① 污水處理中的碳源是什麼有什麼作用
正常碳源指的污水中有機物,若污水中有機物含量過低,一般投加額外碳源,比如乙酸鈉、工業葡萄糖等。
因為污水處理主要靠微生物的生命活動降解污染物,碳源就是微生物重要的營養物質,如果碳源不足(污水有機物濃度太低),微生物就無法生長繁衍,污水處理效果就差。為了保證微生物的生長繁衍,就需要「投喂」碳源。
② 污水cod超標怎麼處理
1、物理法:是利用物理作用來分離廢水中的懸浮物或乳濁物,可去除廢水中的COD。常見的有格柵、篩濾、離心、澄清、過濾、隔油等方法。
2、化學法:是利用化學反應的作用來去除廢水中的溶解物質或膠體物質,可去除廢水中的COD。常見的有中和、沉澱、氧化還原、催化氧化、光催化氧化、微電解、電解絮凝、焚燒等方法。
3、物理化學法:是利用物理化學作用來去除廢水中溶解物質或膠體物質。可去除廢水中的COD。常見的有格柵、篩濾、離心、澄清、過濾、隔油等方法。
污水中的cod超標反應了水中還原性物質受污染的程度,cod的含量越高,則水中的需要消耗的溶解氧就越多,從而造成水中缺氧,而水中缺氧就會導致大量水中的動植物因缺氧而死亡,加速水質惡化。
企業生產過程中cod的產生可是不可避免的,例如食品廠中多餘食物的殘留與水體、化工廠中還原性物質S離子和氯離子等及電鍍廢水在酸洗過程中都是污水COD超標原因。
(2)廢水去碳擴展閱讀:
人類生產活動造成的水體污染中,工業引起的水體污染最嚴重。如工業廢水,它含污染物多,成分復雜,不僅在水中不易凈化,而且處理也比較困難,工業廢水為工業污染引起水體污染的最重要的原因。
生活污水、畜禽飼養場污水以及製革、洗毛、屠宰業和醫院等排出的廢水,常含有各種病原體,如病毒、病菌、寄生蟲。水體受到病原體的污染會傳播疾病,如血吸蟲病、霍亂、傷寒、痢疾、病毒性肝炎等。歷史上流行的瘟疫,有的就是水媒型傳染病。
在水資源中,有機物帶入蒸汽系統和凝結水中,使pH降低,造成系統腐蝕,在循環水系統中有機物含量高會促進微生物繁殖。因此,不管對除鹽、爐水或循環水系統,COD都是越低越好,但並沒有統一的限制指標。
③ 有機污水的A/O生化處理工藝流程圖,並說明其除碳脫氮原理
生活污水三段A/O處理工藝的流程圖。希望對你有用,
原水—集水井—厭氧池—專好氧屬池—厭氧池—好氧池—厭氧池—好氧池—沉澱池(污泥迴流到第一個厭氧池)(如果污泥過多,則排到污泥濃縮池在到壓濾機進行污泥壓縮,上清液迴流到集水井)—出水
水中脫氮是生活污水中的有機氮,蛋白氮在氨化菌的作用下轉化為氨氮,在再好樣條件下被硝化菌轉化為硝酸鹽氮。在厭氧的條件下,硝酸鹽氮被反硝化菌,以碳為能源(提供能源),硝酸鹽氮被轉化為氨氣排出。
④ 怎樣去除印染廢水中的碳,氮,硫
目前有很多產業的廢水處理場,需增設廢水高級處理單元才能達到當地政府的放流水標准,至今已發展的廢水高級處理技術包括臭氧氧化法、活性碳吸附法、薄膜分離法、濕式氧化法及Fenton氧化法等,其中以Fenton氧化法(H2O2/Fe2+rightleder)被認為是一種最有效、簡單且經濟的方法,其他方法則因初設成本或操作成本太高而較難被業者接受。Fenton氧化法雖有高效率、低操作費的優點,但同時因其會產生大量的鐵污泥,成為應用時的一大缺點。
電解還原-Fenton法是利用電解還原的方法使Fe3+在陰極再還原為Fe2+催化劑,反應pH約操作在1.5左右,特別適合處理高COD且難生物分解的有機廢液,陰極反應如式(2),因此原先式(1)的反應可修正為式(3),即反應過程幾乎不會產生鐵污泥。
反應過程中,H2O2直接連續添加於電解還原槽並與電解產生的Fe2+反應,用以氧化廢水中的有機物,而反應產生的Fe3+又可直接於陰極還原成Fe2+並源源不斷的參與反應,使得H2O2的氧化效率提高,降低H2O2的加葯量及降低操作成本。此外,在陽極發生之電極氧化作用亦可去除部份有機物。反應完成後的Fe2+與Fe3+混合溶液可作為鐵系混凝劑使用。
⑤ 城市污水活性污泥處理的幾種工藝
一、活性污泥法脫氮傳統工藝
1、Barth提出的三級活性污泥法流程:
第一級曝氣池的功能:① 碳化——去除BOD5、COD;② 氨化——使有機氮轉化為氨氮;
第二級是硝化曝氣池,投鹼以維持pH值;
第三級為反硝化反應器,可投加甲醇作為外加碳源或引入原廢水。
該工藝流程的優點是氨化、硝化、反硝化分別在各自的反應器中進行,反應速率較快且較徹底;但七缺點是處理設備多,造價高,運行管理較為復雜。
2、兩級活性污泥法脫氮工藝
與前一工藝相比,該工藝是將其中的前兩級曝氣池合並成一個曝氣池,使廢水在其中同時實現碳化、氨化和硝化反應,因此只是在形式上減少了一個曝氣池,並無本質上的改變。
二、缺氧——好氧活性污泥法脫氮系統(A—O工藝)
該流程與兩級活性污泥工藝相比,是將缺氧的反硝化反應器設置在好氧反應器的前面,因此常被稱為「前置式反硝化生物脫氮系統」。其主要特徵有:反硝化反應器設置在流程的前端,而去除BOD、進行硝化反應的綜合好氧反應器則設置在流程的後端;因此,可以實現進行反硝化反應時,可以利用原廢水中的有機物直接作為有機碳源,將從好氧反應器迴流回來的含有硝酸鹽的混合液中的硝酸鹽反硝化成為氮氣;而且,在反硝化反應器中由於反硝化反應而產生的鹼度可以隨出水進入好氧硝化反應器,補償硝化反應過程中所需消耗鹼度的一半左右;好氧的硝化反應器設置在流程的後端,也可以使反硝化過程中常常殘留的有機物得以進一步去除,無需增建後曝氣池。目前,A-O工藝是實際工程中較常見的一種生物脫氮工藝。
三、其它生物脫氮工藝
1、氧化溝工藝
由於氧化溝的運行工藝特徵,會在其反應溝渠內的不同部位分別形成好氧區、缺氧區,使得氧化溝內的活性污泥分別經過好氧區和缺氧區,從而可以實現生物脫氮功能。
2、生物轉盤生物脫氮工藝
控制每級生物轉盤的運行工況,使其分別處於好氧狀態和缺氧狀態,即在整個流程中需要分別採用好氧生物轉盤和厭氧生物轉盤,在不同的好氧生物轉盤中分別實現BOD的去除和氨氮的硝化,而在厭氧生物轉盤中則主要實現反硝化,其原理類似於前述的三級活性污泥生物脫氮工藝,只是在本工藝中實現各級功能是依靠生物轉盤來完成的。
廢水生物除磷工藝與技術
一、厭氧—好氧生物除磷工藝(A-O工藝)
實際上是另外一種意義上的「A—O工藝」,其中的「A」指的是「厭氧anaerobic」,它是直接根據生物除磷的基本原理出發而設計出來的一個工藝,其特點有:水力停留時間為3~6h;曝氣池內的污泥濃度一般在2700~3000mg/l;磷的去除效果好(76%),出水中磷的含量低於1mg/l;污泥中的磷含量約為4%,肥效好;污泥的SVI小於100,易沉澱,不易膨脹。
二、Phostrip除磷工藝
實際上是一種生物除磷與化學除磷相結合的工藝,其特點有:除磷效果好,處理出水的含磷量一般低於1mg/l;污泥的含磷量高,一般為2.1~7.1%;石灰用量較低,介於21~31.8mgCa(OH)2/m3廢水之間;污泥的SVI低於100,污泥易於沉澱、濃縮、脫水,污泥肥分高,不易膨脹。
同步生物脫氮除磷工藝
一、Bardenpho同步脫氮除磷工藝
其工藝特點:各項反應都反復進行兩次以上,各反應單元都有其首要功能,同時又兼有二、三項輔助功能;脫氮除磷的效果良好。
二、A—A—O同步脫氮除磷工藝
AAO工藝是目前較為常見的同步脫氮除磷工藝,其工藝特點主要是:工藝流程比較簡單;厭氧、缺氧、好氧交替運行,不利於絲狀菌繁殖,無污泥膨脹之虞;無需投葯,運行費用低。
該工藝的主要設計參數可以參見下表:
水力停留時間(h) 厭氧反應器 0.5~1.0
缺氧反應器 0.5~1.0
好氧反應器 3.5~6.0
污泥迴流比(%) 50~100
混合液內循環迴流比(%) 100~300
混合液懸浮固體濃度(mg/l) 3000~5000
F/M(kgBOD5/kgMLSS.d) 0.15~0.7
好氧反應器內DO濃度(mg/l) ³2
BOD5/P 5~15(以>10為宜)
三、UCT同步脫氮除磷工藝
在前述的兩種同步脫氮除磷工藝中,都是將迴流污泥直接迴流到工藝前端的厭氧池,其中不課避免地會含有一定濃度的硝酸鹽,因此會在第一級厭氧池中引起反硝化作用,反硝化細菌將與除磷菌爭奪廢水中的有機物而影響除磷效果,因此提出UCT(Univercity of Cape Town)工藝。UCT工藝將二沉池的迴流污泥迴流到缺氧池,使污泥中的硝酸鹽在缺氧池中進行反硝化脫氮,同時,為彌補厭氧池中污泥的流失以及除磷效果的降低,增設從缺氧池到厭氧池的污泥迴流,這樣厭氧池就可以免受迴流污泥中硝酸鹽的干擾。
四、Phoredox同步脫氮除磷工藝
本工藝的特點是在缺氧反應器之前再加一座厭氧反應器,以強化磷的釋放,從而保證在好氧條件下,有更強的吸收磷的能力,提高除磷效果。