❶ 高濃度有機廢水處理的高濃度有機廢水難生物處理分析
1、高濃度難降解有機廢水難生物處理的原因分析
高濃度難降解有機廢水難於生物處理的原因,本質上是由其特性決定的,除了在處理時的外部環境條件(如溫度、p H值等)沒有達到生物處理的最佳條件外,還有兩個重要的原因,一是由於化合物本身的化學組成和結構,在微生物群落中,沒有針對要處理的化合物的酶,使其具有抗降解性;二是在廢水中含有對微生物有毒或者能抑制微生物生長的物質(有機物或無機物) ,從而使得有機物不能快速的降解。此類廢水在水質、水量等方面具有以下幾方面的共同特性:
(1)廢水所含有機物濃度高
幾種典型的高濃度有機廢水,如焦化廢水、制葯廢水、紡織/、印染廢水、石油/化工廢水等,其主要生產工段的出水COD濃度一般均在3000~5000mg/ L以上,有的工段出水甚至超過10000 mg/ L ,即使是各工段的混合水,一般也均在2000 mg/ L以上。
(2)有機物中的生物難降解物種類多比例高
這類有機廢水中,往往含有較高濃度的生物難降解物,甚至是生物毒物,且種類較多。如在典型的焦化廢水中,除含有較高濃度的氨氮外,還有苯酚、酚的同系物以及萘、蒽、苯並芘等多環類化合物,及氰化物、硫化物、硫氰化物等;而比較典型的抗生素廢水,則含有較高濃度的SO2 -4、殘留的抗生素及其中間代謝產物、表面活性劑及有機溶媒等。
(3)除有機物外,廢水含鹽濃度較高
此類廢水往往有較高的含鹽量,致使廢水處理的難度加大。如典型的抗生素廢水,其硫酸鹽含量一般均在2000 mg/ L以上,有的甚至高達15000mg/ L。
(4)、各生產工段排水的水質、水量隨時間的波動性大
還以焦化廢水為例,一座中等規模的焦化廠,其水量在一天內可由約10 m3/ h變化到40 m3/ h ,廢水的COD濃度也可由約1000 mg/ L變化到3000mg/ L以上,甚至更高;而制葯廢水除水量隨生產工序的變化而劇烈變化外, COD濃度更是可由每升幾百毫克變化到幾萬毫克。
(5)廢水處理方法本身也存在較大問題
處理這類廢水,多採用生物處理,且以好氧法或好氧法的改進型(如A/ O工藝等)為主,有的也採用厭氧生物處理。從這些工藝在國內外的實際運用情況看,主要存在工藝流程長、外加物(如外加碳源物、調節pH葯劑等)量大且費用高等問題,從而導致整體上單位水量造價和單位水量成本均較高。以焦化廢水為例,較為理想的處理焦化廢水的單位水量成本至少在(人民幣) 10~8元/ m3以上,國外一些公司更是不把處理成本作為第一因素考慮。
2、難降解有機物的主要種類和危害
難降解的有機物種類繁多,來源於各行各業如化工、印染、農葯等,且有潛在的危險。
❷ 為什麼要對廢水排放現狀進行分析
水庫等封閉或半封閉水域時,分期達到二級標准。
城市污水處理廠排污執行《城鎮污水處理廠污染物排放標准》GB18918-2002
一級標准分為A標准和B標准,根據當地經濟條件和水污染控制要求;
排入設置二級污水處理廠的城鎮排水系統的污水、海洋石油,採用一級強化處理工業時執行、洄遊通道,執行三級標准、燒鹼行業除外;
排入GB3838Ⅵ、水產養殖區等漁業水域及游泳區)。
排入GB3838Ⅲ類水域(劃定的保護區和游泳區除外)執行一級標准(Ⅲ類水域、合成氨、魚蝦類越冬場、船舶。
二級標准為出水排入GB3838Ⅵ、磷肥、兵器、航天;
三級標准為非重點控制流域和非水源保護區的建制鎮的污水處理廠:主要適用於集中式生活飲用水地表水源地二級保護區、紡織。但必須預留二級處理設施的位置工業單位排污執行《污水綜合排放標准》GB8978-1996,造紙、肉類、Ⅴ類水域執行二級標准(Ⅵ類水域主要適用於一般工業用水及人體非直接接觸的娛樂用水區、鋼鐵,執行一級標准中A標准,Ⅴ類水域主要適用於農業用水區及一般景觀要求水域)、Ⅴ類水域時執行;
排入GB3838地表水Ⅲ類功能水域執行一級標準的B標准,城鎮污水處理廠出水排入國家和省確定的重點流域及湖泊
❸ 煤矸石、礦坑廢水的成因分析
煤矸石、礦坑廢水的化學組分是研究其遷移、聚集過程,形成污染的基本出發點。
(1)煤矸石的成分及酸化成因
野外調查和采樣結果表明,三號井的煤矸石堆主要由炭質泥岩、炭質頁岩、雜砂岩和少量石灰岩的碎塊組成。在自然堆放情況下,大小混雜,無分選,其中塊徑大於10cm 的煤矸石約佔29%、塊徑5~10cm 約佔22%、塊徑3~5cm 約佔14%、塊徑1~3cm 約佔22%、塊徑0.5~1cm 約佔8%,其餘為塊徑小於0.5cm 的碎屑。炭質泥岩和炭質頁岩占據的比例較高。這類岩塊不僅炭質含量高,還有大量肉眼可識別的黃鐵礦晶體聚集體和散晶,有些外表呈現硫化物的黃色或磁鐵礦的銹痕。除此之外,X 衍射物相分析表明,煤矸石中還含有比例不等的綠泥石、伊利石、石英和黏土類礦物(表4.2)。
利用ICP-AEs儀器測定,煤矸石碎屑混合樣所含的化學成分中,鐵、硫的含量十分高,其中鐵的含量達148.76g/kg,有效態達4.57g/kg;硫的含量達117.82g/kg,有效態達1.45g/kg,其他化學成分遠小於鐵和硫,詳細情況見表4.3。
由此推算,現堆放的煤矸石山約有4.75×104t鐵、1.45×104t硫和相當數量的重金屬元素。在酸性水環境中可溶解脫出,隨滲出液遷移到下游地區,從而形成礦區一個長期的污染源。
表4.2 大峪溝三號井田煤矸石礦物組成
表4.3 大峪溝三號井田煤矸石化學組分含量(單位:mg/kg)
因為煤矸石中普遍含硫量高而且主要以黃鐵礦形式賦存,在風化雨淋過程中緩慢氧化成Fe2O3和SO2,與水作用形成Fe2(SO4)3和H2SO4,這樣,一部分硫以氣態的形式排放到大氣中,還有部分以離子方式進入水體和土壤,從而引起酸化。
(2)礦坑廢水的化學組分及成因
據2007年8月9日採集的水樣測試分析結果(表4.4,表4.5),礦坑廢水化學組分有如下特點:
1)總含鹽量高,其中礦化度達2400mg/L,相當於鹹水-微鹹水類型,水中懸浮狀固形物為2400mg/L,其成分主要為石膏及非晶質物質。
2)陽離子中以鹼金屬和鹼土金屬離子為主。鉀、鈉、鈣、鎂離子總量占陽離子總量的90%以上,陰離子中硫酸根含量極高,達1685mg/L,佔全部陰離子的90%以上,而重碳酸根離子僅為3.05mg/L。
3)重金屬以鋅錳為主,分別為2.4mg/L、1.8mg/L,銅、砷、鉛、鎘、六價鉻含量甚微,均小於0.05mg/L。
4)pH值為3.07,屬酸性水。這些特點與礦坑廢水形成的條件有著直接關系。
現排放的礦坑水大部分來自一1煤圍岩的裂隙水、岩溶水,從一1煤和煤矸石的化學成分可知,這些地層含硫、鐵極高。在巷道開拓、回採之前,這些物質處於還原環境,大部分以難溶的硫化物形式封存於地下,一旦人工揭露,巷道和採掘面形成氧化環境,礦坑水酸度就會變大。酸度增高的機理有三個方面:
表4.4 礦坑水排水口、礦井口水樣測試數據(單位:mg/L)
注:取樣地點,礦坑水排水口(N34°43༾.46″、E113°05ཧ.28″);室內編號,856。
礦井口(未加中和劑)(N34°43གྷ.40″、E113°05ཟ.26″);室內編號,857。
取樣時間,2007年7月。
表4.5 礦坑水排水口、礦井口水樣測試數據(單位:mg/L)
注:取樣地點,礦坑水排水口(N34°43༾.46″、E113°05ཧ.28″);室內編號,1323。
礦井口(未加中和劑)(N34°43གྷ.40″、E113°05ཟ.26″);室內編號,1462。
取樣時間,2007年11月。
一是煤層和頂底板中含硫化合物在氧氣、水共存條件下,氧化形成游離的H2SO4,反應方程式為
煤礦山地質環境問題一體化治理研究
二是式(4.1)中鐵等金屬的硫酸鹽水解釋放H+,其反應過程為
煤礦山地質環境問題一體化治理研究
三是地下水中H2CO3的分解。在大峪溝一1煤井巷的條件下,硫化物的氧化和硫酸鐵的水解對礦坑水的酸化影響最為突出。此外,H2CO3的分解也將帶出一定量的Ca2+、Mg2+。由於H2SO4浸溶又有可能使Ca、Zn等金屬轉化為硫酸鹽,使之從礦物中析出。在上述反應中,硫化細菌起著重要的催化作用,巷道良好的通風條件,適宜的濕度,促使諸如硫桿菌屬的細菌大量繁殖,加速Fe2+氧化速度並從中獲得自身繁殖所需的能量,與此同時,它們將煤層中所含的單質硫迅速氧化為硫酸,提高了礦坑水的酸度。
❹ 化工廢水處理的化工廢水主要特徵分析
1、化工廢水成來分復雜,反應原源料常為溶劑類物質或環狀結構的化合物,增加了廢水的處理難度;
2、該廢水中含有大量污染物物質,主要是由於原料反應不完全和原料或生產中使用大量溶劑造成的。
3、有毒有害物質多,精細化工廢水中有許多有機污染物對微生物是有毒有害的,如鹵素化合物、硝基化合物、具有殺菌作用的分散劑或表面活性劑等;
4、生物難降解物質多,B比C低,可生化性差;
❺ 怎樣分析處理城市生活污水中的主要成分
首先用簡單的離子鑒定方法,例如用硫酸根,碳酸根,氯離子的沉積鑒定法鑒定出這些離子。專其次准確的屬測試需要用激光飛秒檢測技術,分析出裡面的常量和微量的成分和含量。一般來講,城市污水包括生活污水、工業廢水、雨水徑流。生活污水占絕大部分,來自我們的日常生活(洗澡、洗衣服、廚房、部分雨水、商場、單位、洗車點等等 等等都會產生污水),通過排水管網輸送至集中地污水處理設施。
城市每人每日排出的生活污水量為150—400L,其量與生活水平有密切關系。生活污水中含有大量有機物,如纖維素、澱粉、糖類和脂肪蛋白質等;也常含有病原菌、病毒和寄生蟲卵;無機鹽類的氯化物、硫酸鹽、磷酸鹽、碳酸氫鹽和鈉、鉀、鈣、鎂等。總的特點是含氮、含硫和含磷高,在厭氧細菌作用下,易生惡臭物質。生活污水同時也是低溫熱源和甲烷發生源。
❻ 電鍍廢水處理中的問題分析及措施
電鍍廢水由於具有毒性和分布廣泛的特點,是一種環境污染源。當今,各大污水處理廠處理電鍍廢水的方法有多種。為全面地對電鍍廢水做檢測處理,加工解決方案的設計要合理,以滿足實際效果,在多方面充分發揮其科學性,經濟性和實用優勢,同時也要結合多種畢亂處理方法,綜合考慮廢水處理效果,循環利用資源,實施綜合治理措施,從根本上降低電鍍廢水的污染性。
由於世界經濟的繁榮和不斷發展,科學技術日新月異,推動擴大了電鍍行業的規模, 每年工業生產排放的電鍍廢水量非常巨大。電鍍廢水的危害很大,特別是對水體和環境的破壞會很嚴重,時間越久那麼毒性也會越強,進一步對生態環境帶來很大的破壞。
與其他污染相比,電鍍廢水的危害程度遠遠超出其他污染。因此,採取科學合理的處理方法凈化處理電鍍廢水是非常重要的。有關監督管理人員還應當嚴格按照國家規范和標准進行不定期檢查。
當我們選擇廢水處理工藝時,我們不僅要考慮其處理效果,還要考慮其經濟效益。在進行污水處理之前手昌檔,有必要認真考慮投資資本,節約能源的程度,經濟效益的控制以及管理和運營的成本等問題。
1電鍍廢水處理過程中的問題
1.1廢水處理成本太高,設備投資較大
污水處理企業需要投入很多錢來引進污水處理設備。在投入使用時,如果發現實際處理效果與預期不相符,廢水處理不是很徹底,很多指標都不能符合國家規范的要求,但是企業已經在原材料等方面做了很大的投入。
所以,如果能夠提供人力、物力、財力去開發新型的廢水處理設備,控制好施工過程的投資成本也是非常有意義的,另外也要盡可能簡化流程,拓廣其使用范圍,從根本上完全消除出現的負面現象,自主學習開發新的廢水處理技術才是最實用最根本最有效的方法。
1.2處理效果不能達到預期效果,工藝不夠成熟
根據以往的實際經驗,研究人員現已開發出許多的廢水處理工藝技術。行業中廣泛使用的辦法有電解法,硫酸亞鐵法,物理法,離子交換法,焦亞硫酸鈉法,鐵焦法等。
在廢水處理過程中,很多廢水處理工廠都採用亞硫酸鈉法,焦亞硫酸鈉法,鐵焦炭法方法來處理電鍍廢水;因為硫酸亞鐵法和離子交換法以及電解法的處理效果不是很好,同時管理過程較為繁瑣,操作要求較為高,所以這些方法在實踐中應用較少,因為它們在施工管理和操作中的效果未達到預期水平。
但是,在實際應用中,如硫酸亞鐵法,焦亞硫酸鈉法,亞硫酸鈉法等實施方案,難以將pH值和進料量穩定地控制在允許的范圍內。如果投入量超過了標準的要求量,這大大浪費了材料資源,還會增加很多處理成本,百害無一利。
同時,它還會增加污水中的COD值,造成二次污染。進料投放過多時,會在溶液中產生化學反應從而產生復雜的離子,難以以簡單的方式除去。但是,如果投料不足,雜質不能得到充分降解,雜質含量不能滿足標准要求,同樣也會達不到預期的處理效果。因此,在控制原料的投放量方面應提高相關的研究和技術革新。
1.3電鍍廢水分類收集不到位
普通的電鍍廢水工廠對於廢水的分類和收集等常見問題
不夠重視,不能夠按照生產廢水收集的要求進行單獨收集管用於生產廢水的收集和處理,現在對於處理廠來說,他們只將廢水分為四類:氰化物廢水、鎳化物廢水,含鉻廢水和綜合廢水。對這些廢水進行收集後在進行全面地處理。
從清潔生產的角度來看,這種做法是不正確的、分類非常混亂。廢水中的金屬物質沒有得到很好的回收,這造成了資源的浪費,同時也增加了廢水處理的負荷和成本。各種污染物的特徵不同,不能根據污染物不同性質而採取有效的處理措施,從而增加了葯劑的用量和處理成本。
2電鍍廢水處理的相應措施
2.1物理法
這種方法主要通過物理規律的作用,例如離心、過濾和重力效應等物理作用來分離出懸浮的污染物。通過離心機離心分離固體;篩濾法原理是通過砂濾器和格柵實現過濾雜物。重力法是通過沉澱池,氣浮槽和沉澱池來使漂浮污染物沉澱。污水的物理處理不會改變物質的化學性質,如電鍍處理法中對反滲透、結晶和蒸發濃縮方法等。
2.2化學法
(1)含氰廢水處理。採用氯氧相結合或者氯系處理以及臭氧等處理方法來對含氰廢水進行處理。含氰化物的廢水處理步驟由兩部分組成:
首先使氰化物發生氧化反應從而生成氰酸鹽,從而使廢水的毒性降低。其次是將氰酸鹽進行充分的氧化,則會分解為氮氣和二迅州氧化碳。次氯酸鈉和二氧化氯容易發生化學反應,而生成液氯,還能夠氧化劑,是一種氯系處理含氰廢水。
在過濾氰化物的過程中,也可以使用氧化還原原理,使部分水中的S2-,SO32-,NO3-等陰離子可以被除去。含有氰化物的廢水進行臭氧處理,一般分為兩級處理方式。
第一階段將是氰基氧化物轉化氰酸鹽,緊接著在反應的另一部分,需要將氰酸鹽氧化成N2和CO2。因為在後期的化學反應是非常迅速的,因此需要加入亞銅離子作為催化劑。另外臭氧也可以進行氰化物廢水處理,水質處理好,氯氧化法不會留下余氯,不再有污泥,而是大量的電力和更多的設備投資。
(2)含鉻廢水處理。其中鐵氧體法是指對含有鉻的廢水進行鐵素體處理,在廢水中加入硫酸亞鐵,使廢水中的六價鉻還原成三價鉻。然後將鹼加入廢水中以調節pH,使廢水中的其他重金屬離子(表示為Mn+)與三價鉻反應沉澱。
在共沉澱過程中,溶解在水中的重金屬離子被吸收到鐵素體晶體中,並產生復合鐵素體。另一方面,亞硫酸鹽還原法是指含鉻廢水主要在酸性條件下用亞硫酸鹽處理,廢水中的三價鉻還原為六價鉻,然後調節pH值,形成氫氧化鉻沉澱,從而將其去除並達到凈化廢水的目的。
2.3電解法
這種方法主要是利用金屬的電化學性質,通過直流電流來去除廢水中的金屬離子,這樣可以顯著地凈化高濃度電沉積金屬廢水的方法,處理的效率很高,同時便於易於回收。但這種方法的不足之處在於它不適合處理低濃度的金屬廢水,會增加其成本,經濟效益較差,通常經過電解後濃縮後效果更好。
對於高濃度電鍍廢水,可以考慮通過滲透過程進行固結,在利用電解工藝進行後續的處理,使凈化效率大大提高,從而節省了資金。現在,在廢水處理的機械設備中,有一種新的處理系統,即高壓脈沖電凝系統,其在處理廢水、表面處理和電鍍混合廢水等方面具有很明顯的優勢。
2.4吸附法
事實上,充分利用好吸附劑的獨特結構可以用於去除重金屬離子。從實踐中可以看出,採用吸附法時,使用不同的吸附劑,會增加資金投入,會產生大量的污泥從而造成二次污染,也有其他問題的不同程度上存在,很難達到自然排放的相關標准。
其起作用的主吸附劑主要有腐殖酸,海泡石和多糖樹脂等。沒有更難的活性炭設備,普遍使用與廢水處理,但由於活性炭的活性減低和利用率地,使水質處理不能重復使用,一般用於電鍍廢水的預處理。
2.5植物處理法
這種方法能夠利用植物的沉澱,吸收和富集的作用來降低電鍍廢水中的重金屬含量,從而能夠抑制污染,起到環保的積極作用。這種方法的處理措施分為三個步驟:
首先,利用金屬將植物積累,對於吸收和沉澱廢水中的有毒物質做初步處理。其次,利用金屬將積累植物,降低有毒金屬的活性,最後,和第二步驟一樣,從水或土壤中提取重金屬,使其富集並運輸到地上植物根部和樹枝的部分。
3結語
綜上所述,電鍍廢水的處理技術種類非常多,但是因為電鍍行業的管理水平和生產工藝存在各種各樣的問題,使得廢水的處理質量也存在很大的不同,僅僅依靠一種廢水處理方法很難達到廢水的處理標准。需要根據污水監測結果,必須綜合多種處理技術對污水進行處理,以達到最顯著的處理效果。同時為了促進電鍍廢水工藝的發展,必須加強對處理過程的監督和管理,同時改革電鍍技術。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
❼ 鐜澧冪洃嫻嬪疄楠屽ゆ槸鍚﹀彲浠ュ垎鏋愬尰鐤楀簾姘達紵
鐜澧冪洃嫻嬪疄楠屽ゅ彲浠ュ垎鏋愬尰鐤楀簾姘淬傚尰鐤楀簾姘存槸鎸囧尰鐤楁満鏋勫湪鍖葷枟媧誨姩涓浜х敓鐨勫悇綾誨簾姘達紝鍏朵腑鍖呮嫭鐥呬漢鐨勭敓鐞嗘у簾姘村拰鍖葷枟媧誨姩鎵浣跨敤鐨勬礂娑堟按鍜屽尰鐤楀簾娑茬瓑銆傚叾鍖栧︽垚鍒嗗拰奼℃煋鐗╃嶇被杈冧負澶嶆潅錛岄渶瑕佹湁杈冮珮鐨勬妧鏈姘村鉤鍜屽垎鏋愪華鍣ㄨ懼囨潵榪涜屽垎鏋愩傜幆澧冪洃嫻嬪疄楠屽ら氬父鎷ユ湁杈冧負鍏堣繘鐨勪華鍣ㄨ懼囧拰鎶鏈浜哄憳錛屽彲浠ヨ繘琛屽尰鐤楀簾姘寸殑鐢熷寲銆佹湁鏈虹墿銆侀噸閲戝睘銆佸井鐢熺墿絳夋柟闈㈢殑鍒嗘瀽銆
鍖葷枟搴熸按鐨勫垎鏋愪富瑕佹秹鍙婁互涓嬪唴瀹癸細
1銆佸寲瀛︽垚鍒
鍖葷枟搴熸按涓鍚鏈夊氱嶅寲瀛︾墿璐錛屽傛哀鍖栧墏銆佽繕鍘熷墏銆佹秷姣掑墏絳夛紝闇瑕佽繘琛屽寲瀛︽垚鍒嗗垎鏋愩
2銆侀噸閲戝睘
鍖葷枟搴熸按涓鍚鏈夊氱嶉噸閲戝睘鍏冪礌錛屽傞搮銆佹睘銆侀摤絳夛紝闇瑕佽繘琛岄噸閲戝睘鍏冪礌鐨勫垎鏋愩
3銆佹湁鏈虹墿
鍖葷枟搴熸按涓鍚鏈夊氱嶆湁鏈虹墿錛屽傝嵂鐗╂畫鐣欍佸戝寲鍓傜瓑錛岄渶瑕佽繘琛屾湁鏈虹墿鍒嗘瀽銆
4銆佸井鐢熺墿
鍖葷枟搴熸按涓鍚鏈夊氱嶄紶鏌撴х棶鑿屽拰鑷寸棶鑿岋紝闇瑕佽繘琛屽井鐢熺墿瀛﹀垎鏋愩
緇間笂鎵榪幫紝鐜澧冪洃嫻嬪疄楠屽ゅ彲浠ュ垎鏋愬尰鐤楀簾姘達紝浣嗛渶瑕佷繚璇佸疄楠屽ゆ嫢鏈夎緝涓哄厛榪涚殑浠鍣ㄨ懼囧拰鎶鏈浜哄憳錛屽苟涓旀寜鐓х浉鍏崇殑媯嫻嬫爣鍑嗗拰鏂規硶榪涜屽垎鏋愩傚悓鏃訛紝闇瑕佹敞鎰忓瑰尰鐤楀簾姘磋繘琛屽畨鍏ㄥ勭悊鍜屽勭疆錛屼互淇濊瘉鐜澧冨拰浜虹被鍋ュ悍鐨勫畨鍏ㄣ
❽ 分析精細化工廢水的通性,有哪些處理手段
精細化工廢水的共性特點:
水質成分復雜。精細化工產品生產特點是流程長,反應復雜,副產品多,反應原料常為溶劑類物質或環狀結構的化合物,使得廢水中的污染物組分繁多復雜,增加餓了廢水的處理難度。
廢水中的污染物含量高,是精細化工生產廢水的另一個顯著特點,特別是一些用老工藝生產的傳統產品設備陳舊,產品得率低,往往造成廢水中污染物含量居高不下,這類情況在小型企業和鄉鎮企業中比較多見。
COD值高。在制葯、農葯、染料等行業中,COD在幾萬、幾十萬毫克/升的廢水是經常可以見到的。這是由於原料反應不完全所造成的大量副產物和原料、或是生產過程中使用的大量溶劑介質進入了廢水體系中所引起的。
有毒有害物質多。精細化工廢水中有許多有機物對微生物是有毒害的,如鹵素化合物,硝基化合物,有機氮化合物、叔氨及季氨鹽類化合物、具有殺菌作用的分散劑或表面活性劑。
生物難降解物質多。精細化工廢水中的有機污染物大部分屬於生物難降解的物質,如鹵素化合物、醚類化合物、硝基化合物、偶氮化合物、叔氨及季氨鹽類化合物、某些雜環化合物等。
有的廢水中鹽分含量高。如染料、農葯行業中的鹽析廢水和酸析廢水、鹼析廢水經中和處理後形成的含鹽廢水。廢水中過高濃度的鹽分對微生物有明顯的抑製作用。例如當廢水中的氯根離子超過3000mg/L時,一些未經馴化的微生物將受到抑制,CODCr的去除率會明顯下降,當廢水中的氯離子濃度大於8000mg/L時,會造成污泥體積膨脹,水面泛出大量泡沫,微生物會相繼死亡。
7.有的廢水色度非常高。如染料、農葯等廢水的色度一般均在幾千倍甚至數萬倍以 上。有的顏色的廢水,本身就表明水體中含有特定的污染物質,從感官上使人產 生不愉快和厭惡的心理。另外,有色廢水可以阻截光線在水中通行,從而影響水 生生物生長,以抑制由日光催化分解的有機物質的自然凈化能力。
精細化工廢水的處理方法:
清潔生產:
盡量採用無公害或少公害的生產工藝。
預處理:
大部分有機化工廢水都採用生化技術進行處理,在此之前須對廢水進行預處理,消除對生化處理不利的因素。包括溶劑回收、去除或轉化有毒有害物質、降低COD負荷等措施。
提高生化處理能力:
加大調節池容量、對水質水量進行充分調節;對鹽分較高的廢水採用適量生活污水進行稀釋或對活性污泥進行馴化;選擇合適的工藝參數,如pH、DO等;好氧處理前增加兼性階段,或在調節池後段加設填料,以提高廢水的可生化性能;含有毒有害物質的廢水,盡量採用完全混合式的生化處理裝置;可投加添加劑來提高生化處理效率;生化出水進行混凝沉澱處理,可提高COD去除率;可篩選新菌種或利用基因工程解決特殊有機廢水的難生化處理問題。
酸類廢水處理
在廢水中出現的有機酸有甲酸、乙酸、長鏈脂肪酸、檸檬酸、草酸、芳香族羧酸及二元酸等。
1 蒸餾及蒸發法:加入過量甲醇產生沸點較低的甲酸甲酯,並使其從廢水中蒸出。之後再加熱回收甲醇。
2 混凝沉降法:調節廢水pH值並向廢水中加入化學混凝劑,可去除廢水中的有機酸。
3 吸附法:羧酸也可以用大孔吸附樹脂進行吸附回收,樹脂結構上含有不同的基團,則能夠吸附回收不同的化學物質。
4 萃取法:廢水中的醋酸可用丁醇萃取。
5 沉澱法:含芳香酸或其鹽的廢水可用三價鐵鹽作沉澱劑,調節廢水的pH值產生沉澱,然後經過濾去除。去除率與處理後的pH有關,而與污染物的濃度無關。
6 氧化法:大多數羧酸類廢水可用氧化法處理。包含批式液相氧化、濕式氧化、臭氧氧化等。
7 生化法:大部分脂肪酸均可採用好氧生物法處理。一般認為直鏈脂肪酸很易生化降解,在直鏈結構上引入其他基團可能會對酸的可生化降解性產生影響。
8 還原法
硫酸亞鐵脫色就是還原法脫色的一個離例子。鐵炭法廢水脫色:在酸性條件下,有色廢水經過鐵屑和炭(或顆粒活性炭)的混合床,發生了微電解過程,使污染物中的發色基團受到破壞,從而達到脫色的目的。
原文地址:http://www.ep360.cn/news/201612/5697.html