導航:首頁 > 耗材問題 > 高介電常數氨基樹脂

高介電常數氨基樹脂

發布時間:2023-06-12 17:51:14

A. 不含甲醛的氨基樹脂

氨基樹脂因其具有機械強度高、電絕緣性好、表面硬度高、耐刮傷、無色透回明、可製得答
色澤鮮艷的產品等優點,廣泛應用於餐具、日用品等方面;
酚醛樹脂也因原料價格便宜,生
產工藝簡單成熟,製造及加工設備投資少,成型容易而被廣泛應用,目前這兩種樹脂的成型 品被廣泛用作餐具。
由於加工過程的反應不完全,以上兩類產品都會有甲醛殘留,在使用過程中甲醛會有不
同程度的釋放,對於作為餐具的製品,甲醛會污染所盛食品。
甲醛(HCHO)是高揮發性有機
化合物,是一種無色、具有強烈刺激性的氣體。
它是一種原生質毒。
對眼部及呼吸、神經和
內分泌等系統均具有毒性,此外還有致癌、致突變的遺傳效應,進而對人體健康帶來危害。

B. 請教不同的氨基樹脂種類如何選擇

一個是要看什麼醇醚化的氨基,我知道的有甲醇醚化氨基(長春樹脂),丁醚化氨基(582等),好像還有辛醇醚化氨基,甲醚化氨基極性大較易溶於水,生產時收獲率較低,所以成本較高,而且反應活性高,漆膜硬度高,易脆,一般用到桶漆較多,丁醚化氨基,極性適中,生產時收獲率較高,成本適中,反應活性沒甲醚化的高,漆膜流平好,豐滿度高,柔韌性好,一般用到OEM漆中較多,辛醇醚化氨基極性很小,因無法一步醚化成功,成本較高,所以市場上較少見.
第二個是要看醚化承度,有部分醚化,還有全部醚化的.
這是我個人的一點了解,

C. 英力士氨基樹脂ce8824有什麼特點

INEOS 英力士 Resimene CE 8824 甲乙混醚化苯代氨基樹脂:
CE8824------------四醚化苯代氨基樹脂(水油兩用) 四醚化程度苯代氨基樹脂,甲醚/乙醚=1:1;抗水性、耐洗滌劑性好;優異的耐候性;高柔韌性;適用於水性玻璃塗料,洗衣機、冰箱塗料,外罐塗料等。
甲醚化氨基樹脂中產量最大、應用最廣的是六甲氧基甲基三聚氰胺樹脂(HMMM),它是一個6官能度單體化合物,屬於單體型高甲醚化三聚氰胺樹脂。HMMM可溶於醇類、酮類、芳烴、酯類、醇醚類溶劑,部分溶於水。工業級HMMM分子結構中含極少量的亞氨基和羥甲基,它作交聯劑時固化溫度高於通用型丁醚化三聚氰胺樹脂,有時還需加入酸性催化劑幫助固化,固化塗膜硬度大、柔韌性大。HMMM可與醇酸、聚酯、熱固性丙烯酸樹脂、環氧樹脂中羥基、羧基、醯胺基進行交聯反應,也可作織物處理劑、紙張塗料,或用於油墨製造、高固體塗料。
聚合型部分甲醚化三聚氰胺樹脂可溶於醇類,也具有水溶性,可用於水性塗料。樹脂中的反應基團主要是甲氧基甲基和羥甲基。它與醇酸樹脂、環氧樹脂、聚酯樹脂、熱固性丙烯酸樹脂配合作交聯劑時,易於基體樹脂的羥基進行縮聚反應,同時也進行自縮聚反應,產生性能優良的塗膜。基體樹脂的酸值可有效地催化固化反應,增加配方中的氨基樹脂的用量,塗膜的硬度增加,但柔韌性下降。與丁醚化三聚氰胺相比,它具有快固性,有較好的耐化學性,可代替丁醚化三聚氰胺樹脂應用於通用型磁漆及卷材塗料中。
苯代三聚氰胺分子中引入了苯環,與三聚氰胺相比,降低了整個分子的極性。因此與三聚氰胺相比,苯代三聚氰胺在有機溶劑的溶解性增大,與基體樹脂的混容性也大為改善。以苯代三聚氰胺交聯的塗料初期有高度的光澤,其耐鹼性、耐水性和耐熱性也有所提高。但由於苯環的引入,降低了官能度,因而塗料的固化速度比三聚氰胺樹脂慢,塗膜的硬度也不及三聚氰胺,耐候性較差。一般來說,苯代三聚氰胺適用於室內用漆。

D. 氰特325和氰特303哪個氨基當量多

CYMEL325氨基樹脂和CYMEL330氨基樹脂區別

一、CYMEL325甲基醚化高亞氨基三聚氰胺樹脂
CYMEL 325是一款高反應活性,低溫固化的氨基樹脂。
低溫反應,快乾:氰特CYMEL 325樹脂只需弱酸催化,與其配合的主體樹脂的低酸值已足夠催化交聯反應。另外,也可外加有機或無機弱酸催化如馬來酸、檸檬酸、磷酸、烷基磷酸、少量的對甲苯磺酸或CYCAT® 1 4040催化劑。
硬度與柔韌性平衡:與部分甲醚化樹脂相似,氰特CYMEL325 氨基樹脂能自聚,因此提高氨基交聯劑用量,可以增加漆膜硬度。而325比其他牌號的低自聚性,可以使硬度和柔韌性平衡,不會造成只硬不柔韌的「脆性」。
降低烘烤環境要求:325氨基樹脂在低溫下能快速反應,對烘烤溫度不穩定的環境也可以反應並自干,對許多生產廠家有較大保證。而且低分子量樹脂揮發的可能性降低了,因此很適合用於對烘烤廢氣排放要求較嚴格的場合。
改善耐濕、耐鹽霧性能:在某些水稀釋塗料體系中,與部分甲醚化三聚氰胺甲醛樹脂相比,氰特CYMEL 325氨基樹脂能改善耐濕及耐鹽霧性能。
低揮發、低起泡它在烘烤過程中的熱失重明顯低於部分甲醚化三聚氰胺甲醛樹脂;它的烘烤揮發物中甲醛含量很少;並且在漆膜較厚的情況下,由於失重低,氰特CYMEL 325氨基樹脂交聯固化時起泡傾向低。
CYMEL325技術參數
不揮發物%(鋁箔法,45度45分鍾):80+2
溶劑:異丁醇
烷基醇:甲醇
粘度,泊,近似:20-46
比重,克/毫升:1.12
主反應集團:烷氧基/亞氨基
羥甲基含量:低
游離甲醛量,%,最大:0.75
重要特性:高反應活性,低溫固化

溶解特性
CYMEL 325氨基樹脂可以溶解在大多數常用有機溶劑中,如芳香族溶劑、乙醇、酯類和酮類溶劑等。CYMEL 325在水中的溶解力是有限的,但是,當CYMEL 325與其它水性樹脂混合時,也能夠被水稀釋。

穩定性
含有CYMEL 325樹脂的溶劑性塗料配方,可以通過添加醇類溶劑或者胺類來增加穩定性。對於多數高固含量的配方,通常需要兩者配合使用。一般地,為了最佳的存儲穩定性,一個在125℃固化的配方,可以用1%的CYCAT4045催化劑(對基苯磺酸胺鹽)催化,並且使用20-30%的丁醇溶劑,兩者都是根據樹脂的固含量。對於水性體系,為了得到最佳的穩定性,PH值應該保持在>8。

反應與催化
因為高度烷基化,CYMEL 325與其它含有羥基、羧基和醯氨基的樹脂反應必須有強酸催化。通常推薦添加0.5%-1.0%(根據固體)的CYCAT4040或者CYCAT 600催化劑,在120-150℃烘烤15-20分鍾。如果配方中含有顏料或者助劑,酸催化劑的添加量還應該更大些。因為它的高功能性和低的自聚傾向,CYMEL 325是一種非常有效的交聯劑。尤其是與聚酯樹脂交聯時,能夠為漆膜提供良好的柔韌性和成型性。它的有效當量為130-190,CYMEL 325的用量應該根據最佳性能通過實驗確定。
CYMEL325應用
高固體份氨基樹脂廣泛用於卷材塗料,高溫塗料,水性塗料等各種應用

二、美國氰特CYTEC化學公司的CYMEL303六甲氧基甲基三聚氰胺樹脂
由美國氰特公司生產的CYMEL303是一種商業級別的六甲氧基甲基三聚氰胺樹脂,其液體狀態,不揮發份含量>98%。它可作為多種聚合物材料的交聯劑,這種聚合物材料應該包含有醯氨基、羧基和羥基,如丙烯酸樹脂、醇酸樹脂、聚酯樹脂及環氧樹脂等
CYMEL303應用領域:高固體含量塗料、水性塗料、卷鋼塗料、汽車塗料、罐頭塗料、金屬塗料、油墨。

CYMEL303優點:
1、不含揮發性溶劑
2、良好的混溶性和溶解性
3、穩定性好
4、提高硬度的同時也能獲得好的柔韌性
5、快速催化固化
6、成本經濟

溶解特性:
CYMEL 303樹脂可以溶解在大多數常用有機溶劑中,如芳香族溶劑、乙醇、酯類和酮類溶劑等。CYMEL 303在水中的溶解力是有限的,但是,當CYMEL 303與其它水性樹脂混合時,也能夠被水稀釋。

反應與催化:
因為高度烷基化,CYMEL 303與其它含有羥基、羧基和醯氨基的樹脂反應必須有強酸催化。通常推薦添加0.5%-1.0%(根據固體)的CYCAT 4040或者CYCAT 600催化劑,在120-150℃烘烤15-20分鍾。如果配方中含有顏料或者助劑,酸催化劑的添加量還應該更大些。因為它的高功能性和低的自聚傾向,CYMEL 303是一種非常有效的交聯劑。尤其是與聚酯樹脂交聯時,能夠為漆膜提供良好的柔韌性和成型性。它的有效當量為130-190,CYMEL303的用量應該根據最佳性能通過實驗確定。

穩定性:
含有CYMEL303樹脂的溶劑性塗料配方,可以通過添加醇類溶劑或者胺類來增加穩定性。對於多數高固含量的配方,通常需要兩者配合使用。一般地,為了最佳的存儲穩定性,一個在125℃固化的配方,可以用1%的CYCAT4045催化劑(對基苯磺酸胺鹽)催化,並且使用20-30%的丁醇溶劑,兩者都是根據樹脂的固含量。對於水性體系,為了得到最佳的穩定性,PH值應該保持在>8。

典型性能:
外觀 透明粘性液體
不揮發份含量,%重量 不小於98%
顏色, Gardner 1963 最大1
黏度, Gardner-Holdt,25°C Y-Z2
黏度, Cone/Plate cps2600-5000
重量/加侖, 磅 10.0
比重, 25°C 1.20
折射率 1.515-1.520
閃點 °F >200
甲醛含量 0.5 %

三、由上可知CYMEL 325氨基樹脂的有效當量為130-190,CYMEL303氨基樹脂的有效當量為130-190,是一樣的。

E. 如何增加丙烯酸樹脂與氨基樹脂相拼的烤漆的韌性

首先325 在120度烘烤絕抄對沒完全反應,襲有可能當天做實驗時,測試時達到要求,但第二天可能就不行,這是因為有殘留的325沒參加反應造成的。建議160-180°c烘烤。

樹脂的選擇也很重要,要一支耐水煮的,或找一支輔助材料(提高交聯密度,提高附著力的)
考慮樹脂,氨基和其他輔助材料的PH值對耐水煮也有一定的影響,氨基本身是酸的。
考驗考慮聚酯樹脂+丙烯酸樹脂+氨基。

F. 多肽合成方法有哪些

多肽合成方法:

  1. 醯基疊氮物法

    早在1902年,TheodorCurtius就將醯基疊氮物法引入到肽化學中,因此它是最古老的縮合方法之一。在鹼性水溶液中,除了與醯基疊氨縮合的游離氨基酸和肽以外,氨基酸酯可用於有機溶劑中。與其他許多縮合方法不同的是,它不需要增加輔助鹼或另一等當量的氨基組分來捕獲腙酸。

    長期以來,一直認為疊氮物法是唯一不發生消旋的縮合方法,隨著可選擇性裂解的氨基酸保護基引入,該方法經歷了一次大規模的復興。該方法的起始原料分別是晶體狀的氨基酸醯肼或肽醯肼64,通過肼解相應的酯很容易得到。在-10℃的鹽酸中,用等當量的亞硝酸鈉使醯肼發生亞硝化而轉化為疊氮化物65,依次洗滌、乾燥,然後與相應的氨基組分反應。有些疊氮化物可用冰水稀釋而沉澱出來。 二苯磷醯基疊氮化物(DPPA)也可以用於醯基疊氮化物的合成。Honzl-Rudinger方法採用亞硝酸叔丁作為亞硝化試劑,並且使疊氮縮合反應可在有機溶劑中進行。因醯基疊氮化物的熱不穩定性,縮合反應需在低溫下進行。當溫度較高時,Curtius重排,即醯基疊氮轉化為異氰酸酯的反應成為一個主要的副反應,最終導致生成副產物脲。由於反應溫度低(如4℃)而導致反應速率相當慢,使得肽縮合反應通常需要幾天才能完全。 對於較長的N端保護的肽鏈,酯基的肼解一般比較困難,因此,使用正交的N保護肼衍生物是一種選擇。在肼基的選擇性脫除後,按倒接(backing-off)策略組合的肽片段可以用於疊氮縮合。

    如前所述,雖然疊氮法一直被認為是消旋化傾向最小的縮合方法,但在反應中,過量的鹼會誘發相當大的消旋。因此,在縮合反應期間要避免與鹼接觸,例如,氨基組分的銨鹽應採用N,N-二異丙胺或N-烷基嗎啉代替三乙胺來中和。

    雖然有上述局限性,但該方法仍很重要,尤其對於片段縮合而言,因為該方法具有較低的異構化傾向,適用於羥基未保護絲氨酸或蘇氨酸組分時,Nˊ保護的本行醯肼還具有多種用途。

  2. 酸酐法

    在多肽合成中,最初考慮應用酸酐要追溯到1881年TheodorCurtius對苯甲醯基氨基乙酸合成的早期研究。從氨基乙酸銀與苯甲醯氯的反應中,除獲得苯甲醯氨基乙酸外,還得到了BZ-Glyn-OH(n=2-6)。早期曾認為,當用苯甲醯氯處理時,N-苯甲醯基氨基酸或N-苯甲醯基肽與苯甲酸形成了活性中間體不對稱酸酐。 大約在70年後,TheodorWieland利用這些發現將混合酸酐法用於現代多肽合成。目前,除該方法外,對稱酸酐以及由氨基酸的羧基和氨基甲酸在分子內形成的N-羧基內酸酐(NCA,Leuchsanhydrides)也用肽縮合。最後應該提到,不對稱酸酐常常參與生化反應中的醯化反應。

  3. 混合酸酐法

    有機羧酸和無機酸皆可用於混合酸酐的形成。然而,僅有幾個得到了廣泛的實際應用,多數情況下,採用氯甲酸烷基酯。過去頻繁使用的氯甲酸乙酯,目前主要被氯甲酸異丁酯所替代。

    由羧基組分和氯甲酸酯起始形成的混合酸酐,其氨解反應的區域選擇性依賴依賴於兩個互相競爭的羰基的親電性和(或)空間位阻。在由N保護的氨基酸羧酸鹽(羧基組分)和氯甲酸烷基酯(活化組分,例如源於氯甲酸烷基酯)形成混合酸酐時,親核試劑胺主要進攻氨基酸組分的羧基,形成預期的肽衍生物,並且釋放出遊離酸形式的活性成分。當應用氯甲酸烷基酯(R1=異丁基、乙基等)時,游離的單烷基碳酸不穩定,立即分解為二氧化碳和相應的醇。然而,對於親核進攻的區域選擇性,也有一些相反的報道,產物為氨基甲酸酯和原來的N保護氨基酸組分。 為了形成混合酸酐,將N保護的氨基酸或肽分別溶於二氯甲烷、四氫呋喃、二氧六環、乙腈、乙酸乙酯或DMF中,用等當量的三級鹼(N-甲基哌啶、N-甲基嗎啉、N-乙基嗎啉等)處理。然後,在-15℃--5℃,劇烈攪拌的同時加入氯甲酸烷基酯以形成不對稱酸酐(活化)。經短時間活化後,加入親核性氨基酸組分。如果作為銨鹽使用(需要更多的鹼),必須避免鹼的過量使用。如果嚴格按照以上的反應條件,混合酸酐法很容易進行,是最有效的縮合方法之一。

  4. 對稱酸酐法

    Nα-醯基氨基酸的對稱酸酐是用於肽鍵形成的高活性中間體。與混合酸酐法相反,它與胺親核試劑的反應沒有模稜兩可的區域選擇性。但肽縮合產率最高,為50%(以羧基組分計)。

    雖然由對稱酸酐氨解形成的游離Nα-醯基氨基酸可以和目標肽一起,通過飽和碳酸氫鈉溶液萃取回收,但在最初,這種方法的實用價值極低。對稱酸酐可以用Nα-保護氨基酸與光氣,或方便的碳二亞胺反應製得。兩當量的Nα-保護氨基酸與-當量的碳二亞胺反應有利於對稱酸酐的形成,對稱酸酐可以分離出來,也可不經純化而直接用於後面的縮合反應。基於Nα-烷氧羰基氨基酸的對稱酸酐對水解穩定,可採用類似上述純化混合酸酐的方法進行純化。

    由於Boc-保護氨基酸的商品化和合理的價格,在肽鏈的逐步延長中,使用對稱酸酐法日益受到重視。雖然可以買到晶狀的對稱酸酐,但原位制備仍然是一種不錯的選擇。

  5. 碳二亞胺法

    碳二亞胺類化合物可用於氨基和羧基的縮合。在該類化合物中N,Nˊ-二環己基碳二亞胺(DCC)相對便宜,而且可溶於肽合成常用的溶劑。在肽鍵形成期間,碳二亞胺轉變為相應的脲衍生物,N,Nˊ-二環己基脲可以從反應液中沉澱出來。顯然,碳二亞胺活化後的活性中間體氨解和水解速率不同,使肽合成能在含水介質進行。經幾個課題組的大量研究,確立了以碳二亞胺為縮合劑的肽縮合反應機理,羧酸根離子加成到質子化的碳二亞胺,形成高活性的O-醯基脲;雖然還沒有分離出這個中間體,但通過非常類似的穩定化合物推斷了它的存在。O-醯基脲與氨基組分反應,產生被保護的肽和脲衍生物。或者,與質子化形式處於處於平衡狀態的O-醯基異脲,被第二個羧酸酯親核進攻,產生對稱的氨基酸酐和N,Nˊ-二取代脲。前者與氨基酸反應得到肽衍生物和游離氨基酸。在鹼催化下,使用DCC的副反應使醯基從異脲氧原子向氮原子轉移,產生N-醯基脲71,它不再發生進一步的氨解。不僅過量的鹼可催化O-N的醯基轉移,而且鹼性的氨基組分或碳二亞胺也可催化該副反應。

    另外,極性溶劑有利於這一反應途徑。

G. 氨基樹脂醚化後極性的變化,溶解性的變化,還有與樹脂的相容性


環氧樹脂材料一般是指含兩個或多個環氧基團的有機聚合物,除了少數分子,但它們不是高相對分子質量。環氧樹脂的分子結構為含有其特點活性環氧基團的分子鏈,環氧基團可以位於分子鏈,或環狀的中間結構的末端。自含有反應性環氧基團,以便他們可以採取各種類型的固化劑的地方交聯反應而形成不溶性的,不熔的聚合物具有三到網狀結構中的分子結構。
[編輯本段]應用特性
1,形式。各種樹脂,固化劑,改性劑系統可適應幾乎所有類型的對的形式提出申請的要求,其范圍可以從非常低的粘度,以高熔點的固體。
2,容易治癒。使用各種不同的固化劑,環氧樹脂體系可以在一定溫度下幾乎為0180℃范圍固化。
3,附著力強。固有環氧樹脂分子鏈的存在和極性羥基醚鍵的各種具有高粘附性的物質。環氧固化收縮率低,產生的內部壓力,這也有助於提高粘合強度。
4,低收縮。環氧樹脂和固化劑的反應所使用的直接加成反應的環氧樹脂分子或開環聚合反應進行時,沒有水或釋放其它揮發性副產物。它們是不飽和聚酯樹脂,相比在固化過程中表現出非常低的收縮率(小於2%)酚醛樹脂。
5,機械性能。固化的環氧樹脂體系具有優良的機械性能。
6,電性能。固化的環氧樹脂體系是一種高介電性能,耐表面漏電,耐電弧優異的絕緣材料。
7,化學穩定性。通常情況下,具有優良的耐鹼性,耐酸性和耐溶劑性的固化環氧樹脂體系。像固化的環氧體系的其它性質,如化學穩定性也依賴於樹脂和固化劑的選擇。適當選擇環氧樹脂和連同特殊的化學穩定性的固化劑。
8,尺寸穩定性。所有的環氧樹脂系統的組合的許多特性具有突出的尺寸穩定性和耐久性。
9,耐霉變。固化的環氧樹脂體系耐大多數真菌,能在惡劣的熱帶條件下使用。

閱讀全文

與高介電常數氨基樹脂相關的資料

熱點內容
凈化器風速大小有什麼區別 瀏覽:665
塑料整理箱養魚過濾 瀏覽:139
30噸污水處理設備價格表 瀏覽:574
污水提升器能解決脫水堵塞嗎 瀏覽:553
40個污水泵維護要多少錢 瀏覽:88
卡羅拉濾芯怎麼召回 瀏覽:336
福特野馬空調濾芯裝在哪裡 瀏覽:520
小廚寶放廢水 瀏覽:400
軟水過濾後再用反滲透怎麼樣 瀏覽:145
新陽樹脂活化 瀏覽:439
科林貝思反滲透凈水器怎麼安裝 瀏覽:462
反滲透塞密度指數的測定方法 瀏覽:983
污水處理項目合作意向書 瀏覽:484
讓我們死時樹脂的英文 瀏覽:275
環氧樹脂滴膠標本 瀏覽:531
ro膜不能接自來水嗎 瀏覽:902
小米2空氣凈化器怎麼鏈接手機 瀏覽:117
污水處理站脫氨是什麼 瀏覽:299
電瓶電解質污水處理 瀏覽:603
飲水機自帶熱水壺怎麼取下來 瀏覽:467