① 高中生物質壁分離自動復原問題
這是因為NaCl溶液中溶質以離子形式,而離子能通過半透膜。
② 生物質壁分離 植物細胞失水,水失到哪裡去了為什麼細胞壁與原生質層的空隙充滿蔗糖溶液
水失到細胞間的間隙上去了,反正透過細胞膜離開了細胞.
細胞壁與原生質層的空隙充滿蔗糖溶液是因為細胞膜失水縮小,而細胞壁不變,且細胞壁是半透膜可以通過蔗糖溶液,所以蔗糖溶液就填充進去了.
③ 反滲透膜原理是什麼及如何清洗
反滲透膜的原理:
反滲透膜的工作需要藉助外力對膜的一側的溶液施加壓力,當這個壓力超過它的滲透壓時,溶劑會逆著自然滲透的方向作反向滲透,在壓力的作用下反滲透膜的膜孔只有0.0001微米,一些雜質分子化學離子和細菌、真菌、病毒體等等不能通過,就會留在濃液溶的一側,然後排出。
從而在膜的低壓側可以得干凈的溶液,也就是滲透液。高壓側得到濃縮的溶液,就是濃縮液。若是用在海水淡化的行業,在膜的低壓的一側可以得到淡水,在高壓側得到的就是鹵水,由於反滲透膜使用簡單,過濾效果好,所以在水處理行業使用廣泛
化學清洗反滲透膜的方法:
1.檸檬酸溶液,在高壓或低壓下,用1%-2%的檸檬酸水溶液對膜進行連續或循環沖洗,這種方法對Fe(OH)3污染有很好的清洗效果。
2.檸檬酸銨溶液,檸檬酸的溶液中加入氨水或配成不同PH值的溶液,也可在檸檬酸銨的溶液中加HCL,調節PH值至2-2.5,例如在190L去離子水中,溶解277g檸檬酸胺,用HCL調節溶液PH值為2.5,用這種溶液在膜系統內循環清洗6小時,效果很好,若將該溶液加溫到35-40℃,清洗效果更好,該溶液對無機物的污染清洗效果均很好,但清洗時間較長。
3.加酶洗滌劑,用加酶洗滌劑處理膜,對有機物污染,特別是對蛋白質,油類等有機物污染特別有效,若在50℃-60℃下清洗效果更好,[本文來自凈水器官網}一般的在運行10天或半個月後用1%的加酶洗滌劑在低壓下對膜進行一次清洗,由於所用加酶洗滌劑濃度較低,所以要求浸漬時間長一些。
4.濃鹽水,對肢體污染嚴懲的膜採用濃鹽水清洗是有效的,這是由於高濃度鹽水能減弱膠體間的相互作用,促進膠體凝聚形成膠團。
5.水溶性乳化液,用於清洗被油和氧化鐵污染的膜十分有效,一般清洗30-60分鍾。
6雙氧水溶液,例如將0.5L,30%的H2O2用12L去離子水稀釋,然後清洗膜表面,這種方法對有機物污染特別有效。
7.次氯酸鈉和甲醛溶液,對於細菌的污染,要視不同的膜採取不同的處理措施,對芳香聚醯胺膜可用1%(重量)的甲醛溶液清洗,同時要經常分析反滲透濃水中保持0.2-0.5mg/l的余氯,以防止細菌繁殖。
8.草酸和EDTA溶液,對於反滲透膜上的金屬氧化物沉澱,用草酸和EDTA溶液清洗為好。
④ 生物質吸附劑吸附重金屬離子後,應該怎麼處理
生物質吸附劑吸附重金屬離子後,應該怎麼處理
含重金屬廢水處理:為使污水中所含的重金屬達到排水某一水體或再次使用的水質要求,對其進行凈化的過程。
目前,重金屬廢水處理的方法大致可以分為三大類:(1)化學法;(2)物理處理法;(3)生物處理法。
化學法
化學法主要包括化學沉澱法和電解法,主要適用於含較高濃度重金屬離子廢水的處理,化學法是目前國內外處理含重金屬廢水的主要方法。
2.1.1化學沉澱法
化學沉澱法的原理是通過化學反應使廢水中呈溶解狀態的重金屬轉變為不溶於水的重金屬化合物,通過過濾和分離使沉澱物從水溶液中去除,包括中和沉澱法、硫化物沉澱法、鐵氧體共沉澱法。由於受沉澱劑和環境條件的影響,沉澱法往往出水濃度達不到要求,需作進一步處理,產生的沉澱物必須很好地處理與處置,否則會造成二次污染。
2.1.2電解法
電解法是利用金屬的電化學性質,金屬離子在電解時能夠從相對高濃度的溶液中分離出來,然後加以利用。電解法主要用於電鍍廢水的處理,這種方法的缺點是水中的重金屬離子濃度不能降的很低。所以,電解法不適於處理較低濃度的含重金屬離子的廢水。
2.1.3螯合法[1]
螯合法又稱高分子離子捕集劑法,是指在廢水處理過程中通過投加適量的重金屬捕集劑,利用捕集劑與金屬離子鉛、鎘結合時形成相應的螯合物的原理實現鉛、鎘的去除分離。該反應能在常溫和較大pH范圍(3?11)下發生,同時捕集劑不受共存重金屬離子的影響。因此該方法去除率高,絮凝效果佳,污泥量少且整合物易脫水。
2.1.4納米重金屬水處理技術
納米材料因其比表面積遠超普通材料,故同一種物質將會顯示出不同的物化特型,很多新型的納米材料都不斷地在水處理行業中實驗、實踐。被環保部、科技部、工信部、財政部四部委聯合審批立項為「2011年國家重大科技成果轉化項目」———納米水處理工藝及系列產品,在江西銅業股份有限公司應用取得了歷史性的突破,填補了國內空白。
國內通常採用的重金屬廢水處理方法,包括石灰中和法和硫化法等。這些傳統的處理工藝,雖然可以將廢水中的重金屬去除掉,但是處理效果並不穩定,處理後回收的清水水質仍難以確保穩定達標排放,而且還會產生二次污染。納米重金屬水處理技術不僅能使處理後的出水水質優於國家規定的排放標准且穩定可靠,投資成本和運行成本較低,與水中重金屬離子反應快,吸附、處理容量是普通材料的10倍到1000倍,而且使沉澱的污泥量較傳統工藝降低50%以上,污泥中雜質也少,有利於後續處理和資源回收。有數據顯示,同樣是每日處理300立方米重金屬污水量,傳統工藝每天要產生25噸石灰渣污泥,而採用納米技術後每月只產生25噸納米金屬泥。尤其值得關注的是,這種污泥中的重金屬單位含量提高了30倍。若以銅冶煉廠的廢水處理為例,其回收的納米銅泥品位已達到20%,完全可以作為銅礦資源再生利用。
物理處理法
物理處理法主要包含溶劑萃取分離、離子交換法、膜分離技術及吸附法。
2.2.1溶劑萃取分離
溶劑萃取法是分離和凈化物質常用的方法。由於液液接觸,可連續操作,分離效果較好。使用這種方法時,要選擇有較高選擇性的萃取劑,廢水中重金屬一般以陽離子或陰離子形式存在,例如在酸性條件下,與萃取劑發生絡合反應,從水相被萃取到有機相,然後在鹼性條件下被反萃取到水相,使溶劑再生以循環利用。這就要求在萃取操作時注意選擇水相酸度。盡管萃取法有較大優越性,然而溶劑在萃取過程中的流失和再生過程中能源消耗大,使這種方法存在一定局限性,應用受到很大的限制。
2.2.2離子交換法
離子交換法是重金屬離子與離子交換劑進行交換,達到去除廢水中重金屬離子的方法。常用的離子交換劑有陽離子交換樹脂、陰離子交換樹脂、螯合樹脂等。幾年來,國內外學者就離子交換劑的研製開發展開了大量的研究工作。隨著離子交換劑的不斷涌現,在電鍍廢水深度處理、高價金屬鹽類的回收等方面,離子交換法越來越展現出其優勢。離子交換法是一種重要的電鍍廢水治理方法,處理容量大,出水水質好,可回收重金屬資源,對環境無二次污染,但離子交換劑易氧化失效,再生頻繁,操作費用高。
2.2.3膜分離技術
膜分離技術是利用一種特殊的半透膜,在外界壓力的作用下,不改變溶液中化學形態的基礎上,將溶劑和溶質進行分離或濃縮的方法,包括電滲析和隔膜電解。電滲析是在直流電場作用下,利用陰陽離子交換膜對溶液陰陽離子選擇透過性使水溶液中重金屬離子與水分離的一種物理化學過程。隔膜電解是以膜隔開電解裝置的陽極和陰極而進行電解的方法,實際上是把電滲析與電解組合起來的一種方法。上述方法在運行中都遇到了電極極化、結垢和腐蝕等問題。
2.2.4吸附法
吸附法是利用多孔性固態物質吸附去除水中重金屬離子的一種有效方法。吸附法的關鍵技術是吸附劑的選擇,傳統吸附劑是活性炭。還有黏土類吸附劑粉、煤灰吸附劑、生物質基材料和[1] 樹脂基吸附材料。活性炭有很強吸附能力,去除率高,但活性炭再生效率低,處理水質很難達到回用要求,價格貴,應用受到限制。近年來,逐漸開發出有吸附能力的多種吸附材料。有相關研究表明,殼聚糖及其衍生物是重金屬離子的良好吸附劑,殼聚糖樹脂交聯後,可重復使用10次,吸附容量沒有明顯降低。利用改性的海泡石治理重金屬廢水對Pb2+、Hg2+、Cd2+ 有很好的吸附能力,處理後廢水中重金屬含量顯著低於污水綜合排放標准。另有文獻報道蒙脫石也是一種性能良好的粘土礦物吸附劑,鋁鋯柱撐蒙脫石在酸性條件下對Cr 6+的去除率達到99%,出水中Cr 6+含量低於國家排放標准,具有實際應用前景。
生物處理法
生物處理法是藉助微生物或植物的絮凝、吸收、積累、富集等作用去除廢水中重金屬的方法,包括生物吸附、生物絮凝、植物修復等方法。
2.3.1生物吸附
生物吸附法是指生物體藉助化學作用吸附金屬離子的方法。藻類和微生物菌體對重金屬有很好的吸附作用,並且具有成本低、選擇性好、吸附量大、濃度適用范圍廣等優點,是一種比較經濟的吸附劑。用生物吸附法從廢水中去除重金屬的研究,美國等國家已初見成效。有研究者預處理假單胞菌的菌膠團後,將其固定在細粒磁鐵礦上來吸附工業廢水中Cu,發現當濃度高至100 mg/L時,除去率可達96%,用酸解吸,可以回收95%銅,預處理可以增加吸附容量。但生物吸附法也存在一些不足,例如吸附容量易受環境因素的影響,微生物對重金屬的吸附具有選擇性,而重金屬廢水常含有多種有害重金屬,影響微生物的作用,應用上受限制等,所以還需再進行進一步研究。
2.3.2生物絮凝
生物絮凝法是利用微生物或微生物產生的代謝物進行絮凝沉澱的一種除污方法。生物絮凝法的開發雖然不到20年,卻已經發現有17種以上的微生物具有較好的絮凝功能,如黴菌、細菌、放線菌和酵母菌等,並且大多數微生物可以用來處理重金屬。生物絮凝法具有安全無毒、絮凝效率高、絮凝物易於分離等優點,具有廣闊的發展前景。
2.3.3植物修復法
植物修復法是指利用高等植物通過吸收、沉澱、富集等作用降低已有污染的土壤或地表水的重金屬含量, 以達到治理污染、修復環境的目的。植物修復法是利用生態工程治理環境的一種有效方法,它是生物技術處理企業廢水的一種延伸。利用植物處理重金屬,主要有三部分組成:
(1)利用金屬積累植物或超積累植物從廢水中吸取、沉澱
或富集有毒金屬: (2)利用金屬積累植物或超積累植物降
低有毒金屬活性,從而可減少重金屬被淋濾到地下或通過
空氣載體擴散: (3)利用金屬積累植物或超積累植物將土
壤中或水中的重金屬萃取出來,富集並輸送到植物根部可收割部分和植物地上枝條部分。通過收獲或移去已積累和富集了重金屬植物的枝條,降低土壤或水體中的重金屬濃度。在植物修復技術中能利用的植物有藻類植物、草本植物、木本植物等。
藻類凈化重金屬廢水的能力主要表現在對重金屬具有很強的吸附力。褐藻對Au的吸收量達400mg/g,在一定條件下綠藻對Cu、Pb、La、Cd、Hg等重金屬離子的去除率達80%~90%。浩雲濤等分離篩選獲得了一株高重金屬抗性的橢圓小球藻(Chlorella ellipsoidea),並研究了不同濃度的重金屬銅、鋅、鎳、鎘對該藻生長的影響及其對重金屬離子的吸收富集作用。結果顯示,該藻Zn 和Cd 具有很高的耐受性。對四種重金屬的耐受能力依次為鋅>鎘>鎳>銅。該藻對重金屬具有很好的去除效果,15μmol/L Cu2+、300μmol/L Zn2+、100μmol/L Ni2+、30μmol/L Cd2+濃度72h處理,去除率分別達到40.93%、98.33%、97.62%、86.88%。由此可見,此藻類可應用於含重金屬廢水的處理。
草本植物凈化重金屬廢水的應用已有很多報道。風眼
蓮(Eichhoria crassipes Somis)是國際上公認和常用的一種治理污染的水生漂浮植物,它具有生長迅速,既能耐低溫、又能耐高溫的特點,能迅速、大量地富集廢水中Cd、Pb、Hg、Ni、Ag、Co、Cr等多種重金屬。張志傑等的研究結果表明,乾重lkg的風眼蓮在7~l0d可吸收鉛3.797g、鎘3.225g。周風帆等的 研究發現風眼蓮對鈷和鋅的吸收率分別高達97%和80%。香蒲(Typhao rientaliS Pres1)也是一種凈化重金屬的優良草本植物,它具有特殊的結構與功能,如葉片成肉質、柵欄組織發達等。香蒲植物長期生長在高濃度重金屬廢水中形成特殊結構以抵抗惡劣環境並能自我調節某些生理活動, 以適應污染毒害。招文銳等研究了寬葉香蒲人工濕地系統處理廣東韶關凡口鉛鋅礦選礦廢水的穩定性。歷時10年的監測結果表明,該系統能有效地凈化鉛鋅礦廢水。未處理的廢水含有高濃度的有害金屬鉛、鋅、鎘經人工濕地後,出水口水質明顯改善,其中鉛、鋅、鎘的凈化率分別達99.0%,97.%和94.9%,且都在國家工業污水的排放標准之下。此外,還有很多草本植物具有凈化作用,如喜蓮子草、水龍、刺苦草、浮萍、印度芥菜等。
採用木本植物來處理污染水體,具有凈化效果好,處理量大,受氣候影響小,不易造成二次污染等優點,越來越受到人們的重視。胡煥斌等試驗結果表明,蘆葦和池杉兩種植物對重金屬鉛和鎘都有較強富集能力,而木本植物池杉比草本植物蘆葦具有更好的凈化效果。周青等研究了5種常綠樹木對鎘污染脅迫的反應,實驗結果表明,在高濃度鎘脅迫下,5種樹木葉片的葉綠素含量、細胞質膜透性、過氧化氫酶活性及鎘富集量等生理生化特性均產生明顯變化,其中,黃楊、海桐,杉木抗鎘污染能力優於香樟和冬青。以木本植物為主體的重金屬廢水處理技術,能切斷有毒有害物質進入人體和家畜的食物鏈,避免了二次污染,可以定向栽培,在治污的同時,還可以美化環境,獲得一定的經濟效益,是一種理想的環境修復方法。
⑤ 可以解釋一下生物質壁分離實驗嗎
基本介紹
液泡內細胞液的滲透壓可通過下式計算:
質壁分離與復原結構示意圖
實驗原理
當外界溶液濃度大於細胞液濃度時,根據擴散作用原理,水分子會由細胞液中滲出到外界溶液中,通過滲透作用失水;由於細胞壁和原生質層的伸縮性不同,細胞壁伸縮性較小,而原生質層伸縮性較大,從而使二者分開;反之,外界溶液濃度小於細胞液濃度,則細胞通過滲透作用吸水,分離後的質和壁又復原。
目的要求
1.初步學會觀察植物細胞質壁分離和復原的方法;
2.理解植物細胞發生質壁分離和復原的原理。
重點難點
1.初步掌握植物細胞質壁分離和復原的實驗方法;2.臨時裝片的製作;3.低倍顯微鏡的使用。實驗器材:紫色洋蔥的鱗片葉、刀子、鑷子、滴管、載玻片、蓋玻片、吸水紙、顯微鏡;質量濃度為0.3g/mL的蔗糖溶液或質量分數為30%的蔗糖溶液、清水。
方法步驟
一 臨時裝片製作:1選材:(1)選用紫色特別深的洋蔥外表皮;說明:Ⅰ:在實驗之前,最好將洋蔥放在水中浸泡一下,可以使洋蔥吸水多一些,而且代謝也比較旺盛,實驗效果明顯。Ⅱ:將洋蔥的外層剝去兩層,因為處於最外的可能已經死亡。(2)取表皮:在洋蔥的外表皮上,用刀片劃「井」字,用鑷子輕輕撕取一小塊;關鍵:最好撕取單層細胞,如果撕的太厚,則會使細胞重疊,嚴重影響實驗效果;2製片:在載玻片中央滴上一滴清水,然後將取下的洋蔥表皮放在水中,平展開來;加上蓋玻片。注意:Ⅰ:洋蔥表皮不能捲曲起來;Ⅱ:不能帶有氣泡;Ⅲ加蓋玻片時,要從一側大約45°角放下,在載玻片和蓋玻片之間充滿了清水,以便擠出空氣。
質壁復原實驗
處理
取下臨時裝片,在一側滴入清水,另一側再用吸水紙重復幾次吸引,以確保洋蔥表皮細胞完全浸在幾乎是清水中;
觀察
先在低倍鏡找到一個質壁分離現象比較明顯的細胞,然後觀察,可見和剛才相反的現象,中央液泡漸漸變大,顏色變淺,最後原生質層又和細胞壁緊緊地貼在一起;若質壁分離沒有復原,則證明外界溶液濃度過高,導致細胞死亡。三 總結:細胞液濃度小於外界溶液濃度時,細胞通過滲透作用失水,發生質壁分離現象;細胞液濃度大於外界溶液濃度時,細胞通過滲透作用吸水,發生質壁分離復原現象。[1]
分離實驗特例
如果外界溶液是葡萄糖、硝酸鉀、氯化鈉、尿素、乙二醇等,質壁分離後因細胞主動或被動吸收溶質微粒而使細胞液濃度增大,植物細胞會吸水引起質壁分離後的自動復原。
⑥ 高中生物質壁分離自動復原的問題
怎麼還會發生復原呢?
答:那是因為這些小分子的溶質分子是通過主動運輸進回入細胞內的,當達答到平衡後,細胞繼續吸收這些溶質分子,使細胞內的細胞液濃度大於外界溶液濃度,這樣,細胞又開始從外界溶液中吸水,從而引起質壁分離復原現象。
⑦ 圖為某種植物幼苗(大小,長勢相同)均分為甲,乙兩組後
對你的這個題不是很理解,倒是你說的問題,俺可以聊兩句。
首先,A項說根細胞失水是環境溶液溶質濃度高造成的,這個確實有可能,這里就不假設其他可能性了,假設就是外界環境鉀離子濃度高導致的。
其次,關於主動運輸,我們需要重新考慮一下。首先,大多數生物質膜,尤其是細胞膜,是一種半透膜,不是什麼東西都能夠自由通過,通常只有水、氧、二氧化碳分子等小分子物質可以自由通過,而包括鉀離子在內的金屬離子,通常是不能自由通過的,就算是兩邊濃度不同,它們也不會自動從高濃度一邊跑到低濃度一邊,相反,會導致低濃度一邊脫水(水分子自由通過)。這時主動運輸的功能就有用了,主動運輸就是提供能量的方式,使分子、離子能夠定向傳輸,打破了這些物質不能自由通過生物質膜的限制,所以說這里的主動運輸,跟濃度無關,可以從低濃度到高濃度,也可以從高濃度到低濃度。
最後,咱說說離子吸收的起始時間。我們說離子吸收也是有個過程的,不可能一啟動就完成,但是你可以看到,6h是鮮重的最低點,也就是說,此後植物細胞就不再失水了,可以推測,此刻細胞內外離子濃度相等,那麼,原本不能通過細胞膜的離子是如何在兩邊平衡的呢?一方面是失水導致低濃度一邊濃度升高,另一方面就是主動運輸的幫助了。如果沒有主動運輸,甲組就會跟乙組一樣,直到掛掉,細胞內外的離子濃度也不會平衡。
⑧ 生物質壁分離 植物細胞失水,水失到哪裡去了 為什麼細胞壁與原生質層的空隙充滿蔗糖溶液
水失到細胞間的間隙上去了,反正透過細胞膜離開了細胞。
細胞壁與原生質層的空隙充滿蔗糖溶液是因為細胞膜失水縮小,而細胞壁不變,且細胞壁是半透膜可以通過蔗糖溶液,所以蔗糖溶液就填充進去了。
⑨ 孩子14歲,半年前經常眼紅,上周去醫院檢查說是病毒性眼角膜損傷。眼球接近瞳孔的地方有半透明狀新生物。
您好復!您反映的情況我制已經了解,從基本情況看,您孩子眼中的半透明狀新生物質應該是一種眼部感染後的分泌物,不必大驚小怪,屬較正常現象。
指導意見:
一般通過眼睛的休息,症狀會逐漸緩解及消失。平常應該避免長時間用眼及熬夜,不要用臟手揉眼等。發現此分泌物後,用醫用棉簽輕輕擦拭掉即可。
如二周後不見效,請去專業的眼科醫院就診治療。
請採納!!