導航:首頁 > 耗材問題 > 偶聯劑樹脂表面改性

偶聯劑樹脂表面改性

發布時間:2023-01-03 11:53:35

1. 界面改性劑就是偶聯劑嗎

界面改性劑的范圍較廣,根據效果分為改良,改性,改質。偶聯劑是界面改性劑中的一種,主要作用有兩個:一是改善無機材料與有機介質之間的親和性或結合力。二是改性無機或有機材料表面界面性質。

2. 硅樹脂的改性方法通常有哪些

硅樹脂的改性方法通常有物理共混法和化學共聚法。物理共混通常存在硅樹脂與其它有機高分子相容性差的問題,難以達到滿意的效果。因而通常情況下,需對硅樹脂進行化學改性方能收到良好的效果。

3. 偶聯劑的作用與用途

偶聯劑在塑料配混中,改善合成樹脂與無機填充劑或增強材料的界面性能的一種塑料添加劑。又稱表面改性劑。它在塑料加工過程中可降低合成樹脂熔體的粘度,改善填充劑的分散度以提高加工性能,進而使製品獲得良好的表面質量及機械、熱和電性能。其用量一般為填充劑用量的0.5~2%。偶聯劑一般由兩部分組成:一部分是親無機基團,可與無機填充劑或增強材料作用;另一部分是親有機基團,可與合成樹脂作用。

4. 偶聯劑的作用與用途

偶聯劑是一種具有特殊結構的有機硅化合物。在它的分子中,同時具有能與無機材料 ( 如玻璃、水泥、金屬等 ) 結合的反應性基團和與有機材料 ( 如合成樹脂等 ) 結合的反應性基團。常用的理論有化學鍵理論、表面浸潤理論、變形層理論、拘束層理論等。偶聯劑作表面改性劑,用於無機填料填充塑料時,可以改善其分散性和黏合性。

(1) 偶聯改性是在粒子表面發生化 學偶聯反應,粒子表面經偶聯劑處理後可以與有機物 產生很好的相容性。施衛賢等 用硅烷偶聯劑 KH - 570 對磁性 Fe3O4 進行表面改性,並進一步對磁性復合粒子進行了分析和表徵。用硅烷偶聯劑 KH - 550 處理Fe3 O4磁性微粒;用掃描電鏡檢測改性微粒的表面特徵。結果表明: Fe3 O4 和改性 Fe3O4 微粒均呈不規則形狀,但改性 Fe3O4 微粒的分散性明顯好於未改性 Fe3 O4 微粒,這是由於微粒表面的偶聯劑阻止了 Fe3 O4 微粒間的團聚。 Fe3O4 和改性 Fe3O4 的粒度測試結果表明:改性 Fe3O4 有較大的比表面積、較小的粒徑。
硅烷偶聯劑作為表面改性劑在金屬防腐預處理上的應用是它的最新應用。要獲得與金屬基體結合良好的防腐塗層,必須選擇合適的塗覆系統、制定合理的塗覆工藝、進行嚴格的表面預處理。進行表面預處理的方法有 2 種:①採用等離子體聚合方法在金屬表面上沉積一層有機物薄膜,但該法成本高,使其推廣應用受到限制;②採用有機硅烷偶聯劑水溶液處理,在金屬表面上沉積一層很薄的有機硅烷薄膜。由於硅烷偶聯劑在水解後能形成三羥基的硅醇,醇羥基之間可以互相反應生成一層交聯的緻密網狀疏水膜,由於這種膜表面有能夠和樹脂起反應的有機官能基團,因此會大大提高漆膜的附著力,抗腐蝕、抗摩擦、抗沖擊的能力也隨之提高。
(2) 在塑料研究和生產過程中,通常使用大量廉價的無機填料 ( 或增強劑 ) 。這不僅能增加塑料的質量,降低產品的成本,而且還能改善塑料製品的某些性能。然而,由於無機填料與有機聚合物在化學結構和物理形態上存在著顯著的差異,兩者缺乏親和性,往往會使塑料製品的力學性能和成型加工性能受到影響。通過偶聯劑與無機填料進行化學反應或物理包覆等方法,使填料表面由親水性變成親油性,從而達到與聚合物的緊密結合,使材料的強度、黏結力、電性能、疏水性、抗老化性能等顯著提高。
有人曾用各種硅烷偶聯劑對玻璃纖維表面進行處理,結果表明:含有氨基的偶聯劑比不含氨基的偶聯劑對玻璃纖維的表面處理效果好,因為偶聯劑的氨基與添加劑以及基體中的氨基有親和性,再加上起交聯作用的助劑,使得復合材料的界面具有較好的粘合性,而沒有氨基就沒有這一功能;氨基還能與接枝的酸酐官能團反應,生成跨越界面的化學鍵,使界面的粘接強度提高,復合材料的整體性能提高。
偶聯劑具有 2 種不同性質的基團,親無機物基團可與無機物表面 ( 如玻璃、粉煤灰等含硅材料 ) 的化學基團反應,形成強固的化學鍵合;親有機物基團可與有機物分子反應或物理纏繞,從而使有機與無機材料的 界面實現化學鍵接,大幅度提高粘接強度。但偶聯劑是否可「偶聯」 2 種無機材料呢 ? 馬一平首先做了有益的嘗試,用硅烷偶聯劑 KH -570 塗刷大理石,再抹 水泥凈漿,並進行宏觀力學性能試驗,測得劈拉強度提高達 57 % ~ 84 %。還有人分別在砂漿和花崗岩表面塗 抹硅烷偶聯劑 KH- 570 溶液,再補新砂漿,結果顯示拉伸強度可分別比不塗偶聯劑時提高 38 %和 23 %, 據此推測,界面層中可能產生了大量的化學鍵。

5. 對填料進行表面改性的方法選擇

表面改性是指利用各類材料或助劑,採用物理、化學方法對粉體表面進行處理,根據應用的需要有目的地改善、改變粉體表面的物理化學性質或物理技術性能,如表面晶體結構和官能團、表面能、表面潤濕性、電性、表面吸附和反應特性,以滿足現代新材料、新工藝和新技術發展的需要。
1、改性目的
礦物填料例如碳酸鈣、雲母、硅灰石、滑石、高嶺土等因為具有獨特的物理化學性質,能改善聚合物的力學性能、加工性能和熱性能等,其作用主要是增量、增強和賦予新的功能。但是,由於礦物填料與高聚物相容性不好,如果直接添加,會造成分散不均,而且粒徑大者還會成為聚合物中的應力集中點,成為材料的薄弱環節,這些弊端不但限制了填料在聚合物中的添加量,而且還嚴重影響製品性能,所以通過礦物填料進行表面改性,可以改變礦物填料表面原有的性質
(親油性、吸油率、浸潤性、混合物粘度等),改善礦物填料與聚合物的親合性、相容性,以及加工流動性、分散性,還可以提高填料與聚合物相界面間的結合力,使復合材料的綜合性能得到顯著的提高,從而使非功能的無機填料轉變為功能性填料。
2、改性方法
填料的表面改性方法分類主要由表麵包覆改性法、表面化學改性法、機械力化學改性法、沉澱反應改性法、微膠囊改性法和高能表面改性法等。這類分類方法很直觀,但隨著表面改性技術的發展,不同方法的交互作用越來越繁雜。因此將其概括地分為物理法、化學法和機械力化學方法。
2.1 物理法
凡是不用表面改性劑而對礦物填料實施表面改性的方法,都可歸於物理法。例如高聚物包敷改性和高能改性方法等。包敷改性是藉助粘附力用高聚物或樹脂等對礦物填料進行包覆改性的方法。如用PEG包覆硅灰石,將此改性硅灰石填充PP,能有效地提高PP的缺口沖擊強度和低溫性能。高能表面改性是利用等離子體、電暈放電、紫外線等手段對礦物進行表面改性的方法。
通過高能輻照碳酸鈣表面,接上乙烯基單體形成一層有機膜。該有機膜改善了HDPE和CaCO3之間的相容性,改性後體系的拉伸強度和沖擊韌性有明顯的提高,加工流變性能也有所改善,其熔體粘度低,溫度敏感性好。這種方法改性效果好,填料表面生成的有機膜具有高度均勻、緻密、與基體粘附強等優點。這是別的表面改性方法所無法達到的,但該工藝復雜、成本高。
2.2 化學法
利用各種表面改性劑或化學反應而對礦物填料進行表面改性的方法通稱為化學法。表面改性劑分子一端為極性基團,能與礦物填料表面發生物理吸附或化學反應而連接在一起,而另一端的親油性基團與基體樹脂形成物理纏繞或化學反應。結果,表面改性劑在礦物填料和高聚物之間架起一座「分子橋」,將極性不同、相容性很差的兩種物質偶聯起來,從而增強了高聚物基體和礦物填料之間的相互作用,改善製品性能。
表面化學改性常用的表面改性劑主要有硅烷偶聯劑、鈦酸酯偶聯劑、鋯鋁酸鹽偶聯劑、有機鉻偶聯劑、高級脂肪酸及其鹽、有機銨鹽及其他各種類型表面活性劑、磷酸酯、不飽和有機酸等。具體選用時要綜合考慮粉體的表面性質、改性產品的用途、質量要求、處理工藝以及表面改性劑的成本等因素。
2.3 機械力化學改性
機械力化學改性指的是通過粉碎、磨碎、磨擦等機械方法,使礦物晶格結構、晶型等發生變化,體系內能增大,溫度升高,促使粒子熔解、熱分解、產生游離基或離子,增強礦物表面活性,促使礦物和其它物質發生化學反應或相互附著,達到表面改性目的的改性方法。
機械力化學改性有兩層含義:第一,利用礦物超細粉碎過程中機械應力的作用激活礦物表面,使表面晶體結構與物理化學性質發生變化,從而實現改性,滿足應用需要;第二,利用機械應力對表面的激活作用和由此產生的離子和游離基,引發單體烯烴類有機物聚合,或使偶聯劑等表面改性劑高效附著而實現改性。通常說的機械力化學改性一般指第二層含義。利用機械力化學改性方法,可以對填料進行表面改性、表面接枝改性和粒-粒包覆改性。
3、表面改性案例
目前填料改性主要是應用偶聯劑處理其表面,因為偶聯劑的分子中通常含有幾類性質和作用不同的基團,其功能是改善填料與聚合物之間的相容性,從而增強填充復合體系中組分界面之間的相互作用。偶聯劑的選擇應考慮填料表面結構、性質,偶聯劑酸鹼性、中心原子的電負性、幾何結構和空間位阻等;偶聯劑種類主要有硅烷類、鈦酸酯類、鋁酸酯類、鋁鈦復合類、硼酸酯類、稀土類等。
用鈦酸酯、鋁酸酯、硼酸酯對滑石粉表面改性,幾種偶聯劑對滑石粉都起到了活化的作用(增大了與誰的接觸角,提高了活化率),但不同細度的滑石粉對偶聯劑的適用也不一樣。對1000目和1250目的滑石粉1.6%的鈦酸酯的改性效果較好;對更細的滑石粉(2200目),則用1.2%硼酸酯的改性效果較好;而鋁酸酯的改性效果對較粗的滑石粉效果次於鈦酸酯,對細的產品則改性效果較差。
有研究表面,不同性能的偶聯劑對滑石粉填充PP的力學性能(見表1)影響較大,其中硅烷最好,鈦酸酯次之,鋁酸酯較差,而且影響的幅度遠遠超過偶聯劑對碳酸鈣的影響。造成這種差異的原因主要在於粉體的結構不同,滑石粉在改性過程中,由於粉體間的摩擦,滑石粉可以沿解理面剝離,而產生新的表面,導致活化不完全,另一方面偶聯劑中心原子不同對改性結果也產生了重要影響。

6. 如何用偶聯劑提高pbo纖維與樹脂的粘接性

偶聯劑與等離子結合起來改性的工藝條件是:A一187偶聯劑的含量為2%,氬氣低溫等離子處理的時間為2 min ,壓力為5Opa,功率為30W。
在所選擇的偶聯劑中,A一187型偶聯劑對提高PBO纖維的開發與環氧樹脂間IFSS效果最好,偶聯劑的最佳的含量2%.
(1)當A-187含量為2%,氬氣低溫等離子處理條件為2min,30W,50Pa時,改性後的PBO纖維的ΓIFSS胂高達lO.44MPa,相對於僅用偶聯劑A-187改性的ΓIFSS提高了52%, 相對於原絲的ΓIFSS提高了78%。PBO纖維的浸潤性也得到了很大的改善。
(2)氬氣低溫等離子結合偶聯劑改性後的PBO纖維隨著時問的推移,ΓIFSS的下降不明顯;接觸角增大的幅度也不明顯,其變化趨向於平穩,還略有下降趨勢。氬氣低溫等離子體結合偶聯劑改性的PBO纖維的衰減效應不明顯。

7. 表面改性劑

一、概 述

礦物的表面改性,主要是依靠改性劑在礦粒表面吸附、反應、活化、包覆或包膜實現的。因此,表面改性劑對於礦物的表面改性或表面處理具有決定作用。

常用於礦物表面改性的改性劑主要有各種偶聯劑、表面活性劑、有機聚合物、不飽和有機酸、有機硅、金屬氧化物及其鹽等。幾種改性劑的實用范圍和主要特點見表 4 - 1。幾種主要填料礦物的化學改性實踐見表 4 -2。

表 4 -1 幾種改性劑的實用范圍和主要特點

表 4 -2 幾種主要填料礦物的表面改性實踐

二、偶聯劑

( 一) 偶聯劑的作用機理

由於非金屬礦與塑料是兩種不同性質的物質,它們之間有很大程度上的不相容性,再加之非金屬礦與塑料等的彈性模量不一致,界面間易產生剪切應力,影響其復合材料的力學性能。偶聯劑能把兩種不同性質的物質通過化學作用或物理作用結合起來,即它能把無機填料和有機高分子基料兩種不同性質的物質緊密地結合起來。因此,偶聯劑也是無機物和有機物界面間的橋梁。

界面擴散理論認為,對作填料用的礦物進行改性處理時,所有的偶聯劑不僅親無機端應與填料表面以化學鍵結合,而且另一端還應能溶解、擴散於樹脂的界面區域,在其與樹脂大分子鏈發生糾纏或形成化學鍵,即偶聯劑的親有機端應含有較長的柔軟碳氫鏈,以使形成柔性的有利於應力鬆弛的界面層,提高其吸收和分散沖擊能,使復合材料具有更好的抗沖擊性。

表面能理論認為,礦物填料屬高能表面,為提高它和高聚物基體的相容性,必須藉助偶聯劑的 - R 基降低其表面能。

( 二) 偶聯劑的種類

目前工業上用的礦物表面改性的偶聯劑,按其化學結構可分為三大類:

硅烷類: 適用於硅酸成分較多的無機填料: 玻璃纖維、石英粉、白碳黑、雲母、粘土。

鈦酸酯類: 適用的無機填料較廣。

鋯鋁酸鹽偶聯劑。

1. 硅烷偶聯劑

( 1) 硅烷偶聯劑的結構

圖 4 -6 甲氧基及乙氧基硅烷偶聯劑的結構式

硅烷偶聯劑的通式為RSiX3

通式中R代表與聚合物分子有親和力或反應能力的有機官能團,例:氨基—NH2,乙烯基—CH2CH,甲基—CH3,環氧基—CH—CH2,氰基—CN等,可與有機分子反應或物理纏繞。

X代表水解性基團,能為水解的烷氧基,例:甲氧基—OCH3,乙氧基—OC2H5等。硅烷偶聯劑的結構式如圖4-6所示。

X基團水解後,在一定的條件下能與無機物表面的化學基團(OH—)起反應,形成牢固的化學鍵。這種具有兩性結構的物質能把兩種性質的物質結合起來。

進行偶聯時,首先X基水解形成硅醇,然後再與無機填料表面上的羥基反應,形成氫鍵並縮合成—SiOM共價鍵(M表示無機填料表面)。同時,硅烷各分子的硅酸又相互締合形成網狀結構的膜覆蓋在填料表面,使無機填料有機化。

( 2) 硅烷偶聯劑的作用機理

經硅烷偶聯劑處理的填料或增強材料 ( 如玻纖) 在提高復合材料性能方面的顯著效果,早已得到確認,偶聯劑的作用機理目前有很多理論,其中化學鍵理論是最老但仍然是最著名的理論。該理論認為: 硅烷偶聯劑含有化學官能團,它的一端與硅質填料 ( 如玻璃) 表面的硅醇基團反應生成共價鍵; 另一端又能與樹脂生成共價鍵。並提出了簡單的偶聯機理模型,見圖 4 -7。

圖 4 -7 硅烷偶聯劑的作用機理模型圖( 據吳森紀等,1990)

硅烷偶聯劑的疏水基性質也符合「相似相親」的原則。有機官能團R為乙烯基和甲基丙烯醯基時,對不飽和的聚酯和丙烯酸樹脂特別有效;當R為環氧基團時,對環氧樹脂效果特好,同時也適用於不飽和樹脂。含氨基的硅烷能和環氧樹脂、聚氨酯發生化學反應,對酚醛樹脂和三聚氰胺樹脂的固體也有催化作用,故適用於環氧、酚醛、三聚氰胺、聚氨酯等樹酯;含巰基的硅烷對硫化橡膠的偶聯效果最佳,故含巰基的硅烷偶聯劑是橡膠工業應用最廣的品種。

親水基,也稱水解性基團,該基團遇水可分解變成活性基團硅醇(≡Si—OH)。通過硅醇和無機礦物表面反應,形成牢固的化學結合或吸附於礦物表面。當X為—OCH3和—OC2H5時,水解速度緩慢,且水解產物醇為中性物質,因此可用水為介質進行表面改性。因乙氧基的體積比甲氧基的大,乙氧基硅烷在水中的溶解度較小,所以,目前趨向採用含乙氧基類硅烷偶聯劑。除此以外,還以—OC2H4OCH3作X基團,不僅保留其水解性,而且還能提高水溶性、親水性,應用時更為方便。應用硅烷偶聯劑的方法有兩種:一是將硅烷配成水溶液,用它處理無機填料或顏料後,再與有機高聚物或樹脂混合,即預處理法;另一種方法是將硅烷與填料及有機高聚物基料混合(即遷移法)。前一種方法處理效果較好,而後一種工藝較簡單。

硅烷偶聯劑的用量與偶聯劑的品種及填料的比表面積等有關,可按下式計算:

偶聯劑的用量=填料量(g)×填料比表面積(m2/g)/單位質量偶聯劑的最小包覆面積(m2/g)。常見硅烷偶聯劑的名稱、化學結構及最小包覆面積見表4-3。

表4-3常見硅烷偶聯劑的名稱、化學結構及最小包覆面積

(據鄭水林,1995;吳森紀等,1990;略有改動)

硅烷偶聯劑可用於許多無機礦物填料或顏料的表面處理,其中對含硅酸成分較多的石英粉、玻璃纖維、白炭黑等的效果最好。

2.鈦酸酯偶聯劑

鈦酸酯偶聯劑是美國Kenrich石油化學公司在20世紀70年代開發的一類新型偶聯劑,至今已有幾十個品種,是無機填料和顏料等廣泛應用的表面改性劑。

鈦酸酯偶聯劑可用通式(RO)mTi—(OX—R'—Y)n表示。

式中:1≤m≤4,m+n≤6;其中:

RO是可水解的短鏈烷氧基,能與無機物表面羥基起反應,從而達到化學偶聯的目的。m是該基團數。

Ti是偶聯劑分子的核心,—TiO—為酯基和烷基轉移和交換功能基團,是鈦酸酯的有機骨架,和聚合物羥基間進行交換,起酯基和烷基轉移反應。鈦和氧的結合鬆弛,體系中的有機酸容易游離出來作催化或緩效劑影響反應。

OX可以是羧基、烷氧基、磺酸基、磷基等,這些基團很重要,決定鈦酸酯所具有的特殊功能,如磺酸基賦予有機物一定的觸變性;焦磷醯氧基有阻燃、防銹和增強黏結的性能;亞磷醯氧基可提供抗氧、耐燃性能等,因此通過OX的選擇,可以使鈦酸酯兼具偶聯和其他特殊性能。

R'是長碳鏈烷基,碳數常為12~18。它和聚合物的鏈發生纏繞作用,藉助分子間的力結合在一起,從而可傳遞應力,提高沖擊強度、剪切強度和伸長率。此外,長鏈烴還可改變礦物的表面能,降低體系黏度,使高充填聚合物也能顯示出較好的熔融流動性,所以這種偶聯劑特別適用於聚烯烴之類的熱塑性樹脂。

Y為羥基、氨基、環氧基或末端氫原子等,這些活性基團連接在鈦的有機骨架上,能使偶聯劑和有機聚合物進行化學反應,通過偶聯劑使礦物和有機基體相結合。

n為官能團數目,當n>2時,為多官能團的鈦酸酯,但m+n<6。

根據分子結構及其偶聯機理,鈦酸酯偶聯劑分四種類型:單烷氧基型,單烷氧基焦磷酸酯型,螯合型和配位型。

(1)單烷氧基型鈦酸酯偶聯劑

適合於不含游離水,只含化學鍵合水或物理鍵合水的乾燥填料如碳酸鈣,以及水合氧化鋁等。單烷氧基型鈦酸酯偶聯劑除含三乙醇胺基(既屬單烷氧基型又屬螫合型)、焦磷酸酯基兩類外,大多耐水性差,只能在有機溶劑中溶解和包覆粉體物料。操作方法一般如下:先將單烷氧基型鈦酸酯偶聯劑溶解在少量甲苯、二甲苯等烴類溶劑中,然後和粉體物料在室溫下攪拌均勻,適當升溫,在90℃左右繼續攪拌混合半小時以上,保證鈦酸酯偶聯劑與粉體表面偶聯作用。如果沒有條件加溫,偶聯作用在室溫下也能進行,只是比較緩慢,最好在室溫下攪拌2小時然後放置過夜後再使用。一般講,溶劑用量大,對粉體的包覆效果較好,但多餘的溶劑必須除去。鈦酸酯偶聯劑用溶劑稀釋十分重要,它能使偶聯劑均勻包覆在粉體的表面。在實際生產中,根據具體情況,適量加入稀釋劑,才能達到均勻包覆的目的。

(2)單烷氧基焦磷酸酯基型偶聯劑

該類偶聯劑比一般單烷氧基型鈦酸酯耐水性好,適合於含濕量較高的礦物,如陶土、滑石粉等。在單烷氧基焦磷酸酯基型鈦酸酯偶聯劑中,除單烷氧基於礦物表面的烴基反應形成偶聯劑外,焦磷酸酯基還可分解形成磷酸,結合一部分水。

(3)螯合型

螯合型鈦酸酯偶聯劑具有極好的水解穩定性,適用於高含濕量填料和含水聚合物體系,且可在高溫狀態下使用。

螯合型鈦酸酯偶聯劑耐水性好,它可以溶解在有機溶劑中包覆粉體物料,也可以在水相中包覆粉體物料。但是,螯合型鈦酸酯偶聯劑大多不溶於水。一般可以採取3種方法使它分散在水相中:a.用高速分散器使之分散於水;b.使用表面活性劑使它分散於水;c.含有磷酸基、焦磷酸基及磺酸基的螯合型鈦酸酯可用膠類試劑使之季胺鹽化後溶解於水。

(4)配位型

配位體型鈦酸酯偶聯劑是為避免四價鈦酸酯在某些體系中的副反應,如在聚酯中的脂交換反應,在環氧樹酯中與烴基反應,在氨酯中與聚醇或異氰酸酯反應等而研製的。可見它適用多種礦物和聚合物,它對礦物的作用類似單烷氧基型鈦酸酯偶聯劑。

配位型鈦酸酯耐水性好。既可溶於有機溶劑後再包覆粉體物料,也可在水相中包覆粉體物料。配位型鈦酸酯大多數不溶解於水,通常使用表面活性劑、水性助溶劑使之溶解於水,或高速攪拌使其乳化分散在水中。

鈦酸酯偶聯劑的用量是要使鈦酸酯偶聯劑分子中的全部異丙氧基與無機填料或顏料表面所提供的羥基或質子發生反應,過量是沒有必要的。鈦酸酯偶聯劑的大致用量為填料或顏料用量的0.1%~3.0%左右。被處理填料或顏料的粒度越細,比表面積越大,鈦酸酯偶聯劑的用量就越大。最適當的用量可以用黏度測定法求得:高熔點的聚合物通常用低分子量的液體,如礦物油代替做模型試驗,鈦酸酯用量從填料重量的0.25%,0.5%,0.75%,1.0%,1.5%,2.0%及3.0%等做試驗,黏度下降最大點,就是較合適的鈦酸酯用量。

鈦酸酯偶聯劑在使用過程中應特別注意以下幾個問題:

1)嚴格控制使用溫度,防止鈦酸酯分解。

2)盡量避免與具有表面活性的助劑並用,因為它們會干擾鈦酸酯偶聯劑界面處的偶聯反應。如果必須使用這些助劑時,應在填料、偶聯劑和聚合物充分混合作用後再加入這些助劑。

3)加料順序應注意避免首先與酯類增塑劑接觸,以免發生酯交換反應而失效。

4)注意分散均勻。因鈦酸酯偶聯劑一般用量為0.5%~3%,不易與大量填料均勻混合,可採用適量稀釋劑及噴霧方法使其均勻分散混合。

5)注意技術結合,提高偶聯效果,如鈦酸酯與硅烷偶聯劑並用能產生協同效應。

三、表面活性劑

1.高級脂肪酸及其鹽

高級脂肪酸屬於陰離子表面活性劑,其分子通式為RCOOH。分子一端為長鏈烷基(C16~C18),其結構和聚合物相似,因而與聚合物有一定的相容性;分子一端為核基,可與無機填料或顏料表面發生物理、化學吸附作用。因此,用高級脂肪酸及其鹽,如硬脂酸處理無機填料或顏料類似偶聯劑的作用,有一定的表面處理效果,可改善無機填料或顏料與高聚物基料的親和性,提高其在高聚物基料中的分散度。此外,由於高級脂肪酸及其鹽類本身具有潤滑作用,還可使復合體系內摩擦力減小,改善復合體系的流動性能。

無機填料或顏料常用的高級脂肪酸及其金屬鹽類表面處理劑有:硬脂酸、硬脂酸鈣、硬脂酸鋅等,用量約為填料或顏料重量的0.5%~3%,使用時可直接與無機填料、顏料混合分散均勻,也可將硬脂酸稀釋後噴灑在無機填、顏料表面,攪拌均勻後再烘乾,除去水分。

2.高級胺鹽

屬於陽離子表面活性劑,其分子通式為RNH(伯胺)、R2NH(仲胺)、R3NH(叔胺)等。高級胺鹽的烷烴基與聚合物的分子結構相近,因此與高聚物基料有一定的相容性,分子另一端的氨基可與無機填料或顏料等粉體表面發生吸附作用。

非離子型表面活性劑對填充(或復合)體系的作用機理與各類偶聯劑相似。親水基因和親油基因分別與填料和高聚物基料發生相互作用,加強二者的聯系,從而提高體系的相容性和均勻性。二極性基團之間的柔性碳鏈起增塑潤滑作用,賦予體系韌性和流動性,使體系黏度下降,改善加工性能。如用高級脂肪酸聚氧乙烯醚類作處理劑對硅灰石粉進行的表面改性結果表明,改性後大大提高了硅灰石在PVC電纜中的填充性能。

除了上述表面活性劑外,磷酸酯也可用於無機粉體的表面處理,如單脂型磷酸酯用於滑石的表麵包覆處理,可改進滑石粉填料與高聚物(如聚丙烯)的界面親和性,改善其在有機高聚物基料中的分散狀態,並提高高聚物基料對填料的潤濕能力。

四、不飽和有機酸

不飽和有機酸作為無機填料的表面改性劑帶有一個或多個不飽和雙鍵及一個或多個羥基,碳原子數一般在10個以下。常見的不飽和有機酸是:丙烯酸、甲基丙烯酸、丁烯酸、肉桂酸、山梨酸、2-氯丙烯酸、馬來酸、醋酸乙烯、醋酸丙烯等。一般來說,酸性越強,越容易形成離子鍵,故多選用丙烯酸和甲基丙烯酸。各種有機酸可以單獨作用,也可以混合使用。

五、有機硅

有機硅是以硅氧烷鏈為憎水基,聚氧乙烯鏈、氨基、酮基或其他極性基團為親水基的一類特殊類型的表面活性劑,俗稱硅油或硅樹脂。其主要品種有聚二甲基硅氧烷、有機基改性硅氧烷及有機硅與有機化合物的共聚物等。

六、無機表面改性劑

氧化鈦、氧化鉻、氧化鐵、氧化鋁等金屬氧化物常用作沉澱法(包膜)制備雲母珠光顏料的表面改性劑;Al2O3、SiO2等常用做無機顏料的表面處理,以提高顏料的保光性、耐候性、改善著色力和遮蓋力等,如用SiO2包覆鈦白粉等。沉澱法表麵包膜工藝常用無機表面改性劑,其改性的物料(基質)一般也是無機物。

例1:雲母鐵

水解:FeCl3+3H20→Fe(OH)3+3H+

覆蓋:Fe(OH)3覆蓋在雲母的表面

焙燒:Fe(OH)3→Fe2O3+3H2O→雲母鐵

例2:雲母鈦

工業生產中常用TiOSO4,TiOSO4在水解過程中,要產生一種偏鈦酸H2TiO3的物質,沉澱覆蓋在雲母鱗片上,形成一層H2TiO3均勻的薄膜,再將覆蓋有H2TiO3薄膜的雲母進行焙燒後,結晶出的TiO2晶體(金紅石型或銳鈦礦型)薄膜,形成雲母鈦珠光顏料。其反應過程為:

水解:TiOSO4+H2O(水解)→TiO2·XH2O+H2SO4

覆蓋:TiO2·XH2O(水合TiO2)覆蓋在雲母的表面

焙燒:TiO2·XH2O→TiO2結晶→雲母鈦

工藝流程見圖4-8。

圖4-8 水解塗鈦法生產珠藝雲母粉的工藝流程

七、覆膜用樹脂塗層劑

這是利用高聚物或樹脂等對粉體表面進行「覆膜」而達到表面改性的方法。如用酚醛樹脂或呋喃樹脂等塗敷石英砂以提高精細鑄造砂的黏結性能。這種塗敷後的鑄造砂既能獲得高的熔模鑄造速度,又能保持模具和模芯生產中得到高抗卷殼和抗開裂性能;用呋喃樹脂塗敷的石英砂用於油井鑽探可提高油井產量。

塗敷改性是一種對粉體表面進行簡單處理的方法。精密鑄造用的型砂可以用樹脂對原砂表面進行覆膜改性處理。根據覆膜工藝可分為冷法和熱法兩種。

1.冷法覆膜

冷法覆膜是在室溫下進行。其方法是:先將粉狀樹脂與石英砂混勻,然後加入溶劑(如工業酒精、丙酮或糠醛),溶劑加入量根據混砂機是否封閉而定。對於封閉式混砂機,酒精用量為樹脂量的40%~50%;若混砂機不能封閉,則為70%~80%。加入溶劑後繼續混合到溶劑揮發完畢,將塗覆了樹脂膜的砂經乾燥後,破碎和過篩即得覆膜砂產品。這種方法的有機溶劑耗量大,僅用於小規模生產。

2.熱法覆膜

是將砂子加熱後進行的包敷。方法是先將石英砂加熱到140~160℃,而後與樹脂在混砂機中混勻,其中樹脂用量為石英砂用量的2%~5%。這時樹脂被熱砂熔化,包覆在砂粒表面,隨溫度降低而變粘。此時加入烏洛托品水溶劑,使烏洛托品分布在砂粒表面,並使砂急冷(烏洛托品作為催化劑可在殼模形成時使樹脂固化),再加硬脂酸鈣(防止結塊)混數秒鍾後出砂,然後粉碎、過篩、冷卻後即得覆膜砂產品。此法效果較好,適合大規模生產,但工藝控制較為復雜,並需用專門的混砂設備。精密鑄造中用作殼芯的樹脂覆膜砂配方實例見表4-4。

表4-4精密鑄造中用作殼芯的樹脂覆膜砂配方實例

8. 偶聯劑的用途

偶聯劑廣泛用於橡膠、塑料、膠黏劑、密封劑、塗料、玻璃、陶瓷、金屬防腐等領域。偶聯劑作表面改性劑,用於無機填料填充塑料時,可以改善其分散性和黏合性。偶聯劑是一種具有特殊結構的有機硅化合物,硅烷偶聯劑已成為材料工業中必不可少的助劑之一。

偶聯劑廣泛用於橡膠、塑料、膠黏劑、密封劑、塗料、玻璃、陶瓷、金屬防腐等領域。偶聯劑作表面改性劑,用於無機填料填充塑料時,可以改善其分散性和黏合性。偶聯劑是一種具有特殊結構的有機硅化合物,硅烷偶聯劑已成為材料工業中必不可少的助劑之一。

9. 偶聯劑可以替代氨基樹脂

不能。
氨基樹脂一般可製成水溶液或乙醇溶液,也可乾燥成粉末固體。大多硬而脆,使用時需加填料。偶聯劑作表面改性劑,用於無機填料填充塑料時,可以改善其分散性和黏合性。兩者應用的方向不同,是不可以相互代替的。
氨基樹脂是以含有氨基官能團的化合物與醛類(主要是甲醛)經縮聚反應製得的熱固性樹脂。偶聯劑是一種具有特殊結構的有機硅化合物。在它的分子中,同時具有能與無機材料結合的反應性基團和與有機材料結合的反應性基團。

閱讀全文

與偶聯劑樹脂表面改性相關的資料

熱點內容
杭州污水廠排放標准 瀏覽:565
EDI只用於 瀏覽:115
哪裡有韓式pp棉過濾芯賣 瀏覽:459
雞蛋殼去電熱水壺水垢 瀏覽:906
上海小型油煙凈化器需要多少錢 瀏覽:541
半透膜能耐受DMSO 瀏覽:320
EDI循環 瀏覽:420
威馳空氣濾芯蓋兩個鎖扣怎麼打開 瀏覽:740
abs樹脂與pp有啥區別 瀏覽:838
水費簡易計稅需要區分污水費嗎 瀏覽:130
普通熱水瓶去水垢的方法 瀏覽:74
別墅排水需要什麼樣的污水提升泵 瀏覽:189
河南省城鎮污水廠排放 瀏覽:294
反滲透膜品牌選擇上海保茲 瀏覽:891
簡單蒸餾的步驟 瀏覽:378
07騏達空調濾芯怎麼安裝 瀏覽:184
活性炭吸附廢水適用條件 瀏覽:904
濰坊食品廢水處理設備多少錢 瀏覽:487
投影機過濾網怎麼取 瀏覽:927
dsm樹脂有沒有毒 瀏覽:660