離子交來換樹源脂再生的原因:
離子交換樹脂在使用的過程中,與水中的雜質進行轉化,當離子交換樹脂的吸附能力已達到飽和狀態,離子交換樹脂就已經無法繼續吸附水中的雜質了,這時候離子交換樹脂就已經失去交換雜質的作用了,如果要更換樹脂的話,會造成大量的物力和人力浪費,所以一般在離子交換樹脂的吸附能力達到飽和之後,就要對離子交換樹脂進行再生處理。
離子交換樹脂再生的周期:
離子交換樹脂的再生周期,一般要根據實際的水質情況,如果水中的雜質過多,可能會導致離子交換樹脂達到飽和的時間縮短,再生的周期也會縮短,如果水質好的話,再生的周期就更長一些。
離子交換樹脂再生的方法:
樹脂再生時,先吸收5%的鹽酸5L由槿底進,進行反沖,大概10-15分鍾左右,確定陰、陽樹脂分層完之後,分別對陰、陽進行處理。
陽樹脂利用5%的濃度鹽酸進行吸酸再生,吸酸的時間大概為1.5個小時,然後再等待半小時之後,進行慢沖15分鍾後再進行快沖,直到沖到中性為止。
陰樹脂用5%的濃度進行吸鹼再生,時間為2小時,然後等半小時之後,進行慢沖15分鍾後再進行快沖,直到沖到中性為止。
最後用平時的進水,進行檢測,如果符合標准就可以使用了。
⑵ 鹽酸與硫酸再生樹脂有什麼區別
研究以周期制水量、工作交換容量和酸耗作為衡量指標時,分別用鹽酸和硫酸再生D113樹脂的最佳工藝條件和2種酸再生效果的比較,結果表明,用硫酸再生D113弱酸樹脂比HCl再生有更好技術經濟指標
⑶ 我有一批樹脂原先用硫酸再生現在用鹽酸再生,這樣行嗎
首先,樹脂再生一定要用分析純的鹽酸,普通的鹽酸含鐵、錳離子及高含量的內有機碳(TOC),均可以導致樹容脂毒化,且為不可逆;
其次,對您所謂的硫酸性軟水不是很了解,是否可以認為單級陽樹脂床的產水?一般而言二級RO出水即可作為混床再生水,RO出水含NaCl等部分強電解質,但造價較低,使用DIW或UPW作為再生水太浪費了;
最後,樹脂再生一定要根據自身的工藝條件進行調試,一般酸濃度在3-5%,鹼濃度4%,有不明白的可以跟我交流一下。
⑷ 「離子交換樹脂的再生」的意思是什麼
離子交換樹脂為什麼要再生?
離子交換樹脂在長時間使用之後,吸附能力逐漸會達到飽和,樹脂吸附能力達到飽和之後,就無法繼續吸附水中的雜質,就需要對樹脂進行再生處理,在實際運用中,為降低再生費用,要適當控制再生劑用量,使樹脂的性能恢復到最經濟合理的再生水平,通常控制性能恢復程度為70~80%左右。
離子交換樹脂的再生方法:
1、大孔吸附樹脂簡單再生的方法是用不同濃度的溶劑按極性從大到小剃度洗脫,再用2~3BV的稀酸、稀鹼溶液浸泡洗脫,水洗至PH值中性即可使用。
2、鈉型強酸性陽樹脂可用10%NaCl 溶液再生,用葯量為其交換容量的2倍 (用NaCl量為117g/ l 樹脂);氫型強酸性樹脂用強酸再生,用硫酸時要防止被樹脂吸附的鈣與硫酸反應生成硫酸鈣沉澱物。為此,宜先通入1~2%的稀硫酸再生。
3、氯型強鹼性樹脂,主要以NaCl 溶液來再生,但加入少量鹼有助於將樹脂吸附的色素和有機物溶解洗出,故通常使用含10%NaCl + 0.2%NaOH 的鹼鹽液再生,常規用量為每升樹脂用150~200g NaCl ,及3~4g NaOH。OH型強鹼陰樹脂則用4%NaOH溶液再生。
4、一些脫色樹脂 (特別是弱鹼性樹脂) 宜在微酸性下工作。此時可通入稀鹽酸,使樹脂 pH值下降至6左右,再用水正洗,反洗各一次。
⑸ 簡述硫酸生產的主要步驟和每個步驟的目的
硫酸的生產
首先說明,化學品的生產和其他工業品的生產有很大不同。化學品並不是使用機床和精密設備生產出來的,而是使用各種管路和反應器生產出來的。其過程有點類似全自動的炒菜熬粥。
硫酸是一個典型的無機大宗化學品。其生產以包含特定元素的廉價物質為原料,經過簡單的化學反應得到產品。由於生產規模很大,在工程上有很高的要求。
反應式如下
[公式]
[公式]
[公式]
對於硫酸的生產,原料為含硫物質,包括硫單質、硫化氫、含硫的金屬礦物等。這些物質經過氧化得到二氧化硫,與空氣混合後在催化劑的作用下進一步氧化生成三氧化硫。三氧化硫經過濃硫酸吸收得到產品。這里最後一步吸收非常有意思,本來按照反應式(水和三氧化硫生成硫酸)可以使用水來吸收,但是由於水的蒸汽壓太高,用水吸收會產生大量氣相物質使吸收效率下降,因此用稀釋過的濃硫酸來吸收。濃硫酸中的少量水與三氧化硫反應將其吸收,吸收後液體中的水含量降低,得到更高濃度的硫酸。產生的硫酸分成兩部分,一部分直接作為原料輸出,另一部分再經過稀釋,濃度降低後重新開始下一輪吸收。由此實現了高效、連續的生產。
這個生產過程中重要的反應設備包括:反應器(氧化反應器、催化氧化反應器、吸收塔)和許多管路、換熱器、水泵、儲罐、閥門等。管路、儲罐等設備從名字上就可以想像。換熱器通常是經過特殊設計的管路系統。氧化反應器是將硫單質氧化的爐子,作為一個例子,可以參考沸騰焙燒爐_互動網路。催化氧化反應器通常為固定床反應器,在篩板上裝有固體催化劑物質,上一步得到的氣體從上方流經催化劑並發生反應,從下方排出,可以參考固定床反應器_網路。吸收塔是一個中空的裝置,讓氣體和液體從兩個方向進入並接觸,有多種不同的設計,可以參考吸收塔_網路。由於生產規模很大,這些設備的尺寸有些能達到數米。
⑹ 陽離子樹脂能用硫酸再生么
無論是強酸性或弱酸性陽離子交換樹脂,都可以使用稀硫酸或稀鹽酸回作為再生劑,但一答般認為以稀硫酸作為再生劑,效果可能會好一些。因為樹脂若吸附有機物的話,稀硫酸較稀鹽酸更能解析出有機物,所以一般相關教科書多採用稀硫酸為再生劑。不過實際應用時,可能因為硫酸的取得較為困難,所以多使用鹽酸作為再生劑居多。
⑺ 為什麼樹脂再生只能用硝酸不能用硫酸或鹽酸
個人認為:
鹽酸:樹脂再生一定要用分析純的鹽酸,普通的鹽酸含鐵、錳離子及高含內量的有機碳(TOC),容均可以導致樹脂毒化,且為不可逆;所以需要頻繁更換,成本就高,而實際上使用鹽酸還是很常見的
不能用硫酸,是因為硫酸會跟樹脂裡面的鈣離子反應產生沉澱,因為硫酸鈣是微溶物,會降低再生流速。
⑻ 用硫酸再生陽離子樹脂後怎麼去除樹脂中殘留的硫酸根
首先,用硫酸在生陽樹脂,要分兩步再生法(即先用1-2%濃度的稀硫酸溶液快專速再生,目的是防止樹脂屬官能團吸附的Ca2+、Mg2+與硫酸根形成硫酸鈣硫酸鎂沉澱,然後再用3-4濃度的硫酸溶液進行正常再生)。再生完畢後,用水沖洗樹脂層至PH接近中性。您問的殘留的硫酸根問題,一般情況下,用戶不會將再生完的樹脂沖洗至PH完全中性,所以樹脂層內肯定會有一些殘留的稀酸液,如果你對樹脂層殘留硫酸根有較高要求,那麼建議您換HCl溶液或硝酸溶液去再生。如果陽樹脂後面跟有陰樹脂,那麼這些硫酸根自然就會被後續陰樹脂交換掉。
⑼ 樹脂為什麼第一次再生前用酸鹼泡
樹脂為什麼第一次再生前用酸鹼泡
應用離子交換樹脂進行水處理時,離子交版換樹脂可權以將其本身所具有的某種離子和水中同符號電荷的離子相互交換而達到凈化水的目的.
如H型陽離子交換樹脂遇到含有Ca2+、Na+的水時,發生如下反應:
2RH + Ca2+ → R2Ca + 2H+
RH + Na+ →RNa + H+
當OH型陰離子交換樹脂遇到含有Cl-、SO42-的水時,其反應為:
ROH + Cl- → RCl + OH-
2ROH + SO42- →R2SO4 +2OH-
當樹脂失效時,採用再生劑進行復甦再生,發生如下反應:
陽樹脂 R2Ca + 2HCl →2RH+CaCl2
RNa + HCl → RH+NaCl
陰樹脂 R2SO4 +2NaOH- → 2ROH + Na2SO4
RCl + NaOH- → ROH + NaCl
⑽ 各類離子交換樹脂的再生方法
再生劑的種類應根據樹脂的離子類型來選用,並適當地選擇價格較低的酸、鹼或鹽:
1、大孔吸附樹脂簡單再生的方法是用不同濃度的溶劑按極性從大到小剃度洗脫,再用2~3BV的稀酸、稀鹼溶液浸泡洗脫,水洗至PH值中性即可使用。
2、鈉型強酸性陽樹脂可用10%NaCl 溶液再生,用葯量為其交換容量的2倍 (用NaCl量為117g/ l 樹脂);氫型強酸性樹脂用強酸再生,用硫酸時要防止被樹脂吸附的鈣與硫酸反應生成硫酸鈣沉澱物。為此,宜先通入1~2%的稀硫酸再生。
3、氯型強鹼性樹脂,主要以NaCl 溶液來再生,但加入少量鹼有助於將樹脂吸附的色素和有機物溶解洗出,故通常使用含10%NaCl + 0.2%NaOH 的鹼鹽液再生,常規用量為每升樹脂用150~200g NaCl ,及3~4g NaOH。OH型強鹼陰樹脂則用4%NaOH溶液再生。
4、一些脫色樹脂 (特別是弱鹼性樹脂) 宜在微酸性下工作。此時可通入稀鹽酸,使樹脂 pH值下降至6左右,再用水正洗,反洗各一次。
5、陽樹脂再生:
通鹽酸:在環境溫度下,將4%的樹脂床體積4倍的HCL通過樹脂床,通過時間約2小時。
慢洗:以相同流速和;流向,通2倍樹脂體積的除鹽水。
快洗:以運行流速和流向,通除鹽水至PH=5-6.樹脂床備用。
6、陰樹脂再生:
通氫氧化鈉:在環境溫度下,將濃度為4%的樹脂體積4倍量的NaOH通過樹脂床,通過時間約為2小時。
慢洗:以相同流速和;流向,通2倍樹脂體積的除鹽水。
快洗:以運行流速和流向,通除鹽水至PH=8,樹脂床備用
具體操作可根據樹脂使用情況酌情增加酸鹼的濃度和再生時間。
(10)硫酸再生樹脂為什麼要二步驟擴展閱讀:
應用領域:
1)水處理
水處理領域離子交換樹脂的需求量很大,約占離子交換樹脂產量的90%,用於水中的各種陰陽離子的去除。目前,離子交換樹脂的最大消耗量是用在火力發電廠的純水處理上,其次是原子能、半導體、電子工業等。
2)食品工業
離子交換樹脂可用於製糖、味精、酒的精製、生物製品等工業裝置上。例如:高果糖漿的製造是由玉米中萃出澱粉後,再經水解反應,產生葡萄糖與果糖,而後經離子交換處理,可以生成高果糖漿。離子交換樹脂在食品工業中的消耗量僅次於水處理。
3)制葯行業
制葯工業離子交換樹脂對發展新一代的抗菌素及對原有抗菌素的質量改良具有重要作用。鏈黴素的開發成功即是突出的例子。近年還在中葯提成等方面有所研究。
4)合成化學和石油化學工業
在有機合成中常用酸和鹼作催化劑進行酯化、水解、酯交換、水合等反應。用離子交換樹脂代替無機酸、鹼,同樣可進行上述反應,且優點更多。如樹脂可反復使用,產品容易分離,反應器不會被腐蝕,不污染環境,反應容易控制等。
甲基叔丁基醚(MTBE)的制備,就是用大孔型離子交換樹脂作催化劑,由異丁烯與甲醇反應而成,代替了原有的可對環境造成嚴重污染的四乙基鉛。
5)環境保護
離子交換樹脂已應用在許多非常受關注的環境保護問題上。目前,許多水溶液或非水溶液中含有有毒離子或非離子物質,這些可用樹脂進行回收使用。如去除電鍍廢液中的金屬離子,回收電影製片廢液里的有用物質等。
6)濕法冶金及其他
離子交換樹脂可以從貧鈾礦里分離、濃縮、提純鈾及提取稀土元素和貴金屬。