A. 苯如何去除
1、開窗通風,裝修剛結束,污染肯定幾倍、幾十倍、甚至上百倍的超標,所以初期的一到兩周,什麼手段作用都不大,最好的辦法就是開窗通風,盡快將室內主要污染物排放到室外。
2、經過第一步後,室內污染已經由幾十倍、甚至上百倍的超標變成幾倍,這時污染物散發進入緩慢的釋放過程,無論你再怎麼通風,也是不可能一下子去除的,可以採用如下一些方法:首先是花卉植物類,比如吊蘭、仙人球、綠色植物等,這類植物都具有一定的吸味作用,可以消除空氣中的有害物質。
3、可以選擇一些光觸媒,但要仔細考察,否則容易有二次污染。而且也要注意是否有毒副作用,是否會對傢具等造成傷害(據說有些東西會導致傢具變色),使用是否方便等。此階段也要繼續通風,換氣。
(1)苯無水處理擴展閱讀:
防治小知識
1、在進行室內裝飾時一定要選擇符合國家標準的油漆、塗料、膠黏劑和防水材料。
2、選擇一些水性的木器漆,是防止和減少家庭室內裝修苯污染的根本途徑。
3、注意不要用油漆封牆底,這是嚴重污染室內環境的工藝,會造成長時間的苯污染問題。
4、由於在正常情況下,苯揮發比較快,裝修後的居室不要立刻入住。
5、不使用那些用劣質的大芯板或密度板做的傢具。它會長時間地大量釋放甲醛或苯。
B. 苯進入污水處理廠後怎麼辦
污水復處理廠會根據苯的特性進行制處理,常用的處理材料為聚合氯化鋁鐵。
處理方法:
1、使用前,將本產品按一定濃度(10-30%)投入溶礬池,注入自來水攪拌使之充分水解,靜置至呈紅棕色液體,再兌水稀釋到所需濃度投加混凝。水廠亦可配成2-5%直接投加,工業廢水處理直接配成5-10%投加。
2、投加量的確定,根據原水性質可通過生產調試或燒杯實驗視礬花形成適量而定,制水廠可以原用的其它葯劑量作為參考,在同等條件下本產品與固體聚合氯化鋁用量大體相當,是固體硫酸鋁用量的1/3-1/4。如果原用的是液體產品,可根據相應葯劑濃度計算酌定。大致按重量比1:3而定。
3、使用時,將上述配製好的葯液,泵入計量槽,通過計量投加葯液與原水混凝。
4、一般情況下當日配製當日使用,配葯需要自來水,稍有沉澱物屬正常現象
5、根據原生產用按:固體:清水=1/5左右,先混合溶解後,再加水稀釋至含量2~3%的溶液即可。
6、生產用按:固體:清水=1/5左右,先混合溶解後,再加水稀釋至含量2~3%的溶液即可。
C. 化學試驗中各種「無水溶劑」的處理方法
常用有機溶劑無水處理
1丙酮:沸點56.2℃,折光率1.358 8,相對密度0.789 9。
普通丙酮常含有少量的水及甲醇、乙醛等還原性雜質。其純化方法有: ⑴於250mL丙酮中加入2.5g高錳酸鉀迴流,若高錳酸鉀紫色很快消失,再加入少量高錳酸鉀繼續迴流,至紫色不褪為止。然後將丙酮蒸出,用無水碳酸鉀或無水硫酸鈣乾燥,過濾後蒸餾,收集55~56.5℃的餾分。用此法純化丙酮時,須注意丙酮中含還原性物質不能 太多,否則會過多消耗高錳酸鉀和丙酮,使處理時間增長。
⑵將100mL丙酮裝入分液漏斗中,先加入4mL10%硝酸銀溶液,再加入
3.6mL1mol/L氫氧化鈉溶液,振搖10min,分出丙酮層,再加入無水硫酸鉀或無水硫酸鈣進行乾燥。最後蒸餾 收集55~56.5℃餾分。此法比方法⑴要快,但硝酸銀較貴,只宜做小量純化用。
2、苯:沸點80.1℃,折光率1.501 1,相對密度0.87865。
普通苯常含有少量水和噻吩,噻吩和沸點84℃,與苯接近,不能用蒸餾的方法除去。
噻吩的檢驗:取1mL苯加入2mL溶有2mg吲哚醌的濃硫酸,振盪片刻,若酸層號藍綠色,即表示有噻吩存在。
噻吩和水的除去:將苯裝入分液漏斗中,加入相當於苯體積七分之一的濃硫酸,振搖使噻吩磺化,棄去酸液,再加入新的濃硫酸,重復操作幾次,直到酸層呈現無色或淡黃色並檢驗無噻吩為止。
將上述無噻吩的苯依次用10%碳酸鈉溶液和水洗至中性,再用氯化鈣乾燥,進行蒸餾,收集80℃的餾分,最後用金屬鈉脫去微量的水得無水苯。 氯仿
沸點61.7℃,折光率1.445 9,相對密度1.483 2。
氯仿在日光下易氧化成氯氣、氯化氫和光氣(劇毒),故氯仿應貯於棕色瓶中。市場上供應的氯仿多用1%酒精做穩定劑,以消除產生的光氣。氯仿中乙醇的檢驗可用碘仿反應;游離氯化氫的檢驗可用硝酸銀的醇溶液。
除去乙醇可將氯仿用其二分之一體積的水振搖數次分離下層的氯仿,用氯化
鈣乾燥24h,然後蒸餾。
另一種純化方法:將氯仿與少量濃硫酸一起振動兩三次。每200mL氯仿用10mL濃硫酸,分去酸層以後的氯仿用水洗滌,乾燥,然後蒸餾。
除去乙醇後的無水氯仿應保存在棕色瓶中並避光存放,以免光化作用產生光氣。 二氯甲烷
沸點40℃,折光率1.424 2,相對密度1.326 6。
使用二氯甲烷比氯仿安全,因此常常用它來代替氯仿作為比水重的萃取劑。普通的二氯甲烷一般都能直接做萃取劑用。如需純化,可用5%碳酸鈉溶液洗滌,再用水洗滌,然後用無水氯化鈣乾燥,蒸餾收集40~41℃的餾分,保存在棕色瓶中。
3、二氧六環:沸點101.5℃,熔點12℃,折光率1.442 4,相對密度1.033 6。
二氧六環能與水任意混合,常含有少量二乙醇縮醛與水,久貯的二氧六環可能含有過氧化物(鑒定和除去參閱乙醚)。二氧六環的純化方法,在500mL二氧六環中加入8mL濃鹽酸和50mL水的溶液,迴流6~10h,在迴流過程中,慢慢通入氮氣以除去生成的乙醛。冷卻後,加入固體氫氧化鉀,直到不能再溶解為止,分去水層,再用固體氫氧化鉀乾燥24h。
然後過濾,在金屬鈉存在下加熱迴流8~12h,最後在金屬鈉存在下蒸餾 ,壓入飢絲密封保存。精製過的1,4-二氧環己烷應當避免與空氣接觸。 二硫化碳
沸點46.25℃,折光率1.631 9,相對密度1.2632。
二硫化碳為有毒化合物,能使血液神經組織中毒。具有高度的揮發性和易燃性,因此,用時應避免與其蒸氣接觸。
對二硫化碳純度要求不高的實驗,在二硫化碳中加入少量無水氯化鈣乾燥幾小時,在水浴55℃~65℃下加熱蒸餾、收集。如需要制備較純的二硫化碳,在試劑級的二硫化碳中加入0.5%高錳酸鉀水溶液洗滌三次。除去硫化氫再用汞不斷振盪以除去硫。最後用2.5%硫酸汞溶液洗滌,除去所有的硫化氫(洗至沒有惡臭為止),再經氯化鈣乾燥,蒸餾收集 。 DMFN,N-二甲基甲醯胺 沸點149~156℃,折光率1.430 5,相對密度0.948 7。無色液體,與多數有機溶劑和水可任意混合,對有機和無機化合物的溶解性能較好。 N,N-二甲基甲醯胺含有少量水分。常壓蒸餾時有些分解,產生二甲胺和一氧化碳。在有酸或鹼存在時,分解加快。所以加入固體氫氧化鉀(鈉)在室溫放置數小時後,即有部分分解。因此,最常用硫酸鈣、硫酸鎂、氧化鋇、硅膠或分子篩乾燥,然後減壓蒸餾,收集76℃/4800Pa(36mmHg)的餾分。其中如含水較多時,可加入其1/10體積的苯,在常壓及80℃以下蒸去水和苯,然後再用無水硫酸鎂或氧化鋇乾燥,最後進行減壓蒸餾。純化後的N,N-二甲基甲醯胺要避光貯存。
N,N-二甲基甲醯胺中如有游離胺存在,可用2,4二硝基氟苯產生顏色來檢查。
DMSO(結構簡式:(CH3)2-S-O) 二甲基亞碸
沸點189℃,熔點18.5℃,折光率1.4783,相對密度1.100。二甲基亞碸能與水混合,可用分子篩長期放置加以乾燥。然後減壓蒸餾,收集
76℃/1600Pa(12mmHg)餾分。蒸餾時,溫度不可高於90℃,否則會發生歧化反應生成二甲碸和二甲硫醚。也可用氧化鈣、氫化鈣、氧化鋇或無水硫酸鋇來乾燥,然後減壓蒸餾。也可用部分結晶的方法純化。
二甲基亞碸與某些物質混合時可能發生爆炸,例如氫化鈉、高碘酸或高氯酸鎂等應予注意。 乙醇
沸點78.5℃,折光率1.361 6,相對密度0.789 3。
制備無水乙醇的方法很多,根據對無水乙醇質量的要求不同而選擇不同的方法。
若要求98%~99%的乙醇,可採用下列方法:
⑴利用苯、水和乙醇形成低共沸混合物的性質,將苯加入乙醇中,進行分餾,在64.9℃時蒸出苯、水、乙醇的三元恆沸混合物,多餘的苯在68.3與乙醇形成二元恆沸混合物被蒸出,最後蒸出乙醇。工業多採用此法。
⑵用生石灰脫水。於100mL95%乙醇中加入新鮮的塊狀生石灰20g,迴流3~5h,然後進行蒸餾。
若要99%以上的乙醇,可採用下列方法:
⑴在100mL99%乙醇中,加入7g金屬鈉,待反應完畢,再加入27.5g鄰苯二甲二乙酯或25g草酸二乙酯,迴流2~3h,然後進行蒸餾。
金屬鈉雖能與乙醇中的水作用,產生氫手和氫氧化鈉,但所生成的氫氧化鈉又與乙醇發生平衡反應,因此單獨使用金屬鈉不能完全除去乙醇中的水,須加入過量的高沸點酯,如鄰苯二甲酸二乙酯與生成的氫氧化鈉作用,抑制上述反應,從而達到進一步脫水的目的。
⑵在60mL99%乙醇中,加入5g鎂和0.5g碘,待鎂溶解生成醇鎂後,再加入900mL99%乙醇,迴流5h後,蒸餾,可得到99.9%乙醇。
由於乙醇具有非常強的吸濕性,所以在操作時,動作要迅速,盡量減少轉移次數以防止空氣中的水分進入,同時所用儀器必須事前乾燥好。 乙醚
沸點34.51℃,折光率1.352 6,相對密度0.713 78。普通乙醚常含有2%乙醇和0.5%水。久藏的乙醚常含有少量過氧化物
過氧化物的檢驗和除去:在干凈和試管中放入2~3滴濃硫酸,1mL2%碘化鉀溶液(若碘化鉀溶液已被空氣氧化,可用稀亞硫酸鈉溶液滴到黃色消失)和1~2滴澱粉溶液,混合均勻後加入乙醚,出現藍色即表示有過氧化物存在。除去過氧化物可用新配製的硫酸亞鐵稀溶液(配製方法是FeSO4?H2O60g,100mL水和6mL濃硫酸)。將100mL乙醚和10mL新配製的硫酸亞鐵溶液放在分液漏斗中洗數次,至無過氧化物為止。
醇和水的檢驗和除去:乙醚中放入少許高錳酸鉀粉末和一粒氫氧化鈉。放置後,氫氧化鈉表面附有棕色樹脂,即證明有醇存在。水的存在用無水硫酸銅檢驗。先用無水氯化鈣除去大部分水,再經金屬鈉乾燥。其方法是:將100mL乙醚放在乾燥錐形瓶中,加入20~ 25g無水氯化鈣,瓶口用軟木塞塞緊,放置一天以上,並間斷搖動,然後蒸餾,收集33~ 37℃的餾分。用壓鈉機將1g金屬鈉直接壓成鈉絲放於盛乙醚的瓶中,用帶有氯化鈣乾燥管的軟木塞塞住。或在木塞中插一末端拉成毛細管的玻璃管,這樣,既可防止潮氣浸入 ,又可使產生的氣體逸出。放置至無氣泡發生即可使用;放置後,若鈉絲表面已變黃變粗時,須再蒸一次,然後再壓入鈉絲。 乙酸乙酯
沸點77.06℃,折光率1.372 3,相對密度0.900 3。
乙酸乙酯一般含量為95%~98%, 含有少量水、乙醇和乙酸。可用下法純化:於1000mL乙酸
乙酯中加入100mL乙酸酐,10滴濃硫酸,加熱迴流4h,除去乙醇和水等雜質,然後進行蒸
餾。餾液用20~30g無水碳酸鉀振盪,再蒸餾。產物沸點為77℃,純度可達以99%。 甲醇
沸點64.96℃,折光率1.328 8,相對密度0.791 4。
普通未精製的甲醇含有0.02%丙酮和0.1%水。而工業甲醇中這些雜質的含量達0.5%~1%。
為了製得純度達99.9%以上的甲醇,可將甲醇用分餾柱分餾。收集64℃的餾分,再用鎂去水(與制備無水乙醇相同)。甲醇有毒,處理時應防止吸入其蒸氣。 石油醚
石油醚為輕質石油產品,是低相對分子質量烷烴類的混合物。其沸程為30~150℃,收集的溫度區間一般為30℃左右。有30~60℃,60~90℃,90~120℃等沸程規格的石油醚。其中含有少量不飽和烴,沸點與烷烴相近,用蒸餾法無法分離。
石油醚的精製通常將石油醚用其體積的濃硫酸洗滌2~3次,再用10%硫酸加入高錳酸鉀配成的飽和溶液洗滌,直至水層中的紫色不再消失為止。然後再用水洗,經無水氯化鈣乾燥後蒸餾。若需絕對乾燥的石油醚,可加入鈉絲(與純化無水乙醚相同)。 吡啶
沸點115.5℃,折光率1.509 5,相對密度0.981 9。
分析純的吡啶含有少量水分,可供一般實驗用。如要製得無水吡啶,可將吡啶與粒氫氧化鉀(鈉)一同迴流,然後隔絕潮氣蒸出備用。乾燥的吡啶吸水性很強,保存時應將容器口用石蠟封好。
二氧六環
沸點101.5℃,熔點12℃,折光率1.442 4,相對密度1.033 6。
二氧六環能與水任意混合,常含有少量二乙醇縮醛與水,久貯的二氧六環可能含有過氧化物(鑒定和除去參閱乙醚)。二氧六環的純化方法,在500mL二氧六環中加入8mL濃鹽酸和50mL水的溶液,迴流6~10h,在迴流過程中,慢慢通入氮氣以除去生成的乙醛。冷卻後,加入固體氫氧化鉀,直到不能再溶解為止,分去水層,再用固體氫氧化鉀乾燥24h。然後過濾,在金屬鈉存在下加熱迴流8~12h,最後在金屬鈉存在下蒸餾 ,壓入飢絲密封保存。精製過的1,4-二氧環己烷應當避免與空氣接觸。
D. 廢水中的苯環如何破除
如何破解高濃廢水?用高效催化氧化處理工藝
:一、高濃度廢水背景概述
高濃度難降解廢水越來越多,與此同時隨著生活水平的提高,環保意識增強,人們對難降解的有機物在環境中的遷移、變化越來越關注,然而高濃度難降解有機污染物的處理,是廢水處理的一個難點,難以用常規工藝(如混凝、生化法)處理,這是因為?
一、是此類廢水濃度高,CODcr一般為數萬mg/L,高的甚至達到十多萬mg/L以上;
二、是其中所含是污染物主要是芳烴化合物,BOD/COD很低,一般在0.1以下,難以生物降解;
三、是污染物毒性大,許多物質被列入環境污染物黑名單,如苯胺、硝基苯類等;
四、是無機鹽含量高,達數萬甚至十多萬以上。因此開發高濃度難降解有機廢水的有效處理技術迫在眉睫。常溫常壓下的新型高效催化氧化技術就是在這種背景下應運而生的。
二、高效催化氧化原理
新型高效催化氧化的原理就是在表面催化劑存在的條件下,利用強氧化劑——二氧化氯在常溫常壓下催化氧化廢水中的有機污染物,或直接氧化有機污染物,或將大分子有機污染物氧化成小分子有機污染物,提高廢水的可生化性,較好地去除有機污染物。在降解COD的過程中,打斷有機物分子中的雙鍵發色團,如偶氮基、硝基、硫化羥基、碳亞氨基等,達到脫色的目的,同時有效地提高BOD/COD值,使之易於生化降解。這樣,二氧化氯催化氧化反應在高濃度、高毒性、高含鹽量廢水中充當常規物化預處理和生化處理之間的橋梁。高效表面催化劑(多種稀有金屬類)以活性炭為載體,多重浸漬並經高溫處理。
ClO2在常溫下是黃綠色的類氯性氣體,溶於水中後隨濃度的提高顏色由黃綠色變為橙紅色。其分子中具有19個價電子,有一個未成對的價電子。這個價電子可以在氯與兩個氧原子之間跳來跳去,因此它本身就像一個游離基,這種特殊的分子結構決定了ClO2具有強氧化性。ClO2在水中發生了下列反應:
ClO2 +H2O→HClO3+HCl
ClO2→ClO2 +O2
ClO2+ .HO→HCl+HClO
HClO→O2 +H2O
HClO2+ Cl2 +H2O→HClO3+HCl
氯酸和亞氯酸在酸性較強的溶液里是不穩定的,有很強的氧化性,將進一步分解出氧,最終產物是氯化物。在酸性較強的條件下,二氧化氯回分解並生成氯酸,放出氧,從而氧化、降解廢水中的帶色基團與其他的有機污染物;而在弱酸性條件下,二氧化氯不易分解污染物而是直接和廢水中污染物發生作用並破壞有機物的結構。因此,pH值能影響處理效果。
從上式可以看出,二氧化氯遇水迅速分解,生成多種強氧化劑——HClO3、HClO2、Cl2、H2O2等,並能產生多種氧化能力極強的活性基團(即自由基),這些自由基能激發有機物分子中活潑氫,通過脫氫反應生成R*自由基,成為進一步氧化的誘發劑;還能通過羥基取代反應將芳烴上的——SO3H、——NO2等基團取代下來,生成不穩定的羥基取代中間體,此羥基取代中間體易於發生開環裂解,直至完全分解為無機物;此外ClO2還能將還原性物質如S2—等氧化。二氧化氯的分解產物對色素中的某些基團有取代作用,對色素分子結構中的雙鍵有加成作用。因此,二氧化氯可以很好的氧化分解水中的酚、氯酚、硫醇、仲胺、叔胺等難降解有機物和硫化物、鐵、錳等無機物。
二氧化氯作催化劑的催化氧化過程對含有苯環的廢水有相當好的降解作用,COD的去除率也相當高。但在有機物質的降解過程中,有一些中間產物產生,主要有:草酸、順丁烯二酸、對苯酚和對苯醌等,這就造成了COD的去除率相對較低,但其B/C比即可生化性大大提高。
三、氧化劑制備
二氧化氯採用現場制備的方法,在塔式噴淋反應器內,用氯酸鈉與鹽酸在催化劑存在的條件下反應,生成二氧化氯,反應方程式如下:
NaClO3+HCl → NaCl +ClO2+Cl2
反應過程是在射流作用下使反應器形成負壓,使原料經轉子流量計自動吸入反應器,反應生成二氧化氯,最終被射流帶入水體中。負壓條件可使操作過程比較安全,而且二氧化氯不會外泄,操作環境無異味。在本反應中,可利用催化劑作用,減少氯氣的產生,提高二氧化氯的產率。
四、設計與應用
(一)催化氧化的處理工藝
一般催化氧化的處理工藝為:廢水→物化前處理→催化氧化→配水→生化
工藝說明如下:
⑴前處理採用混凝、沉澱、氣浮、微電解、中和、預曝氣等物化處理方法。經過這些物化處理,去除懸浮物,降低了廢水的COD,調節了pH值,使廢水能更適合進行催化氧化;
⑵催化氧化過程中降低了一部分COD,提高了B/C,使之能更好地進行生化處理,在物化與生化處理之間充當橋梁作用;
(3)催化氧化塔出水進行配水是為了降低含鹽量,使之能更好地進行生化處理;
(4)生化處理的主要目的是進一步降低COD,最大限度地去除有機污染。
(二)催化氧化的處理效果
COD去除率≥70% ;色度去除率≥95 ;揮發酚去除率≥99% ;苯氨類去除率≥95%;硝基苯類去除率≥95% ;氰化物去除率≥99%。
五、鐵碳微電解工藝介紹:
微電解技術是目前處理高濃度有機廢水的一種理想工藝,又稱內電解法。它是在不通電的情況下,利用填充在廢水中的微電解材料自身產生1.2V電位差對廢水進行電解處理,以達到降解有機污染物的目的。當系統通水後,設備內會形成無數的微電池系統,在其作用空間構成一個電場。在處理過程中產生的新生態[H] 、Fe2+ 等能與廢水中的許多組分發生氧化還原反應,比如能破壞有色廢水中的有色物質的發色基團或助色基團,甚至斷鏈,達到降解脫色的作用;生成的Fe2+ 進一步氧化成Fe3+ ,它們的水合物具有較強的吸附- 絮凝活性,特別是在加鹼調pH 值後生成氫氧化亞鐵和氫氧化鐵膠體絮凝劑,它們的吸附能力遠遠高於一般葯劑水解得到的氫氧化鐵膠體,能大量吸附水中分散的微小顆粒,金屬粒子及有機大分子。
工作原理:基於電化學、氧化- 還原、物理吸附以及絮凝沉澱的共同作用對廢水進行處理。該法具有適用范圍廣、處理效果好、成本低廉、操作維護方便,不需消耗電力資源等優點。鐵碳微電解填料用於難降解高濃度廢水的處理可大幅度地降低COD和色度,提高廢水的可生化性,同時可對氨氮的脫除具有很好的效果
鐵碳-芬頓反應器可通過催化氧化方式提高污水的可生化性。
1894年,法國人H,J,HFenton發現採用Fe2++H2O2體系能氧化多種有機物。後人為紀念他將亞鐵鹽和過氧化氫的組合稱為Fenton試劑,它能有效氧化去除傳統廢水處理技術無法去除的難降解有機物,其實質是H2O2在Fe2+的催化作用下生成具有高反應活性的羥基自由(•OH) •OH可與大多數有機物作用使其降解。隨著研究的深入,又把紫外光(UV)、草酸鹽(C2O42-)等引入Fenton試劑中,使其氧化能力大大增強。從廣義上說,Fenton法是利用催化劑、或光輻射、或電化學作用,通過H2O2產生羥基自由基(•OH)處理有機物的技術。近年來,越來越多的研究者把Fenton試劑同別的處理方法結合起來,如生物處理法、超聲波法、混凝法、沉澱法,活性炭法等。
工作原理及主要特點
芬頓試劑為常用的催化試劑,它是由亞鐵鹽和過氧化物組成,當PH值足夠低時,在亞鐵離子的催化作用下,過氧化氫會分解產生OH˙,從而引發一系列的鏈反應。芬頓試劑在水處理中的作用主要包括對有機物的氧化和混凝兩種作用。
氧化作用:芬頓試劑之所以具有非常高的氧化能力,是因為在Fe2+離子的催化作用下H2O2的分解活化能低(34.9kJ/mol),能夠分解產生羥基自基OH•。同其它一些氧化劑相比,羥基自由基具有更高的氧化電極電位,因而具有很強的氧化性能。芬頓試劑處理難降解有機廢水的影響因素根據上述芬頓試劑反應的機理可知,OH•是氧化有機物的有效因子,而[Fe2+]、[H2O2]、[OH]決定了OH•的產量,因而決定了與有機物反應的程度。
電化學作用:鐵碳和電解質溶液接觸時,形成以鐵碳為兩極的原電池。其中碳極的電位高,為陰極,而鐵極的電位低,為陽極。在廢水中,電化學腐蝕作用可以自動進行。由於Fe2+的不斷生成能有效克服陽極的極化作用,從而促進整個體系的電化學反應,使大量的Fe進入溶液,具有較高化學還原活性。電極反應所產生的新生態,能與溶液中許多組分發生氧化還原反應。同時鐵是活潑金屬,它的還原能力可使某些組分還原為還原態。
過濾吸附及共沉澱作用:由鐵屑和碳粒共同構成的內電解反應柱具有良好的過濾作用,反應生成的膠體不但可以強化過濾吸附作用,而且產生新的膠粒。其中心膠核是許多Fe(OH)聚合而成的有巨大比表面積的不溶性粒子。易於裹挾大量的有害物質,並可和多種金屬發生共沉澱作用,達到去除的目的。
電泳作用:在微原電池周圍電場的作用下,廢水中以膠體狀態存在的污染物可在很短的時問內完成電泳沉積作用。即帶電的膠粒在靜電引力和表面能的作用下,向帶有相反電荷的電極移動,附集並沉積在電極上而得以去除。
E. 苯試劑無水處理的方法
加氯化鈣乾燥過夜,濾除氯化鈣,蒸餾,收集80度餾分。若要絕對乾燥再加入鈉絲,乾燥過夜。
F. 苯用什麼可以消除
苯的消除方法:
1、植物消除法(吊蘭、蘆薈)
吊蘭、蘆薈、虎尾蘭能大量吸收室內甲醛等污染物質,消除並防止室內空氣污染;1,經常保持良好的通風以加強揮發。室內多擺點花卉植物(蘆薈,吊蘭,常春藤,仙人掌等等)及活性炭(包括傢具裡面)等等以吸收毒氣。
2,經常保持良好的通風以加強揮發。
3,吸附法(活性炭),常用的固體吸附劑有焦炭和活性炭等,其中應用最為廣泛的是活性炭。活性炭對對苯、甲苯、二甲苯、乙醇、乙醚、煤油、汽油、苯乙烯、氯乙烯等物質都有吸附功能。
吸附是一種固體表面現象。它是利用多孔性固體吸附劑處理氣態污染物,使其中的一種或幾種組分,在固體吸附劑表面,在分子引力或化學鍵力的作用下,被吸附在固體表面,從而達到分離的目的。
笨的消除方法,點此到達鏈接地址:
G. 甲苯如何無水處理
加入無水氯化鈣,靜置過夜。濾除氯化鈣後用徹底乾燥的蒸餾裝置蒸餾,收集110~111度餾分。若要絕對乾燥,可再加入鈉屑,用帶氯化鈣乾燥管的塞子塞住後靜置24小時。
H. 如何處理含苯的廢水
看論文裡面有鐵碳-微電解的方法除含苯環類有機物的論文,不知道實例可行性怎麼樣,你可以去查詢下相關文章
I. 氯苯除水的方法
前言隨著經濟的發展,社會的進步以及人民生活水平不斷提高,人們對環境污染日益重視,因此,對環境要求也愈益提高.在環境污染中,工業廢水的污染影響最大.水污染會對環境的生態系統造成很大危害,並使經濟嚴重受損.我國水污染狀況十分嚴重,水污染已成為我國經濟與社會發展的制約因素.據專家預測,我國每年由於水污染造成的直接經濟損失約150億元,在19852000年問水污染造成的損失將達2735億元.我國化工污染治理水平與發達國家相比差距很大.廢水治理率在1990年僅為25.7,達標率為6,而發達國家在70年代末治理事已達95,達標率&;95.在技術方面我國化工污染治理主要停留在末端治理上,對難生物降解的有機廢水缺乏有效可行的治理技術,節能型的治理技術開發更少,而發達國家污染治理技術已日臻完善,採取預防為主的技術路線,開發多種節能型治理技術並應用到工業生產中.我們應當從中得到借鑒,努力提高污染治理水平,以改善我們的生活環境.氯苯是一種重要的化工原料和有機中間體,因此在許多化工產品生產中都可能產生含氯苯廢水.氯苯的毒性比苯還大,對環境的危害很大.它對人能引起急性或慢性神經障礙,會造成頭暈,貧血,消化不總等症狀.它已被美國,德國,荷蘭等發達國家列入了有毒品優先監測物的名單中,我國也將之列為優先監測物.因此除了在氯苯生產及使用中要對其進行回收,循環使用外,還要在其排放前採用合適的方法進行處理,使廢水中氯苯等有毒物質含量盡可能降至最低水平.本文根據文獻調研資料,介紹了有關氯苯廢水處理的一些方法,以供有關方面參考.二,氯苯廢水的處理方法常見的氯苯廢水處理方法包括吹脫,吸附,化學處理,生物處理以及膜法等方法.不同方法的處理程度不同,所需費用也不同,有時需要兩者或兩者以上相結合才能取得最佳效果.氯苯廢水處理方法的選擇或組合,取決於下列因素;(1)廢水中氯苯的濃度(2)出水水質排放要求,也應考慮排放標准提高的因素一(3)氯苯廢水處理的費用和可利用的土地面積.用某一種方法或多種組台的處理方法都可以產生所希望的出水,但其中只有一種是最經薪的,因此在最後選定工藝設計之前,應作詳細的經濟分析.下面分別介紹各種治理方法:1,吹脫法從水裡把揮發性有機物()轉移到空氣中的物理過程叫作解吸或空氣吹脫.吹脫是一種通用的節能,經濟的處理方法.氯苯是易揮發性物質.當壓縮空氣不斷吹人污水中使氣液相充分接觸,污水中的氯苯就不斷地從液相逸出而進人氣相.控制吹脫過程可以使污水中氯苯含量達到要求為止.同時,由於溫度升高有助予氯苯揮發,所以在污水處理過程中應將污球加熱到一定溫度.吹脫一42—後的廢水需要送往生化處理.此方法影響氯苯去除因素有:接觸面積,氧苯溶解度,氯苯在水和空氣中的擴鼓力以及承溫等.所有這些因素除擴散力和溫度之外.都受空氣和水流量的影響.氯苯從水向空氣中的轉移效率取決於享剝定律常數.氯苯被空氣吹脫去除的能力可以從享利定律常數算出.享和系敦越大涪解度越小,越容易用吹脫法除去.氯苯在20]時享利常數約為4.0×10?/.享利常數一般隨溫度的升高而增大.吹脫可採用將水噴灑於空氣中的系統,如淋水塔和填料塔,或用擴散曝氣或機械曝氣將空氣注入水中的系統.典型的填料塔如圖所示,填料為結構粗糙ⅱ匿2氣提系統工藝流程圈歐脫迭出的氯苯太部分冷凝回收,少量未冷凝的氧苯用活性炭吸跗回收,或將其熱解或催化氧化.下面介紹幾種催化氧化的方法據日本一公司研究,氣體的氯化苯在400450℃條件下,在一種無鈣的羥基磷灰石()上進行氧化反應可分解成和.其中是通過沉澱作用生成.氯苯中的在反應中以一的形式被捕獲到中.而如果是由磷酸三鈣水解製成時,那麼它對氯化苯的分解不起作用.這是因為這兩種的結晶度不同.另據德國專利介紹,將氯苯與60~10℃水蒸汽反應,催化劑為含2099.9(重量)的和8~0.1(重量)的的鋁酸鈣.氯苯與水比率為1,0.5~:4.主要產物為烯烴,:,.和.催化荊中可摻人,,,,,,.2,吸咐法一43一]一龔一收:~廣..醫當吸附劑固體表面與溶液接觸時,由於表面張力不平衡,就會在固體表面聚積一層溶質分子.吸附分為物理吸附與化學吸附,在本過程中主要是物理吸附.物理吸附是由於固體表面張力引起的分子凝聚.一般說分子量最大的物質最容易被吸附.影響吸附速率因素有:吸附劑顆粒直徑,溶液濃度,溫度,值以及溶質分子結構,溶解度等.活性炭是最常用的吸附嗣.許多材料都可以做成活性炭.如術材,術質素,煙煤,褐煤以及石油殘渣等.用揮發煙煤或褐煤製成的粒狀活性炭在工業廢水處理中得到了廣泛的應用.用過的廢活性炭還可以再生.再生的方法有加熱,蒸汽汽提,溶弼萃取,酸或鹼葶取以及化學氧化.一般氧苯廢水採用加熱再生.再生後炭置會損耗一部分.另外,再生中可能有孔徑的變化和由於殘留物質的沉積而喪失一部分孔因此再生後吸附能力也有變化.除了活性炭吸附外,還可採用樹脯吸附.該法在70年代首先在歐美國家得到應用,並日益受到各國重視.人們對氯苯的樹脂吸附進行了研究.美國的克萊因?喬納森等人介紹,用苯乙烯一二乙烯苯之類的樹脂對溶液中氯苯進行吸附.結果顯示至少可回收9~95的氯苯.另外,在該樹脂吸附與再生過程中,其吸附能力不變.樹脂吸附後常用稀酸,稀鹼,有機溶劑作脫附劑,脫附率通常在95以上,不產生二次污染.它具有比活性炭更高的選擇性,並且適用范圍很寬.廢水中有機物濃度從數/至上萬,均可用此法進行處理.有機廢水經樹脂吸附後,一般可達標,吸附率通常大於99,而且樹脂的性能穩定,使用壽命長.該法操怍簡便,能耗較低.隨著新型吸附樹脂的研究.應用會逐漸廣泛.3,化學處理法用化學處理法可以把污染物處理成較易降解成較易吸附除去的終產物或中同產物.化學處理有以下幾種方法:.(1)臭氧氧化.臭氧氧化可用於除去水中的氯化苯以及其它一些難降解的有機物.臭氧氧化能力很強.在水中分解產生原子氧和氧氣,還可產生自由基?.?程活潑幾乎可以和所有化學物質進行反應.臭氧對氯苯的氧化產物為有機酸和氯化物.用紫外線()照射配合,