,以
NH+
4 及NO -
2 為電子供體,O2 為電子受體,使氨氮氧化並合成新細胞,反應式可表示為:
55NH+
4 + 76O2 + 109HCO-
3
亞硝酸菌
C5H7NO2 + 54NO -
2 + 57H2O + 104H2CO3
400NO -
2 + NH+
4 + 4H2CO3 + HCO -
3 + 195O2
硝酸菌
C5H7NO2 + 3H2O + 400NO -
3
污水生物處理系統中微生物在無氧條件下大多具有反硝化能力,常見的有變形桿菌、
微球菌屬、假單胞菌屬、芽胞桿菌屬等[4 ] 。這些細菌利用硝酸鹽中的氧進行呼吸,氧化分
解有機物,將硝態氮還原為N2 或N2O ,其過程如下[5 ] :
NO -
3
硝酸鹽還原酶
NO -
2
亞硝酸鹽還原酶
NO
氧化氮還原酶
N2O
氧化亞氮還原酶
N2
Payne[6 ] (1973) 系統回顧了具有反硝化能力的廢水處理微生物,指出有些類群只具有
硝酸鹽還原酶,故只能將NO -
3 還原至NO-
2 ,如無色桿菌屬、放線桿菌屬、氣單胞菌屬、瓊
脂桿菌屬、芽孢桿菌屬等;而其它類群由於具有反硝化中的全部酶系,因此能將NO-
3 還
原成N2 ,如微球桿菌屬、丙酸桿菌屬、螺菌屬等。在所有反硝化菌中,有些是專性好氧菌,
有些是兼性厭氧菌。它們在好氧、厭氧或缺氧條件下,即使利用相同的有機基質,但通過
不同的呼吸途徑,產生的能量不同,同時細胞產量也不同。此外,少數專性和兼性自養細
菌也能還原硝酸鹽,如硫桿菌屬細菌能以氫氣還原性H2S 等無機物為電子供體,在厭氧
條件下利用NO -
3 作為電子受體來氧化還原性硫。
Kuenen J G等[7 ] (1987) 及Robert son L A. 等[8 ] (1992) 發現,許多異養型硝化細菌能
進行好氧反硝化反應,在產生NO -
3 和NO -
2 的過程中將這些產物還原,這為在同一反應
器中在同一條件下完成生物脫氮提供了可能。Vandegraaf 等[9 ] (1995) 研究發現異養硝
化、好氧反硝化細菌Thiosphaera pantot ropha 能把NH+
4 氧化成NO-
2 ,爾後通過反硝化途
徑將NO-
2 (與外源提供的NO -
2 和NO -
3 一起) 還原為N2 ,從而完成脫氮。
1 期 郭勁松等:生物脫氮除磷工藝中的微生物及其相互關系 9
&; 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
Mnlder A 等[10 ] (1995) 發現氨確實可以直接作為電子供體進行反硝化反應,並稱之
為Anaerobic Ammonium Oxidation (厭氧氨生物氧化) 。Vandegraaf 等[11 ] (1996) 通過研
究,證實了厭氧氨生物氧化是一個微生物過程,在厭氧分批培養中,氨與硝酸鹽同時被轉
化,僅有微量的亞硝酸鹽積累,一旦硝酸鹽耗盡,氨轉化即停止,但其中起作用的菌屬還待
進一步研究。
21 除磷微生物
在有氧條件下攝取磷,在厭氧條件下釋放磷原理[12 ,13 ,14 ,15 ] ,目前已被普遍接受。
Fuhs 等[16 ] (1975) 對Baltimore Black River 和Seneca Falls 這兩個具有很好除磷效果的污
水廠曝氣池中的活性污泥進行檢測,發現不動桿菌屬( Acinetobacter) 與磷的去除密切相
關。Buchan[17 ] (1983) 研究分析了除磷效果良好的幾個試驗裝置及污水廠的曝氣活性污
泥,表明不動桿菌是其中的優勢菌種,他認為廢水生物除磷過程首先是富集不動桿菌屬,
然後通過該菌過量吸收磷達到除磷的目的。此後,Lotter[18 ] (1985) ,Cloete 等[19 ] (1985) ,Bay2
ly 等[20 ] (1989) 和Beacham[21 ] (1990) 也分別在除磷活性污泥中檢測到了大量的不動桿菌屬。
然而,Brodich 等[22 ] (1983) 發現其生物除磷試驗裝置活性污泥的微生物中,不動桿菌屬是少
數菌屬,只佔總量的1 %~10 %,而優勢菌屬為氣單胞菌屬和假單胞菌屬。Hiraishi 等[23 ]
(1989) 比較了生物除磷工藝活性污泥與非除磷工藝活性污泥的微生物組成,發現兩者中的
不動桿菌都不佔優勢,在除磷A/ O 法活性污泥中不動桿菌屬只佔大約1 %。由此可見不動
桿菌並不是唯一的除磷微生物,還有其它微生物的除磷能力也不容忽視。
Mino[24 ] (1987) 提出內源糖通過EMP 途徑(酵解途徑) 降解,獲得的能量用來吸收醋
酸以合成PHB(聚羥基丁酸鹽) ,除磷菌在厭氧段降解內源糖的反應式為:
CH2O + 0. 083C6H10O5 (CH) + 0. 44HPO2 -
3 + 0. 023H2O
1. 33CH1. 5O0. 5 (PHB) + 0. 17CO2 + 0. 44H3PO4
圖1 厭氧狀態放磷[ 21 ]
在好氧或有NO -
3 存在條件下,因消耗
PHB 及內源碳而建立起的三羧酸循環和呼
吸鏈產生氫離子,為維持細胞質子動力pmf
的恆定趨向,細胞吸收過量磷,並合成豐富的
Poly - P[25 ] 。除磷菌生化反應模型如圖2 所
示。
31 具有反硝化能力的除磷菌(DPB)
在污水生物處理中,生物除磷通常是與
生物脫氮(硝化與反硝化) 工藝一起應用。如
圖2 所示,有些除磷菌亦能利用NO -
3 作為電子受體,在吸收磷的同時進行反硝化。許多
研究者[27 ] [28 ,29 ,30 ]在活性污泥系統和實驗室培養中發現了具有反硝化能力的除磷菌
(DPB) 。NO -
3 被用來氧化細胞內儲存的PHB ,然後以氮分子的形式從廢水中排除。這樣
引起水體富營養化的氮、磷兩大主要元素都被去除。Kuba[31 ] (1994) 發現DPB 除磷能力
與傳統A/ O 工藝中普通除磷菌相似,同時也具有建立在內源PHB 和糖類物質(Carbohy2
drate) 基礎上類似的生物代謝機理。在特定的條件下,除磷菌具有很強的反硝化能力。
1 0 郭勁松等:生物脫氮除磷工藝中的微生物及其相互關系 1 卷
&; 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
Kuba[32 ] (1997) 在Holten 污水處理廠的研究表明,約有50 %的除磷菌參與了反硝化活動。
圖2 好氧/ 缺氧狀態吸磷[ 26 ]
三、生物脫氮除磷工藝反應器中微生物關系
一般來說[33 ] ,微生物的相互關系有三種可能:第一,一種微生物的生長和代謝對另一
種微生物的生長產生有利影響,或者相互有利,形成有利關系,如生物間的共生和互生;第
二,一種微生物的生長與代謝對另一種微生物的生長產生不利影響,或者相互有害,形成
有害關系,如微生物間的拮抗、競爭、寄生和捕食;第三,兩種微生物生活在一起,兩者間發
生無關緊要、沒有意義的相互影響,表現出彼此對生長和代謝無明顯的有利或有害影響,
形成中性關系,如種間共處。
11 有利關系
微生物之間的有利關系可分為互生關系和共生關系。互生關系是微生物間比較鬆散
的聯合,在聯合中可以是一方得利,即一方為另一方提供或改善生活條件,或者是雙方都
得利。而共生關系是兩種微生物緊密地結合在一起,當這種關系高度發展時,就形成特殊
的共同體,在生理上表現出一定的分工,在組織和形態上產生新的結構。
生物脫氮系統中,互生關系主要表現為在化學水平的協作,即微生物間相互提供生長
因子、代謝刺激物或降解對方的代謝抑制物,平衡pH 值,維持適當的氧化還原電位或消
除中間產物的累積。氨化細菌,亞硝酸菌,硝酸菌及反硝化菌之間就表現為互生關系。在
氮素轉化過程中,氨化細菌分解有機氮化合物產生氨,為亞硝酸菌創造了必需的生活條
件,但對氨化細菌則無害也無利。亞硝酸菌氧化氨,生成亞硝酸,又為硝酸菌創造了必要
的生活條件。Chai Sung Gee 等[34 ]研究了亞硝化單胞菌屬與硝化桿菌在反應器內的相互
作用,運用懸浮生長實驗獲得的穩態氨和亞硝酸氧化的數據確定了這兩種細菌數量的生
長參數,得出結論:硝化桿菌的活性依賴於硝化桿菌對亞硝化單胞菌的數量比例,而亞硝
化單胞菌的活性則不受兩者之間數量比例的影響。可以斷定這兩個種群之間必然存在著
酶促共棲或生物化學的能量轉移。反硝化菌則在厭氧條件下將NO-
3 、NO -
2 還原為N2 氣
體,從污水的液相中排出,為亞硝化菌和硝化菌解除抑制因子,同時反硝化過程還提高了
反應器內的鹼度,部分地補充了硝化過程所消耗的鹼度,有利於反應器內pH 值穩定在硝
化菌活性較大的范圍內。
G. 怎樣的技術污水脫氮效果更好
針對水污染抄現狀,本文簡單介紹了引起水體污染和富營養化的氮素來源及其主要危害,並簡單對物理化學脫氮法和生物脫氮法的反應原理和優缺點進行了對比介紹,其中生物脫氮法具有成本低、操作簡單、處理效果好、不造成二次污染等特點而被廣泛應用。在此基礎上介紹了目前國內外使用較多的幾種生物脫氮工藝,最後對污水脫氮的發展趨勢做了簡要說明。