① 反滲透膜根據什麼壓差判定要清洗,進水壓力與淡水壓差
看你RO系統分幾段了,正常兩端,系統檢測壓力有進水壓力、中間壓力、濃水壓力,一段壓差是進水—中間壓力,二段壓差是中間壓力—濃水壓力。
壓差上升15%,水質下降15%,產水量下降15%都是葯洗的標准啊
② 什麼事一級RO膜
反滲透技術是當今最先進和最節能有效的膜分離技術。其原理是在高於溶液滲透壓的作用下,依據其他物質不能透過半透膜而將這些物質和水分離開來。由於反滲透膜的膜孔徑非常小(僅為10A左右),因此能夠有效地去除水中的溶解鹽類、膠體、微生物、有機物等(去除率高達97%-98%)。反滲透是目前高純水設備中應用最廣泛的一種脫鹽技術,它的分離對象是溶液中的離子范圍和分子量幾百的有機物;反滲透(RO)、超過濾(UF)、微孔膜過濾(MF)和電滲析(EDI)技術都屬於膜分離技術。 具體原理:滲透是一種物理現象.當兩種含有不同鹽類的水,如用一張半滲透性的薄膜分開就會發現,含鹽量少的一邊的水分會透過膜滲到含鹽量高的水中,而所含的鹽分並不滲透,這樣,逐漸把兩邊的含鹽濃度融合到均等為止.然而,要完成這一過程需要很長時間,這一過程也稱為滲透壓力.但如果在含鹽量高的水側,試加一個壓力,其結果也可以使上述滲透停止,這時的壓力稱為滲透壓力.如果壓力再加大,可以使方向相反方向滲透,而鹽分剩下.因此,反滲透除鹽原理,就是在有鹽分的水中(如原水),施以比自然滲透壓力更大的壓力,使滲透向相反方向進行,把原水中的水分子壓力到膜的另一邊,變成潔凈的水,從而達到除去水中雜質、鹽分的目的.納濾納濾 ( NF,Nanofiltration)是一種介於反滲透和超濾之間的壓力驅動膜分離過程,納濾膜的孔徑范圍在幾個納米左右。與其他壓力驅動型膜分離過程相比,出現較晚。它的出現可追溯到70年代末J.E. Cadotte的NS-3 0 0膜的研究,之後,納濾發展得很快,膜組器於80年代中期商品化。納濾膜大多從反滲透膜衍化而來,如CA、CTA膜、芳族聚醯胺復合膜和磺化聚醚碸膜等。但與反滲透相比,其操作壓力更低,因此納濾又被稱作「低壓反滲透」或「疏鬆反滲透」( Loose RO )。納濾分離作為一項新型的膜分離技術,技術原理近似機械篩分。但是納濾膜本體帶有電荷性。這是它在很低壓力下仍具有較高脫鹽性能和截留分子量為數百的膜也可脫除無機鹽的重要原因。微濾微濾又稱微孔過濾,它屬於精密過濾,截留溶液中的砂礫、淤泥、黏土等顆粒和賈第蟲、隱抱子蟲、藻類和一些細菌等,而大量溶劑、小分子及少量大分子溶質都能透過膜的分離過程。基本原理是篩分過程,操作壓力一般在0.7-7kPa,原料液在靜壓差作用下,透過一種過濾材料。過濾材料可以分為多種,比如折疊濾芯、熔噴濾芯、布袋式除塵器、微濾膜等。透過纖維素或高分子材料製成的微孔濾膜,利用其均一孔徑,來截留水中的微粒、細菌等,使其不能通過濾膜而被去除。決定膜的分離效果的是膜的物理結構,孔的形狀和大小。微孔膜的規格目前有十多種,孔徑范圍為0.1~75 μm,膜厚120~150µm。膜的種類有:混合纖維酯微孔濾膜;硝酸纖維素濾膜;聚偏氟乙烯濾膜;醋酸纖維素濾膜;再生纖維素濾膜;聚醯胺濾膜;聚四氟乙烯濾膜以及聚氯乙烯濾膜等。超濾超濾是以壓力為推動力的膜分離技術之一。以大分子與小分子分離為目的,膜孔徑在20-1000A°之間。中空纖維超濾器(膜)具有單位溶器內充填密度高,佔地面積小等優點。 在超濾過程中,水深液在壓力推動下,流經膜表面,小於膜孔的深劑(水)及小分子溶質透水膜,成為凈化液(濾清液),比膜孔大的溶質及溶質集團被截留,隨水流排出,成為深縮液。超濾過程為動態過濾,分離是在流動狀態下完成的。溶質僅在膜表面有限沉積,超濾速率衰減到一定程度而趨於平衡,且通過清洗可以恢復。超濾是一種加壓膜分離技術,即在一定的壓力下,使小分子溶質和溶劑穿過一定孔徑的特製的薄膜,而使大分子溶質不能透過,留在膜的一邊,從而使大分子物質得到了部分的純化。超濾技術的優點是操作簡便,成本低廉,不需增加任何化學試劑,尤其是超濾技術的實驗條件溫和,與蒸發、冷凍乾燥相比沒有相的變化,而且不引起溫度、pH的變化,因而可以防止生物大分子的變性、失活和自溶。在生物大分子的制備技術中,超濾主要用於生物大分子的脫鹽、脫水和濃縮等。超濾法也有一定的局限性,它不能直接得到乾粉制劑。對於蛋白質溶液,一般只能得到10~50%的濃度。
③ 超濾膜和RO膜有什麼區別
反滲透膜和反滲透膜主要有以下三個區別:
1、供水量是不一樣的
反滲透膜主要用於生活飲用版水。隨著反權滲透技術的不斷完善,反滲透供水已經能夠滿足整個廚房的用水量。超濾膜供水僅適用於家庭、洗滌。
2、標准不同
反滲透膜標准較高。超濾膜每毫升水有100菌落合格,反滲透膜每毫升水有20菌落合格。可以說反滲透膜的標准比超濾膜高4倍。
3、孔徑相差很大
反滲透膜的孔徑僅為超濾膜孔徑的1/100,因此反滲透膜可以去除水中極小的有機分子污染,如化學有機物和有機農葯污染。超濾膜則不然。反滲透膜還具有軟化水質的作用,將硬水變成軟水。
④ 反滲透純水裝置,膜前和膜後壓力值一樣但淡水出水流量很小幾乎沒有流量,是怎麼回事
檢查高壓泵有沒有正常運行,前後壓力一樣,說明還沒達到工作壓力。如果膜發生污堵,應該會壓差很大而不是壓力一樣。
⑤ 純水處理 反滲透的壓力開關裝在什麼位置
RO淡水管路上壓力表狀況:-壓力表-保安過濾器-壓力表-高壓泵-壓力表-RO膜-壓力表-除了2樓所說,壓力表另一個重要作用是:檢查過濾器以及RO膜前後壓力,在以後運行維護中判斷膜堵塞等是關鍵參數。
⑥ 反滲透淡水含鹽量高的原因
,原水含鹽太高。反滲透只不過滲透98%。如果你的原水過千的話,出現很高也是正常專。進水水質差引起一屬系列問題
.保安過濾器(PP膜)沒有起到作用,很多人安裝時,把PP膜長度沒有量好,過短,那樣出現直接漏水過去RO膜.使RO膜壽命低.
.或者RO膜質量不好,還是進後的RO膜好.
.雙濾料吸附到期未換.或者沒有正規定期沖洗.
.RO膜沒有定期正規沖洗.
.RO膜不是正常壓力下運行.
.試行過強制不排濃水.壓力過大使膜有損壞。
.有水結冰史.
.短期停機沒有作正常處理.
.RO膜被開封後干過水.
你的有沒有軟處理的??是多少級的?》?
⑦ 海水淡化反滲透膜淡水側壓力是多少
不是利用成分的不同,而是利用溶劑和溶質的關系。對膜一側的料液版施加壓力,當壓力超過它的權滲透壓時,溶劑會逆著自然滲透的方向作反向滲透。從而在膜的低壓側得到透過的溶劑,即淡水;高壓側得到濃縮的溶液,即濃縮液。
⑧ 反滲透設備產水背壓的原因是什麼
反滲透純水設備中的反滲透膜過濾主要是通過壓力驅動,在正常運行下是不會出現背壓問題版,但權如果出現反滲透純水設備停機或故障,閥門設置或者開閉不當,就會造成背壓。當反滲透純水設備產水出現背壓情況,為了方便產品水在膜袋內流動,在信封狀的膜袋內夾有一層產品水導流的織物支撐層,為了使給水均勻流過膜袋錶面並給水流以擾動,在膜袋與膜袋之間的給水通道中夾有隔網層。膜口袋的三面是用粘結劑粘接在一起的,如果產品水側的壓力大於給水側的壓力,那麼這些粘接線就會破裂而導致膜元件脫鹽率的喪失或者明顯降低,因此從安全的角度考慮,反滲透系統不能夠存在背壓。
⑨ 海水淡化ro膜的回收率為什麼低
一、能量回復收裝置。PX和Aqualyng是近期所研製發出來的新型能量回收裝置,其能量回收效率非常高,能夠讓RO系統在進行海水淡化的過程中自身所消耗的電能大約在2.6kW·h/m3淡水。
二、新型膜產品的應用。目前正在開發和繼續研究高壓RO膜及低壓RO膜,隨著能量回收裝置效率的不斷提升,海水淡化過程應用高壓RO膜越來越多,而苦鹹水淡化過程應用低壓RO膜越來越多。
三、預處理工藝。最新的預處理方法是將原來的NF、UF以及MF三種傳統方法結合應用的一種全膜法,這種預處理方法的優勢在於它所需的化學葯劑非常少,而反滲透膜的清洗次數也得到了有效的減少,使得系統的操作和管理更加方便、環保。
四、回收率的提升。海水淡化系統採用最新研究的SWRO-級濃縮水作進料,當操作壓力被恆定控制在8-10MPa范圍內時,回收率高達百分之六十。
⑩ RO膜在污水處理系統注意事項。
首先要了解「滲透」的概念.滲透是一種物理現象.當兩種含有不同鹽類的水,如用一張半滲透性的薄膜分開就會發現,含鹽量少的一邊的水分會透過膜滲到含鹽量高的水中,而所含的鹽分並不滲透,這樣,逐漸把兩邊的含鹽濃度融合到均等為止.然而,要完成這一過程需要很長時間,這一過程也稱為滲透壓力.但如果在含鹽量高的水側,試加一個壓力,其結果也可以使上述滲透停止,這時的壓力稱為滲透壓力.如果壓力再加大,可以使方向相反方向滲透,而鹽分剩下.因此,反滲透除鹽原理,就是在有鹽分的水中(如原水),施以比自然滲透壓力更大的壓力,使滲透向相反方向進行,把原水中的水分子壓力到膜的另一邊,變成潔凈的水,從而達到除去水中雜質、鹽分的目的。
反滲透又稱逆滲透,一種以壓力差為推動力,從溶液中分離出溶劑的膜分離操作。對膜一側的料液施加壓力,當壓力超過它的滲透壓時,溶劑會逆著自然滲透的方向作反向滲透。從而在膜的低壓側得到透過的溶劑,即滲透液;高壓側得到濃縮的溶液,即濃縮液。若用反滲透處理海水,在膜的低壓側得到淡水,在高壓側得到鹵水。 反滲透時,溶劑的滲透速率即液流能量N為: N=Kh(Δp-Δπ) 式中Kh為水力滲透系數,它隨溫度升高稍有增大;Δp為膜兩側的靜壓差;Δπ為膜兩側溶液的滲透壓差。稀溶液的滲透壓π為: π=iCRT 式中i為溶質分子電離生成的離子數;C為溶質的摩爾濃度;R為摩爾氣體常數;T為絕對溫度。 反滲透通常使用非對稱膜和復合膜。反滲透所用的設備,主要是中空纖維式或卷式的膜分離設備。 反滲透膜能截留水中的各種無機離子、膠體物質和大分子溶質,從而取得凈制的水。也可用於大分子有機物溶液的預濃縮。由於反滲透過程簡單,能耗低,近20年來得到迅速發展。現已大規模應用於海水和苦鹹水(見鹵水)淡化、鍋爐用水軟化和廢水處理,並與離子交換結合製取高純水,目前其應用范圍正在擴大,已開始用於乳品、果汁的濃縮以及生化和生物制劑的分離和濃縮方面。