導航:首頁 > 污水知識 > 光催化氧化降解廢水的缺點

光催化氧化降解廢水的缺點

發布時間:2023-06-01 04:17:09

1. 光催化氧化法適合哪類廢水處理

在微小的區域內瞬間高溫高壓下產生的氧化劑(如·OH)去除難降解有機物、貴金屬等)存在的條件下,能氧化各種有毒和難降解的有機化合物,主要用於廢水中高濃度的難降解有機物的處理,·OH親電進攻吸附在陽極上的有機物而發生氧化反應去除污染物、02和空氣作為氧化劑、N2和H20等無害物質的方法,這成為了光化學氧化需要克服的問題;間接反應是指臭氧分解產生·OH;UV),這種方式不具有選擇性, 因此,可以把除Fenton法外:一是利用頻率在15kHz~1MHz的聲波。 類Fenton法類 Fenton法就是利用Fenton法的基本原理、氧化能力強光化學氧化法近年來迅速發展,使其在紫外光的照射下產 生·OH,致使有機物降解不夠徹底,這種方式具有較強的選擇性,即利用Fe和H202之間的鏈反應催化生成·OH自由基,且分解生成的中間產物會阻止臭氧的氧化進程,從廣義上講、高壓(0。可見臭氧氧化法用於垃圾滲濾液的處理仍存在很大的局限性。Fenton法處理垃圾滲濾液的影響因素主要為pH。光化學氧化法包括光激發氧化法(如03/。 光化學氧化法由於反應條件溫和。 臭氧氧化法雖然具有較強的脫色和去除有機污染物的能力,一般是進攻具有雙鍵的有機物。電化學氧化對垃圾滲濾液中的COD和NH3一N 都有很好的去除效果,通常對不飽和脂肪烴和芳香烴類化合物較有效、03和光電效應等引入反應體系,光化學法處理有機物時會產生多種芳香族有機中間體。 電化學氧化法電化學氧化法是指通過電極反應氧化去除污水中污染物的過程。另外一種是超聲波吹脫。直接氧化主要依靠水分子在陽極表面上放電產生的·OH的氧化作用,以達到去除污染物的目的。超聲波法用於垃圾滲濾液的處理主要有兩個方面; 光催化氧化法則是在反應溶液中加入一定量的半導體催化劑.5~10MPa)和催化劑(氧化物。特別適用於生物難降解或一般化學氧化難以奏效的有機廢水如垃圾滲濾液的氧化處理,缺點是能耗較大;UV)和光催化氧化法(如Ti02/,在光輻射作用下產生·OH,在低劑量和短時間內不能完全礦化污染物,將UV、H202。 催化濕式氧化法催化濕式氧化法(CWAO)是指在高溫(123℃~320℃),類Fenton法的發展潛力更大,通過·OH與有機物進行氧化反應,而·OH自由基具有強氧化性。 光激發氧化法主要以03,將污水中的有機污染物和NH3-N氧化分解成C02。 Fenton氧化法 Fenton法是一種深度氧化技術,該法也可分為直接氧化和間接氧化,但該方法的運行費用較高。 臭氧氧化法臭氧氧化法主要通過直接反應和間接反應兩種途徑得以實現。的氧化作用去除污染物。其中直接反應是指臭氧與有機物直接發生反應,通過H202產生羥基自由基處理有機物的其他所有技術都稱為類Fenton法,兩者都是通過·OH的強氧化作用對有機污染物進行處理;間接氧化是指通過溶液中C12/。作為對Fenton氧化法的改進。 聲化學氧化聲化學氧化中主要是超聲波的利用;C10高級氧化法一般應用在處理廢水,但由於反應條件的限制,對有機物的氧化具有選擇性、H202的投加量和鐵鹽的投加量

2. 印染廢水,是染漿廢水來的,脫色效果不好,怎麼辦

不知到你用的什麼工藝,一般生物處理不易脫色的話,可以考慮加點絮凝劑,另外氧化法也比較常用,下面一個參考文摘不錯的:
由於染料生產品種多,並朝著抗光解、抗氧化、抗生物氧化方向發展,從而使染料廢水處理難度加大。染料廢水處理難點:一是COD高,而BOD/COD值小,可生化性差;二是色度高,而成分復雜。三是水質水量不穩定,排放具有間歇性。印染廢水的處理目標一般是COD的去除與脫色,但脫色問題難度更大。
3. 脫色處理方法

3.1 物理方法

3.1.1吸附法

吸附法是利用多孔性的固體物質,使廢水中的一種或多種物質被吸附在固體表面而去除的方法。吸附脫色技術是依靠吸附劑的吸附作用來脫除染料分子的。吸附按其作用力可分為物理吸附、化學吸附和離子交換吸附三種。目前用於吸附脫色的吸附劑主要是靠物理吸附, 但離子交換纖維、改性膨潤土等也有化學吸附作用。

常用的吸附劑包括可再生吸附劑如活性炭、離子交換纖維等和不可再生吸附劑如各種天然礦物(膨潤土、硅藻土)、工業廢料(煤渣、粉煤灰) 及天然廢料(木炭、鋸屑) 等。傳統的吸附劑是活性碳,活性炭具有較高的比表面積(500- 600 m2/g),它只對陽離子染料、直接染料、酸性染料、活性染料等水溶性染料具有較好的吸附性能。活性炭去除水中溶解性有機物(分子量不超過400)非常有效,但它不能去除水中的膠體疏水性染料。若廢水BOD5> 500mg/L,則採用吸附法是不經濟的。膨潤土作為水處理中的吸附劑和絮凝劑,已被廣泛用於印染廢水脫色領域,近年來製成多種復合膨潤土、VS型纖維和聚苯乙烯基陽離子交換纖維等,具有物理吸附和離子交換功能,且比表面大、離子交換速度快,易再生,對難處理的陽離子染料廢水有很好的脫色效果,有些改性的膨潤土的脫色效果甚至高於活性炭[4];某些集吸附與絮凝性能為一體的吸附劑如硅藻土復合凈水劑也已開發;用電廠粉煤灰製成具有絮凝性能的改性粉煤灰,對疏水性和親水性染料廢水均具有很高的脫色率;另外工業廢料(如煤渣、粉煤灰等)、天然廢料(如木炭、木屑等)、植物秸稈(如玉米棒等)均對印染廢水具有一定的吸附作用。

吸附法尤其適合難生化降解的紡織印染廢水脫色處理,印染廢水的吸附脫色技術是一項非常有效而又比較經濟的方法。活性炭吸附脫色技術不適合印染廢水一級處理,只能用於深度脫色處理,活性炭處理成本高,再生困難,所以活性炭的再生技術是正在研究的課題,其中生物再生是研究的重點方向。煤、爐渣吸附劑,原料來源廣,成本低,但在處理印染廢水之後存在二次污染,所以只適合與生化法或砂過濾等方法聯合使用。離子交換樹脂對水溶性染料離子吸附特別有效,離子交換吸附劑的開發研製是今後的主要發展方向之一。廉價、高效、因地制宜新型吸附材料的開發是一項很有前途的技術。吸附法與其它處理方法的優化組合處理印染廢水,脫色效果更佳。[5]

綜上所述,吸附脫色的發展方向體現在兩個方面: ①根據吸附機制開發、尋找新的吸附劑; ②對現有吸附劑的改性與活化, 以提高脫色效果和再生能力。

3.1.2超濾法脫色

超濾是利用一定的流體壓力推動力和孔徑在20~200üA 的半透膜實現高分子和低分子的分離。超濾過程的本質是一種篩濾過程,膜表面的孔隙大小是主要的控制因素。該法的優點是不會產生副作用,可以使水循環使用。早在70 年代初期, 膜分離技術就嘗試用來處理印染廢水。目前, 該方法可用於去除各種染料和添加劑。但由於分離染料混合物的困難, 並未達到完美的程度。

在這種技術中,半透膜的性質起著決定性的作用。就材料而言,膜有動態膜,纖維素類膜,聚碸超濾膜,荷電超濾膜或疏鬆反滲透膜。[6]

(1)動態膜從處理效果和經濟上講,ZrO-PAA 動態膜是可行的。但能耗較大,其滲透水及化學物質的再利用率可達88% 到96%。

(2) 纖維素類膜。CA 膜的選擇性隨膜表面與各種染料互變異構體相互作用而發生變化,但膜材料本身在耐pH、耐溫等方面仍然有所不足。纖維素類膜在耐pH值、耐壓、耐溫度等方面優於CA ,用纖維素超濾膜反滲透處理染色廢液, 染料去除率97% 以上可實現水的循環使用,但反滲透所需的高壓操作仍是它的不足。

(3) 聚碸超濾膜由於其良好的物理化學穩定性,有較大的應用前景。使用聚碸超濾膜代替纖維素膜可實現高溫操作, 回收染料減輕污染, 但仍未達到國家排放的標准。

(4) 荷電超濾膜或疏鬆反滲透膜是用來描述其分離性能介於反滲透和超濾之間的一種膜。荷電超濾膜是以其化學結構含有荷電基團而定義的, 疏鬆反滲透膜是以其物理結構而命名, 它們往往指的一種膜。對鹽NaCl 截留只有2%~ 3% , 而對於500~2 000 分子量的物質,具有較高的分離率, 同時保持高的水通量。一般染料的分子量正好在這種膜的截留范圍, 特別是離子型染料。該膜在低壓下操作(10 kg/cm 2) 耐pH值、耐壓密、耐污染、耐溫等方面都比較突出,前景廣闊[7]。

3.1.3輻射降解法

電離輻射可有效地降解染料水溶液,輻射技術和其它技術有很好的協同作用。與常規污染物處理技術相比,輻射技術在常溫常壓下進行,具有工藝簡單、無二次污染等特點,對難降解有機污染物的處理更有其獨特長處。[8]

用60Co γ射線輻照甲基橙和活性艷藍KNR水溶液,輻照後染料水溶液的可見光區和紫外區的特徵吸收峰隨吸收劑量的增加而漸漸下降至接近零,說明輻射降解反應既破壞了染料分子的發色基團,同時也破壞了染料的有機分子結構。脫色率和COD去除率均隨吸收劑量的增加而增加。過氧化氫與輻射有協同作用,在相同的吸收劑量下,脫色率和COD去除率均隨過氧化氫的濃度增加而增加。另外,該法pH值適用范圍很廣;溶液的初始濃度越大,COD去除和脫色效果越差;氧的存在可以促進染料分子的降解。在同樣輻照條件下,染料的輻射降解效果因染料分子的結構不同而略有不同[9]。

輻射法處理印染等難降解污水時雖然有機物的去除率高、設備佔地小、操作簡便,但用來產生高能粒子的裝置價格昂貴,技術要求高,而且該方法能耗較大,能量利用率不高,若要真正投入實際運行,還需進行大量的研究工作。

3.2 物理化學法

3.2.1絮凝法

印染廢水的絮凝脫色技術, 投資費用低, 設備佔地少, 處理量大, 是一種被普遍採用的脫色技術。某印染廠採用混凝脫色- 懸浮曝氣生物濾池工藝處理主要含活性染料的廢水,原水CODCr, SS的平均質量濃度分別為296,285 mg/L 和平均色度為550倍, 處理後出水水質相應各項指標分別為40, 20 mg/L 和10 倍, 其去除率分別為87%, 92%和98%。[10]

在印染廢水中使用的絮凝劑很多,大致可分為無機絮凝劑、有機絮凝劑和微生物絮凝劑三類,其中,有機絮凝劑還分為天然有機高分子絮凝劑、合成有機高分子絮凝劑。由於印染廢水水質比較復雜,無機單鹽絮凝劑在水解絮凝過程中,未能完成具有優勢絮凝效果的形態,投葯量大,絮凝效果差;無機高分子絮凝劑可以較好地除去廢水中大部分懸浮態染料,但對於水溶性染料中分子量小、不容易形成膠體的廢水則難以處理;有機高分子絮凝劑對於水溶性染料等廢水具有很好的脫色性能,但單獨使用效果差,而且易於產生有毒物質;因此,開發研製價廉、無毒、高效的新型有機絮凝劑,已成為目前絮凝法的主要研究方向之一。

復合絮凝劑則能同時發揮幾種絮凝劑的優點,使絮凝法用於印染廢水處理既經濟,又適用。如將有機絮凝劑與無機絮凝劑復配使用,充分發揮有機高分子絮凝劑的吸咐架橋性能和無機絮凝劑的電性中和能力,可以使處理出水達到較好的效果。此外,澱粉衍生物、木質素衍生物、羧甲基殼聚糖[11]等天然高分子具有無毒、原料廣、價廉和可生物降解等優點,也得到科研工作者的高度重視。另外,微生物絮凝劑是利用生物技術,從微生物體或其分泌物提取、純化而獲得的一種安全、高效,且能自然降解的新型水處理劑。與普通的絮凝劑相比,有固液易於分離,沉澱少,適用性廣等優點,因此微生物絮凝劑的研究正成為當今世界絮凝劑方面研究的重要課題[12]。總之,高效、無毒、無害的環境友好性絮凝即將在印染廢水處理中有廣闊的應用前景。

絮凝法雖然是含染料廢水處理的常用方法,但對於許多可溶性好的染料, 處理效果往往不佳。因此, 復合絮凝法將成為工業廢水處理工藝研究的主要內容和發展方向。根據實際出水要求,採用適當的預處理和後處理手段,發揮絮凝工藝與其它工藝的協同工作的優勢,以達綜合治理的目的,這對於提高印染廢水的處理效果,降低處理成本具有極其重要的意義。

然而,用絮凝法進行廢水脫色依然存在以下幾個方面的問題:產生大量的淤泥;由於廢水水質變化大,每批廢水脫色前均需要進行預試驗,以確定最佳條件,提高了成本,又費時。過量的陽離子絮凝劑會在廢水中產生大量氮的化合物,它們對魚類有毒且難以生物降解和硝酸化抑制,絮凝劑過量也可能導致沉澱重新溶解。脫色效率低,不符合排放標准。因此,實際生產中,應根據實際出水要求,採用適當的預處理和後處理手段,發揮混凝工藝與其它工藝的協同工作的優勢,以達綜合治理的目的,這對於提高印染廢水的處理效果,降低處理成本具有極其重要的意義。

3.3 化學方法

3.3.1電化學法

電化學法是處理印染廢水的另一種有效的處理方法。電化學法通過可溶性電極在陽極和陰極上發生電絮凝、電氣浮和H的間接還原作用從而達到處理廢水的目的。電化學法處理印染廢水具有設備小、佔地少、運行管理簡單、COD去除率高和脫色好等優點,但同時電化學法存在著能耗大、成本高和析氧析氫副反應等缺點。近年來,隨著電化學和電力工業的發展以及許多新型高析氧析氫過電位電極的發明,電化學法又重新引起人們的重視。根據電極反應方式劃分, 傳統電化學方法可細分為內電解法、電絮凝和電氣浮法、電氧化學。

內電解法是利用廢水中有些組分易被氧化,有些組分易被還原,在有導電介質存在時,電化學反應便會自發進行,同時兼有絮凝、吸附、共沉澱等綜合作用的一種廢水處理方法[13]。最著名的內電解法是鐵屑法, 即將鑄鐵作為濾料, 使印染廢水浸沒或通過, 利用Fe 和FeC 與溶液的電位差, 發生電極反應, 產生較高化學活性新生態H, 能與印染廢水多種組分發生氧化還原反應, 破壞染料發色結構, 而陽極產生的新生態Fe2+, 其水解產物有較強的吸附和絮凝作用。該法不需要外加電源,操作簡單,成本低廉,是種很有前途的處理方法。

電氣浮法是以Fe、AL作陽極產生的H2將絮體浮起;而電絮法則是利用電極反應產生的Fe2+ 、Al3+實現絮凝脫色。採用石墨、鈦板等作極板, 對染料廢水通電電解, 陽極產生O2或Cl2, 陰極產生H2。通過O的氧化作用及H的還原作用破壞染料分子而使印染廢水脫色, 脫色率可達98% 以上,COD去除率達80%以上。

國內重點研究的是電化學與其它方法相結合,其中較為有成就的是用絮凝復合床新技術處理高色度印染廢水,對色度>10000倍的印染廢水處理後,脫色率可達99%以上,CODCr去除率達75%。國外在新型電極方面研究較多,如:Sb/SnO2、Ti/SnO2、Ti/RnO2、Ti/Pt等電極。

電催化高級氧化技術(Advanced Electro catalysis Oxidation Processes , AEOP) 是最近發展起來的新型AOPs ,因其處理效率高、操作簡便、與環境兼容等優點引起了研究者的注意。它能在常溫常壓下,通過有催化活性的電極反應直接或間接產生輕基自由基, 從而有效降解難生化污染物。陳武等進行了三維電極電化學方法處理印染廢水實驗, COD去除率達74.7% ,色度去除率達93.3%[14]。

3.3.2氧化法

氧化法是使染料分子中發色基團的不飽和雙鍵被氧化斷開,形成分子量較小的有機物或無機物,從而使染料失去發色能力的一種印染廢水處理方法。氧化法主要有:高溫深度氧化法、化學氧化法和光催化氧化降解法等。

高溫深度氧化法主要是焚燒法。

化學氧化法是印染廢水脫色處理的主要方法,其機理是利用氧化劑將染料不飽和的發色基團打破而脫色。Fenton試劑(Fe2+-H2O2)、臭氧、氯氣、次氯酸鈉等是一般採用的氧化劑。常見的有組合法和催化氧化法等。如採用混凝- 二氧化氯組合法的優點在於ClO2氧化能力強,是HClO的9倍多,且無氯氣氧化法處理廢水時可能與水中有機物結合生成氯代有機物(AOX)[15]。

化學氧化法能有效地去除印染廢水中的色度,但不能很好地去除廢水中的COD,對此有人提出了不完全氧化的方法,即只部分氧化,使有機物通過自由基耦合降低水溶性而絮凝去除。陳玉峰[16]等通過實驗發現,電生成Fenton試劑處理實際工業印染廢水,CODCr去除率在80 %以上, 脫色率達到95% ,處理費用1117元/m3,具有很好的實際應用價值和市場前景.盛翼春[17]通過研究發現,採用新型電催化氧化對染料濃度高達0.3g/l的水溶性染料廢水在2分鍾內脫色率高達95%以上。

同時,隨著太陽能技術的發展進步,光催化氧化也越來越受到人們的重視。夏金虹[18]用納米TiO2粉體光催化降解印染廢水,脫色率為96% , CODCr去除率為86%,TiO2催化性能比較穩定,可重復使用。光催化氧化技術具有工藝設備簡單、操作條件易控制、處理成本較低、氧化能力強、無二次污染等突出優點,在有機廢水處理中有著廣闊的應用前景。但懸浮體系的納米TiO2顆粒由於粒徑極為細小,存在著難以回收、容易中毒、不易分散等缺點,需通過先進的負載技術或光化學反應器,甚才會獲得更高催化效率。因此,納米TiO2光催化劑的負載技術對其實現大規模實用化、商品化和工業化具有重大的實際意義,是今後TiO2研究的主要方向[19]。

總之, 氧化法是一種優良的印染廢水脫色方法,但也有其自身的缺憾。如果氧化程度不足, 染料分子的發色基團可能被破壞而脫色, 但其中的COD仍未除盡; 若將染料分子充分氧化, 能量、葯劑量消耗可能會過大, 成本太高, 所以氧化法一般用於氧化- 絮凝或絮凝- 氧化工藝。採用氧化- 絮凝工藝, 目的是通過氧化法將水溶性染料分子變為疏水性或使陽離子染料分子轉變為中性, 陰性分子, 以利絮凝除去。反之, 採用絮凝- 氧化工藝則是將氧化作為後處理步驟, 對印染廢水做深度處理經進一步去除殘余色度及COD[20]。

3.3.3還原法

還原法式使用還原型脫色劑對直接染料廢水進行脫色處理的方法,使用的原料主要是鐵屑。鐵屑是機械加工過程中的廢料, 用於處理印染廢水,不僅成本低廉、操作簡單, 而且能夠獲得以廢治廢的效果。該方法主要基於電化學反應。鐵屑是鐵-碳合金, 浸入廢液後形成無數微小原電池。電極反應產物為Fe2+, H2,OH-, 均具有較高的化學活性, 可有效地脫除廢水中的染料分子。其它還原劑有保險粉(+ 活性炭)、亞硫酸及其鹽。洪俊明等[21]通過鐵屑內電解的強化A/ O MBR 工藝處理印染廢水, 出水的水質中色度的去除率超過90.0 %和COD的去除率達到94.9 %。董永春[22]等採用以含硫還原劑和氫化物引發劑為基礎的穩定雙組分還原反應系統,處理直接染料染色廢水,使之與其中的直接染料發生還原脫色反應,其優點是脫色劑用量少,反應快速,脫色率高。還原法的主要缺點是還原降解產物具有毒性, 必須經過二次處理。如活性炭吸附等, 處理費用增大。

3.3.4高級氧化法

高級氧化法(Advanced Oxidation Processes ,AOPs)脫色被認為是一種很有前途的方法。所謂高級氧化法如UV + H2O2、UV + O3, 因為在氧化過程中產生羥基自由基(·OH), 其強氧化性使染料廢水脫色。經研究發現它對偶氮染料的脫色很有效, 高級氧化反應隨O3和H2O2加入量的增加,其反應速率也隨之增加[23]。 在實際生產中與某些化學輔助劑會提高脫色效果, 而且UV + H2O2方法處理偶氮型活性染料產生的降解產物對環境完全無害。最近的研究發現二氯三嗪基型偶氮類活性染料使用UV + H2O2方法脫色也有很好的效果[24]。

氧化劑O3對絕大多數染料的脫色效果較好, 無二次污染, 引入紫外光(UV) 等可加快氧化和提高脫色率。有學者指出O3/UV 對偶氮染料脫色效果好,UV 的引入促使O3在溶液中產生氧化性強的羥自由基。胡文容[25]等指出, 雖超聲波幾乎不能降解偶氮腫I , 但對O3氧化有明顯的強化作用, 當O3濃度為7107mg/ L , 加80w 超聲波是超聲波協同O3處理偶氮腫的最佳組合, 既可滿足90 %脫色率, 又可節省48%的O3。但是目前用O3處理染料廢水費用較高, 開發新型臭氧發生器並和UV 或超聲波連用以提高效率、降低費用是O3在染料廢水處理中推廣的前提, O3對COD的去除不理想。

高級氧化法的對環境污染極小,效果較好,但有一個嚴重不足之處是處理費用較高, 從而限制了它的廣泛使用。

3.3.5超聲波氧化

超聲波處理印染廢水是基於超聲波能在液體中產生局部高溫、高壓、高剪切力,誘使水分子及染料分子裂解產生活性非常強的氫氧自由基, 對大部分有機污染物有氧化作用並可並促進絮凝;同時,在超聲波作用下傳質加強,超聲空化產生局部高溫高壓,可大大強化氫氧自由基對有機物的氧化速度,提高降解效率。

用超聲波可以強化臭氧氧化處理偶氮類染料廢水,這是因為超聲波空化效應產生高能條件促使臭氧快速分解,產生大量的自由基,從而使氮類染料脫色。張家港市九州精細化工廠用根據超聲波氣振技術設計的FBZ 廢水處理設備處理染料廢水[26],色度平均去除率為97.0 % ,CODCr去除率為90.6% ,總污染負荷削減率為85.9 %。符德學[27]等使用該法處理含鹼性湖藍-5B的印染廢水,COD去除率達90.2%,脫色率達到98.3%。劉靜[28]等的實驗結果表明,超聲波與微電場的協同作用大大提高了脫色率,在最佳條件下處理60min,色度去除率可達96.6%。

3.3.6萃取法

萃取是採用與水互不相溶,但能很好溶解污染物的萃取劑,使其與廢水充分混合接觸後,利用污染物在水中和溶劑中不同的分配比分離和提取污染物,從而凈化廢水。廢水中的酸性染料可用混合胺進行萃取回收,陰離子染料可用離子對萃取法用長碳鏈去除,萃取劑可用氫氧化鈉再生。由鄰苯二甲酸與間苯二酚為原料制備熒光黃的生產廢水可用N235/煤油系統萃取,其COD去除率可達91-98%,色度去除率為99.8%[29]。

離子對萃取法是一種新的廢水脫色方法。該法是將染色殘液與一非水溶性有機溶劑一同振盪,當兩相分離時,水相中便呈現無色,染料聚積於上層有機相中。只要燃料含有至少一個磺酸基團或者是染料必須是酸性的,那麼任何深濃的染色廢液均可用此法脫色。該有機相可反復使用數次[30]。離子對萃取法的優點有:液/液相分離工藝簡單,能耗低。對於活性染料來說,僅鈉鹽和鈣鹽形成的水解產物需處理。萃取劑無需再生就可重復使用[31]。

3.4 生物處理方法

生物法是利用微生物酶來氧化或還原染料分子,破壞其不飽和鍵及發色基團,從而達到處理目的的一種印染廢水處理方法。生物法目前仍是國內外主要的印染廢水處理方法。

生物法的缺點在於微生物對營養物質、PH、溫度等條件有一定的要求,難以適應印染廢水水質波動大、染料種類多、毒性高的特點;同時還存在佔地面積大、管理復雜、對色度和COD去除率低等缺點。生物法處理印染廢水的脫色率和COD去除率不高,一般不適宜單獨應用,可作為預處理或深度處理。

3.4.1傳統生物處理技術

生物法處理印染廢水中,以活性污泥法最為普遍,這是因為活性污泥法具有可分解大量有機物、能去除部分色素、可調節pH值、運轉效率高且費用低等優點,但對色度的去除往往不夠理想,因此組合式生物處理技術是目前印染廢水的常用方法。我國生物法中以表面活性污泥法和接觸氧化法佔多數,此外,鼓風曝氣活性污泥法、射流曝氣活性污泥法、生物轉盤法等也有應用,生物流化床尚處於試驗性應用階段。

在印染廢水處理中,厭氧- 好氧工藝具有的這種獨特降解機理引起國內的廣泛關注,並得到了深入的研究和應用,取得了明顯的效果[32]。婁金生等在印染廢水的處理過程中採用了厭氧- 好氧工藝,取得了良好效果,COD總去除率大於90 % ,脫色率大於95%。

3.4.2微生物強化處理技術

隨著紡織工業新產品和新技術的開發,印染廢水中水溶性染料、活性染料和化學漿料的數量和種類的不斷增加,從而導致印染廢水可生物降解性下降,如大量的聚乙烯醇(PVA)等,因此選育及應用優化脫色菌和PVA降解菌開始引起人們的關注。選育和培養出各種優良脫色菌株或菌群是生物法一個重要的發展方向。白腐真菌不但對活性艷紅X3B染料有較好的脫色作用,而且對難處理的成分復雜的實際染料廢水也有較好的降解作用,能有效去除印染廢水的COD和BOD5。雖然不能徹底生化降解染料廢水,但給後續的深度處理帶來極大方便[33]。

黃建岷[34]在實驗中採用富集法分離菌株,所得脫色菌處理印染廢水有明顯的脫色效果,脫色率可達70 %以上。與活性炭吸附脫色相比差異不大,證明利用微生物處理印染廢水的色度問題是可行的, 但在菌種篩選方面仍有大量工作可做。

3.4.3膜生物反應器處理技術

膜生物反應器處理技術作為一種新型的污水處理工藝,是傳統活性污泥法和膜分離技術的有機結合,可通過膜片提高某些專性菌的濃度和活性,還可以截留許多分解速度較慢的大分子難降解物質,通過延長其停留時間而提高對它的降解效率。但由於膜易堵塞且製造費用較高,對膜技術在水處理領域全面推廣產生一定阻力。不過,隨著材料科學的發展、膜製造技術的進步、膜質量的提高、膜製造成本的降低以及工藝的改進,膜生物反應器的應用范圍將越來越廣。

3.4.4生物酶脫色技術

一些使用合適的厭氧和嗜氧的聯合生物處理可提高染料的降解性, 但是在厭氧條件下, 偶氮還原酶通常將偶氮染料分解為相應的胺類, 其中許多會致低能或致癌,而且偶氮還原酶具有強專一性, 只分解被選擇染料的偶氮鍵。與此相反,苯氧化酶——過氧化木質素酶(木質素酶, LiP) , 過氧化錳酶(MnP) , 和漆酶——對芳香環沒有強的專一性, 因此, 有可能降解各種不同的芳香化合物。這些酶制劑可有效地使許多結構不同的染料脫色。初始反應速率與制劑中每一個酶(漆酶、LiP 和MnP) 都有關系。一些染料添加劑可顯著降低脫色速率。因此, 在評價新的酶及其處理工藝時, 必須考慮染色助劑對酶活性的影響。今後研究工作主要集中於已選擇出的酶的固定化以便為酶脫色的工業應用打下基礎[35]。

4. 發展前景

各種脫色方法比較分析,可以看出每種處理方法從經濟性,技術性,對環境影響和實用性都有一定的缺陷, 氣吹、混凝、吸附、過濾等一般具有設備簡單、操作簡便和工藝成熟等優點,但是這類處理方法通常是將有機物從液相轉移到固相或氣相,不僅沒有完全消除有機污染物和消耗化學葯劑,而且造成廢物堆積和二次污染。吸附脫色具有隻吸附染料, 但不破壞其結構的特點, 但目前使用的吸附劑往往存在吸附量不夠, 或再生不容易的缺點。高級氧化法脫色如光氧化、超臨界氧化、濕式氧化、低溫等離子體化學法被認為是一種很有前途的方法, 但其昂貴的價格成為制約其廣泛應用的重要原因。一些傳統的氧化方法如NaClO、H2O2、臭氧和紫外氧化等證明對廢水脫色並不有效, 採用強化物理化學與酶催化降解的方法可能將有非常廣闊的應用前景。因此在實際工程中應該按照具體條件和要求,合理選擇工藝組合,以便取得最佳的效果。

3. 光催化技術應用於空氣凈化方面存在哪些弊端

光催化技術應用於空氣凈化方面所表現出的弊端主要體現在以下幾個方面:
1、光催化對污染物的去除效率較低。
2、光催化劑一般需要紫外光照射,在夜間無光照或室內光照不足時,會使部分有害氣體分解不徹底。
3、污染物在光催化劑表面的的停留時間過短,導致不能被光催化氧化徹底降解,會產生中間產物,有些中間產物對人體健康帶來的危害可能大於目標污染物。
4、目前大多數光催化降解實驗及反應器設計都只考慮在低風量條件下(<10 L/h),而室內空氣凈化器一般設計較高的風量(>100 m3/h) 以確保潔凈空氣量(CADR)值能滿足相關標準的要求,這勢必會減少污染物在光催化劑表面的停留時間,降低光催化效率。

4. 污水處理各工藝的優缺點

1. 氧化溝工藝

簡單來說屬於活性污泥處理法的一種變型。

優點:簡化預處理,佔地面積少;有較好的脫氮除磷效果。

缺點:和傳統活性污泥處理法一樣,在解決污泥的二次污染處理上,並沒有進一步的解決污泥處理問題。

2. A2/O工藝

通過厭氧—缺氧—好氧進行生物脫氮除磷的工藝。

優點:工藝成熟,運行穩定,有機污染物去除率較高,擁有較好的耐沖擊負荷,污泥沉降性能好。

缺點:反應池容積比A/O脫氮工藝還大,污泥迴流量大,能耗較高,沼氣回收利用經濟效益差,污泥滲出需進行化學除磷。

3. 傳統活性污泥法工藝

利用活性污泥去除污水中有機物的處理工藝過程。

優點:工藝成熟,運行經驗豐富,有機物的去除率高,曝氣池耐沖擊負荷能力較低,適用於處理進水水質穩定、要求較高的大城市污水處理廠。

缺點:供氧大於需氧,造成浪費;污泥曝氣池停留時間長,容積大佔地廣,建設費用高以及電耗大,不利於經濟考慮。脫氮除磷率低。

4. SBR工藝

SBR工藝核心是反應池,是集均化、初沉、生物降解、二沉等功能於一池,無污泥迴流系統,適用於間歇性排放和流量變化大的場所。

優點:生化反應推動力增大,效率提高,池內厭氧,好氧處於交替狀態,凈化效果好,沉澱時間短,效率高,出水質量好,耐沖擊,工藝調整運行靈活,設備少,造價低。

缺點:間歇周期運行,自控要求高,電耗增大,脫氮除磷效率不高,污泥穩定性不如厭氧硝化好。

5. A/O工藝

同時具有降解有機物及脫氮作用的工藝,且運行方便。

優點:效率高,流程簡單,投資省,操作費用低。

缺點:沒獨立污泥迴流系統,不能培養出獨特功能的污泥,降解率低,提高脫氮效率就須加大內循環比,因此加大了運行費用,缺氧狀態不理想,影響反硝化效果。

6. 生物膜法工藝

土壤凈化過程的人工強化,主要去除廢水中溶解性的和膠體狀的有機物污染物,對廢水中的氨氮還具有一定的硝化功能。

優點:微生物多樣化,生物食物鏈長,有利於提高污水處理效果和單位面積處理負荷,優勢菌群分段運行,提高污染物降解率和脫氮除磷效果。耐沖擊負荷,對水量和水質變動有較強適應性,污泥沉降性好,適合低濃度污水處理,易維護,耗能低。

缺點:對環境要求較高,載體比表面積對生物膜處理效果有很大影響,如選用的濾料比表面積達不到要求,需增大處理池面積,投資費用將增大。

所以總結以上工藝,主要有三點是企業需要關心的:

1. 所使用的工藝在脫氮除磷率方面是否達到滿意的預期效果

2. 所使用的工藝在電耗、人員操作與設備擴容方面是否有利於企業經濟效益

3. 所使用的工藝的時效性,如使用微生物菌處理污水,就要考慮所選用菌類功能的全面性,能否長時間適應和處理復雜的污水問題,一款好的菌類能為企業解決很多問題。

5. 什麼是高級氧化技術

高級氧化技術目前廢水處理最常用的生物法對可生化性差、相對分子質量從幾千到幾萬的物質處理較困難,而化學氧化法可將其直接礦化或通過氧化提高污染物的可生化性,同時還對環境類激素等微量有害化學物質的處理方面有很大的優勢。然而O3、H2O2和Cl2等氧化劑的氧化能力不強且有選擇性等缺點難以滿足要求。1987年Gaze等人提出了高級氧化法(Advanced Oxidation processible, 簡稱AOPs),它克服了普通氧化法存在的問題,並以其獨特的優點越來越引起重視。
Gaze等人將水處理過程中以羥基自由基為主要氧化劑的氧化過程稱為AOPs過程,用於水處理則稱為AOP法。典型的均相AOPs過程有O3/UV, O3/H2O2, UV/H2O2, H2O2/Fe2+(Fenton試劑)等,在高pH值情況下的臭氧處理也可以被認為是一種AOPs過程,另外某些光催化氧化也是AOP過程。
高級氧化法最顯著的特點是以羥基自由基為主要氧化劑與有機物發生反應,反應中生成的有機自由基可以繼續參加·HO的鏈式反應,或者通過生成有機過氧化自由基後,進一步發生氧化分解反應直至降解為最終產物CO2和H2O, 從而達到氧化分解有機物的目的。與其他傳統的水處理方法相比,高級氧化法具有以下特點:產生大量非常活潑的羥基自由基·HO其氧化能力(2.80v)僅次於氟(2.87),它作為反應的中間產物,可誘發後面的鏈反應,羥基自由基與不同有機物質的反應速率常數相差很小,當水中存在多種污染物時,不會出現一種物質得到降解而另一種物質基本不變的情況;·HO無法選擇地直接與廢水中的污染物反應將其降解為二氧化碳、水和無害物,不會產生二次污染;普通化學氧化法由於氧化能力差,反應有選擇性等原因,往往不能直接達到完全去除有機物降低TOC和COD的目的,而高級氧化法則基本不存在這個問題,氧化過程中的中間產物均可以繼續同羥基自由基反應,直至最後完全被氧化成二氧化碳和水,從而達到了徹底去除TOC、COD的目的;由於它是一種物理化學過程,很容易加以控制,以滿足處理需要,甚至可以降低10-9級的污染物;同普通的化學氧化法相比,高級氧化法的反應速度很快,一般反應速率常數大於109mol-1Ls-1, 能在很短時間內達到處理要求;既可作為單獨處理,又可與其他處理過程相匹配,如作為生化處理的預處理,可降低處理成本。
前人的研究成果已證實了高級氧化法在廢水處理中的實用性,並在水處理領域顯示了廣泛的處理前景。實際上在國外,尤其是歐洲,高級氧化法處理廢水早已經在一些對經濟成本不敏感的工業過程中得到了廣泛的應用,在國內近年來也應用UV/H2O2過程處理造紙廠廢水並取得顯著進展,O3/UV系統處理廢氣的研究早已展開。近年來,高級氧化過程應用領域已擴展到水體中難降解的持久性污染物。此外,高級氧化過程所需的新型反應器、撞擊流反應器、高級氧化法偶合的研究也正在展開,以便進一步強化廢水的降解和提高其處理效果。在城市污水消毒、醫院污水處理,以及野外污水處理等方面高級氧化過程也有應用的實例。隨著對高級氧化的深入研究,可望在不久的將來在更多的領域內有廣泛的應用,也會產生新的理論和技術。 高級氧化技術在農葯廢水處理中的應用更新時間:1-7 14:41 作者: 張英民,李開明,周偉堅,王煒,張照雲,賈燕 摘要:綜述了農葯廢水處理的高級氧化處理技術,包括光催化法、芬頓法(Fenton)、臭氧(O3)氧化法、催化濕式 氧化(CWAO)法、超聲降解法與電化學法。結合農葯廢水處理方法的進展,介紹了各種高級氧化方法在應用方面 取得的成果和存在的問題,並對高級氧化方法在農葯廢水處理方面的應用提出展望。關鍵詞:高級氧化;農葯;廢水處理現化化農業生產中,農葯在提高農作物產量、減少病蟲害方面扮演著十分重要的角色。中國是農葯 生產大國,2001年以來,每年農葯產量以不低於5% 的速度增長。2007年全國農葯原葯產量達173萬 t,居世界第1位。每年全國排放的農葯生產廢水達 上億噸,而處理率不足10%。由於農葯廢水有機物濃度高,污染物成分復雜,難生物降解、毒性大,對環境造成極大危害[1]。目前農葯廢水主要處理方法有物理法(吸附、吹 脫、重力分離等)和生化法(好氧生物處理、厭氧生物 處理)和化學法(焚燒、高級氧化等)[2]。物理法並沒 有徹底去除污染物,只是改變了污染物存在形態和 方式;生化法在我國應用起步很早,20世紀80年代 就有學者採用微生物降解有機磷農葯[3],但生化法 仍存在處理時間長、效率低的問題,限制了生化法的 進一步發展;化學法中的高級氧化法能夠產生具強 氧化性的羥自由基(·OH),將有機污染物最終氧化成二氧化碳、水和礦物鹽,具有處理時間短、無選 擇性的優點[4],近年來發展迅速。常用的高級氧化 處理技術有光催化法、Fenton法、臭氧(O3)氧化、催 化濕式氧化(CWAO)等,這些技術可單獨使用,也 可組合使用,同時亦可以做為農葯廢水預處理工序。 本文就當前廣泛採用的農葯廢水高級氧化處理技術 進行簡單介紹。1光催化氧化法在光輻射作用下發生的化學氧化反應可稱為光催化氧化。光化學反應需要利用各種人造光源或自然光。催化劑是光催化反應中至關重要的物質,目 前的催化劑多為半導體材料,常見光催化劑有 TiO2、ZnO、SnO2和Fe2O3等[5]。利用光催化降解農葯廢水早已有相關研究,JARNUZI[6]等以懸浮態 的TiO2為催化劑,利用光催化氧化法處理殺蟲劑 五氯苯酚(C6Cl5OH,PCP),並推導了光催化降解 PCP的步驟。葛飛[7]等採用TiO2膜淺池反應器對 甲胺磷農葯廢水進行處理,結果表明,經生化處理後 甲胺磷農葯廢水COD的去除率達到85.64%,達到 國家《污水綜合排放標准》中的一級標准,而有機磷 的去除率可達到100%,顯示出光催化氧化反應的良好處理能力。雖然光催化降解農葯廢水具有降解時間短、效率高等優點,但也存在光源利用率較低的缺點。將光 催化氧化技術與其它高級氧化技術聯合使用,可以提 高處理效率,強化氧化能力,近年來受到研究者的重視。荊國華[8]等利用UV/Fenton技術處理三唑磷農葯廢水,結果表明,Fe2+∶H2O2為1∶20時,光解效果較佳,反應速率常數在0.03min-1,COD去除率可達 到90%。彭延治[9]等利用UV/TiO2/Fenton聯用光催化降解敵百蟲農葯廢水,當敵百蟲農葯濃度為0.1 mmol/L,TiO2質量濃度為2g/L,Fe3+用量為0.10 mmol/L,H2O2用量為2mmol/L,光照時間為2h時, 敵百蟲農葯有機磷的降解率為92.50%。2Fenton氧化法酸性環境下,Fenton試劑可產生高活性的· OH,其高達2.8V的氧化電位,可以與有機物發生親電加成、去氫反應、取代反應和電子轉移反應,從而降解有機污染物。楊新萍[10]等採用Fenton試劑 處理COD為1.29×104mg/L的有機氯農葯廢水, COD和色度去除率分別為47.8%和84.4%。朱樂 輝[11]等利用Fenton法處理農葯廢水,實驗用H2O2的投加量50mmol/L,Fe2+∶H2O2為1∶10,經2h 處理後,COD去除率可達68.07%,色度去除率可達90.11%,廢水可生化性由0.012提高至0.248。 Fenton反應也有缺點[12],第一,只有在酸性條件 (pH<3.0)才能產生高活性的·OH;第二,會產生 大量的含鐵污泥;第三,H2O2利用率不高。近年來又出現了Fenton與其它方法聯合使用 處理手段,如光/Fenton、微電解/Fenton和電/ Fenton等,從而大大提高了Fenton法處理農葯廢水 的效果和應用范圍。Badawy[13]等採用UV/Fenton 聯用法處理殺蟲劑殺螟硫磷(fenitrothion)、二嗪農 (diazinon)和丙溴磷(profenofos),Fenton法單獨處 理時,經90min處理後三種殺蟲劑的TOC去除率 分別為54.1%,12.9%和50.3%;採用UV/Fenton 法處理時,經90min處理後三種殺蟲劑的TOC去 除率分別為86.9%、56.7%和89.7%。這是由於 Fe3+絡合離子和H2O2在紫外光照下形成Fe3+和 ·OH,加速了Fenton反應進行,同時也促進了 H2O2分解,進而提高處理效率,縮短反應時間。3臭氧(O3)氧化法臭氧(O3)是一種強氧化性氣體,可以將有毒、難生物降解有機物環狀分子或長鏈分子的部分斷裂,從而使大分子物質變成小分子物質,生成了易於生化降解的物質,消除或減弱它們的毒性,提高了廢水的可生化性。有關研究表明,廢水中的許多農葯類有機污染物可與臭氧迅速反應,包括有機氯農葯、 有機磷農葯、苯氧酸有機物、有機氮農葯和酚類化合 物[14]。陸勝民[15]等研究了臭氧對樂果的降解效果 及其影響因素。試驗結果表明,當初始臭氧濃度為 10mg/L時,5min內可使樂果降解80%左右。同時,通過在樂果和臭氧的反應液中再分別添加重碳酸鹽與叔丁醇,探討臭氧降解樂果的反應機理,結果表明臭氧降解樂果是分子反應。夏曉武[16]等採用O3產生量為800g/h的臭氧發生器對某農葯廠殺蟲雙生產廢水進行預處理的實際應用研究。經O3預處理後,COD去除率為51%,可生化性由0.15提高 到0.41,廢水的可生化性明顯提高。由於單獨O3反應選擇性較強,其對有機物的礦化能力受劑量和時間限制明顯,故又出現了O3 與其它高級氧化聯用技術,如O3/UV、O3/超聲等,更加強化了高級氧化方法的處理效果。胡冰[17]利 用超聲臭氧聯合處理敵敵畏和氧樂果兩種有機磷農葯模擬廢水,取得了較好的處理效果。在臭氧混合氣體流量為25.06m3/h、pH值為10的條件下,用超聲和臭氧聯合處理初始COD濃度為1000mg/L 的敵敵畏溶液和800mg/L的氧樂果溶液,在30min 內,敵敵畏溶液的COD去除率達到62.7%、敵敵畏的降解率達到62.4%;氧樂果溶液的COD去除率達到79.2%,氧樂果的去除率達到85.4%。4催化濕式氧化(CWAO)法濕式氧化技術(WAO)是一種處理高濃度、難降解、重污染、高毒性有機廢水的有效方法,但該方法一般需要高溫(125~320℃)和高壓(0.5~20MPa)的反應條件下進行。20世紀80年代中期,在WAO基礎上發展起來催化濕式氧化技術(CWAO),由於採用了 催化劑,降低了反應溫度和壓力,因而減少了設備投資和處理費用。趙彬俠[18]等通過共沉澱法制備了用於濕式氧化吡蟲啉農葯廢水的Mn/Ce復合催化劑, 探討了濕式催化氧化吡蟲啉農葯廢水的適宜反應溫 度和氧分壓。結果表明,Mn/Ce催化劑晶粒細小,晶粒尺寸小於15nm,在溫度190℃、氧分壓1.6MPa、進 水pH為6.21的條件下經120min處理,COD去除率達93.1%;Mn/Ce復合催化劑對濕式氧化吡蟲啉農 葯廢水顯示較好的活性和穩定性。董俊明[19]等通過 浸漬法制備了以4種氧化物為主活性組分的負載固定型催化劑,用於過氧化氫催化濕式氧化處理有機農葯廢水。實驗表明,四元組合MnO2-CuO2-CeO2-CoO 催化劑性能較好,當反應在常溫常壓下,維持pH=7 ~9,反應時間為40min時,COD的去除率大於80%, 色度去除率大於90%。5其它高級氧化技術除前述幾種農葯廢水的高級氧化方法外,還有 超聲降解法、電化學等處理方法。超聲波對有機污 染水體的降解作用,主要源於聲空化效應。在超聲 波負壓相的作用下,液相分子間形成空化泡,空化泡 又在正壓相作用下迅速崩潰,導致氣泡內蒸氣相絕 熱加熱,產生瞬時高溫高壓,同時產生有強烈沖擊力 的高速微射流,從而使有機物發生化學鍵斷裂、高溫 分解或自由基反應等情況。盡管使用超聲波降解水 體中化學污染物具有操作簡單、方便等優點,但超聲 波的產生需要消耗大量的能量,能耗較高。電化學氧化是在電極表面的電氧化作用下產生 的自由基而使有機物氧化,可分為直接電化學氧化 和間接電化學氧化兩種模式。有機物在電極表面發 生氧化還原反應稱為直接電化學氧化。利用電化學 反應產生氧化劑(還原劑)使污染物降解的方法間接 電化學氧化。電化學方法高濃度生物難降解有機廢 水處理方面效果明顯,但電極材料壽命短、能耗較大 等問題,限制了電化學氧化方法在水處理領域的廣泛應用。6展望高級氧化技術具有氧化能力強、氧化過程無選 擇性和反應徹底等優點,應用於高濃度、難降解的農 葯廢水處理中具有物理法和生化法無法比擬的優 點,顯示出廣闊的應用前景。如今,各種高級氧化的 處理技術經常聯合使用,或者將高級氧化法與生物 處理法聯合使用,提高處理效果。但高級氧化法仍 面臨著處理效率需要提高、處理成本需要降低等問 題,有賴於在今後的研究過程中實現進一步的突破。

6. 城市污水處理常用方法有哪些他們有哪些優缺點

城市污水治理的幾種常用方法
活性污泥處理法
目前在城市生活污水中應用最多的就是所謂的活性污泥法,它有處理能力強,處理後水質好等優勢。其大致組成包括由曝氣池,沉澱池,污泥排放以及迴流等系統。待處理的污水和活性污泥迴流共同進入曝氣池然後混合,然後在其中與空氣接觸使得含氧量增加,發生代謝反應。經過充分攪拌的混合液變為懸浮狀態,所以其中的有機污染物和氧氣能夠與微生物接觸發生反應。接下來進入的是沉澱池,原來的懸浮固體會在其中沉降而被隔離,所以從沉澱池流出的已經為凈化水。沉澱池裡的污泥一般都會迴流,從而保證曝氣池中的懸浮固體和微生物有一定的濃度。在曝氣池裡的反應會使微生物增殖,所以過多的微生物要排出沉澱池以維持整個系統的穩定性。除需要能夠氧化和分解有機物外,活性污泥還必須有一定凝聚和沉降能力,以便可以使其從混合液中分離,進而在出口得到純凈的水。活性污泥法的缺點在於其基礎建設的成本過高,不易實施。
生物膜處理法
所謂生物膜法,就是通過在一些固體物表面附著的微生物對污水中的有機污染物加以處理的方法。它和活性污泥處理方法發展時間基本一致。所謂的「生物膜」即是附著在固體表面的微生物形象叫法,一般是由非常密集的好氧菌,厭氧菌,原生動物和藻類等結合一起形成的生態系統。生物膜所附著的固體介質叫做載體或濾料,由此向外生物膜可以分成厭氣層,好氣層,附著以及運動水層。整個方法的基本運作過程為,先由生物膜吸附水層中的有機物,然後由好氧菌進行分解,再由厭氧菌進行厭氣分解,運動水層通過流動不斷更新生物膜,由此反復實現對污水的凈化作用。
一般適用生物膜法的場合為中小規模城市廢水的處理,所用的處理結構是生物濾池或生物轉盤,在我國的南方一般使用生物濾池。由於材料和技術的不斷革新,生物膜法技術近年來進步很大。因為生物膜法中微生物一般固定在填料上,所以構成的生態系統比較穩定,微生物生活和消耗的能量比活性污泥法中要小得多,其剩餘的污泥也更少。生物膜法所擁有的高效率高,高耐沖擊性、產泥量低以及運管便利性等優勢使其在各種處理方法中競爭力極大。生物膜法的劣勢在於成本較高且單位處理效率低。所以進一步降低成本,提高效率是今後生物膜法研究的主要方向。
氧化處理法
氧化處理法是當今被廣泛使用的一種城市污水預處理方法,有較大的潛力。可根據其中氧化劑的種類和反應器類型對其分類為化學氧化法,催化氧化法以及光催化氧化法等。其中,化學氧化法的操作比較簡單,但效果不夠明顯且運行成本較高,所以實際工作中應用不多。為實現處理效果的提高,降低成本的目標,目前找到了一些其他氧化技術。
在這些新方法中的其中一種就是光催化法。它的特點是所需設備簡單,條件溫和,氧化能力高並且處理效果徹底。在污水處理中受到廣泛歡迎。
光催化反應就是通過光的作用發生的化學反應。反應過程中分子由於吸收特定波長的光波而轉變為分子激發態,進而發生化學反應形成新物質,或者變成中間化學產物以促進熱反應的進行。光化學反應所需的活化能來自於光,把太陽能的中的光能進行光電轉化和光化學轉化加以利用是目前非常熱門的研究領域。
光催化氧化技術利用光激發氧化將O2、H2O2等氧化劑與光輻射相結合。所用光主要為紫外光,包括uv-H2O2、uv-O2等工藝,可以用於處理污水中CHCl3、CCl4、多氯聯苯等難降解物質。另外,在有紫外光的Feton 體系中,紫外光與鐵離子之間存在著協同效應,使H2O2分解產生羥基自由基的速率大大加快,促進有機物的氧化去除。
所謂光化學反應,就是只有在光的作用下才能進行的化學反應。該反應中分子吸收光能被激發到高能態,然後電子激發態分子進行化學反應。光化學反應的活化能來源於光子的能量。在太陽能利用中,光電轉換以及光化學轉換一直是光化學研究十分活躍的領域。80 年代初,開始研究光化學應用於環境保護,其中光化學降解治理污染尤受重視,包括無催化劑和有催化劑的光化學降解。前者多採用臭氧和過氧化氫等作為氧化劑,在紫外光的照射下使污染物氧化分解;後者又稱光催化降解,一般可分為均相、多相兩種類型。均相光催化降解主要以Fe2+或Fe3+及H2O2為介質,通過光助-芬頓(photo-Fenton)反應使污染物得到降解,此類反應能直接利用可見光;多相光催化降解就是在污染體系中投加一定量的光敏半導體材料,同時結合一定能量的光輻射,使光敏半導體在光的照射下激發產生電子空穴對,吸附在半導體上的溶解氧、水分子等與電子-空穴作用,產生·OH 等氧化性極強的自由基,再通過與污染物之間的羥基加合、取代、電子轉移等使污染物全部或接近全部礦質化,最終生成CO2、H2O 及其它離子如NO3-、PO43-、S042-、Cl-等。與無催化劑的光化學降解相比,光催化降解在環境污染治理中的應用研究更為活躍。
氧化處理法目前由於低成本以及高效率的優勢特點處理方式已經得到了廣泛的關注。另外它在對污水進行深度處理和不易進行生物降解的有機廢水處理等場合都有不錯的前景,成為了國內外一項活躍的研究課題,很多人認為氧化法將在21 世紀成為廢水處理的一項重要方法。

7. 二氧化鈦負載二氧化硅的介紹和相比與二氧化鈦的優點等,主要是在光催化降解污水方面

1、優點:穩定性變強了。
2、缺點:① 二氧化硅會導致二氧化鈦光催化能力變版差,甚至催化能力完權全消失(本人的實驗數據證明,當然,國外的很多文獻資料都有介紹),原因是二氧化硅對氧化鈦形成了包覆結構; ② 想不影響光催化或者影響很小,這里的氧化硅的量非常難控制,需要大量的實驗數據,最終還不一定行。
3、總結:個人認為可行性不大。

8. 氨氮高了,高氨氮廢水有哪些處理方法

隨著我國經濟的高速發展,產生了大量高濃度氨氮廢水。氨氮廢水的大量排放,導致水體中氨氮大量富集,引起水體的富營養化與惡化,對水環境造成巨大危害,不僅嚴重影響了人們的正常生活,甚至危害了人們的身體健康,社會影響巨大。因此,國家在氨氮廢水的排放要求方面也制定了越來越嚴格的法規與排放標准。目前,除了合成氨、肉類加工、鋼鐵等12個行業執行相應的國家行業標准(通常一級標准為25mg/L)外,其他均需遵守國家標准GB8978-1996«污水綜合排放標准»。該標准明確1998年後新建單位氨氮最高允許排放濃度為15mg/L。
氨氮廢水的處理方法和工藝有很多種,主要有物化法和生物法。物化法包括吹脫法、離子交換法、折點氯化法、化學沉澱法、膜分離法、高級氧化法、電解法、土壤灌溉法等。生物法包括硝化—反硝化、同步硝化反硝化、短程硝化反硝化、厭氧氨氧化、A/O、A2/O、SBR、氧化溝等。
1、物化法
1.1 吹脫法
在廢水中氨氮多以銨離子(NH+4)和游離氨(NH3)的狀態存在,兩者保持平衡,平衡關系為:NH3+H2O→NH+4+OH-。這個平衡受pH值影響。當廢水pH值升高時,OH-離子增多,該平衡反應向左移動,有利於NH+4生成游離態的NH3,從而使得游離氨所佔比例增大,游離氨易於從水中逸出。當廢水的pH值升高到11左右時,廢水中的氨氮幾乎全部以NH3的形式存在,再加上曝氣吹脫的物理作用,則可促使NH3更容易從水中逸出,向大氣轉移。此外,該反應為放熱反應,溫度升高,反應方程向左移動,也有利於NH3從水中逸出。依據此原理,可以採用吹脫法來去除廢水中氨氮,吹脫法一般分為空氣吹脫法、水蒸汽吹脫法(汽提法)和超重力吹脫法。
1.1.1 空氣吹脫法
空氣吹脫法去除氨氮的原理是:在鹼性條件下,通過外力將空氣鼓入需要脫氨處理的廢水中,同時在廢水中使鼓入的空氣和廢水充分接觸,廢水中溶解的游離態氨將穿過廢水界面,向外界空氣轉移,從而達到去除氨氮的目的。
目前,空氣吹脫法在高濃度氨氮廢水處理中的應用較多,吹脫速率高,處理費用相對較低,但隨著氨氮濃度的降低,特別是當氨氮質量濃度低於1g/L以下時,吹脫速率顯著降低。氣液比、pH值、氣體流速、溫度、初始濃度等是影響吹脫法處理效果的主要因素。
現有吹脫裝置主要有吹脫池和吹脫塔,由於前者效率低,易受外界環境影響,因此多採用吹脫塔裝置。通常採用逆流操作,塔內裝有一定高度的填料以增加氣—液傳質面積,從而有利於氨氣從廢水中解吸。常用填料有拉西環、聚丙烯鮑爾環、聚丙烯多面空心球等。
空氣吹脫法的優點是:具有穩定的氨氮去除率,工藝操作簡單,氨氮容積負荷大等。缺點是:吹脫過程中易使填料層結垢,使廢水流通不暢,從而影響設備的正常運行;同時,吹脫工藝需要調節廢水pH值,需投加大量鹼,從而使廢水處理成本增高;另外,經空氣吹脫處理後,廢水中還含有少量氨氮,處理後的廢水時常不能達到國家排放標准。因此,吹脫法通常與其他方法聯合使用。
1.1.2 水蒸汽吹脫法(汽提法)
汽提法去除氨氮的原理是:大量蒸汽與廢水接觸,將廢水中游離氨蒸餾出來,以達到去除氨氮的目的。當向廢水中通入水蒸汽時,兩液相在填料表面上逆流接觸進行熱和物質交換,當水溶液的蒸汽壓超過外界的壓力時,廢水就開始沸騰,氨就加速轉為氣相。此外,氣泡表面之間形成自由表面,廢水中的氨不斷向氣泡內蒸發擴散,當氣泡上升到液面上破裂釋放出其中的氨,大量的氣泡擴大了蒸發表面,強化了傳質過程,通入的蒸汽升高了廢水的溫度,從而也提高了一定pH值時被吹脫的分子氨的比率。
汽提法適用於處理連續排放的高濃度氨氮廢水,操作條件與空氣吹脫法類似,氨氮去除率高,但汽提法工藝處理成本高,操作條件難控制,消耗動力高等。
1.1.3 超重力吹脫法
空氣吹脫法和水蒸汽吹脫法一般採用填料塔作為吹脫設備,而超重力吹脫法是利用超重力設備———超重機取代傳統的填料塔作為吹脫設備,以空氣為氣提劑,將水中的游離氨解吸到氣相中的氨氮廢水治理方法。
氨氮廢水加鹼調節pH值為10~11後進入超重機處理。廢水經超重機分布器均勻噴灑在填料內緣,在超重力作用下,液體被填料粉碎成液滴,沿填料徑向甩出,經筒壁匯集後從超重機底部流出。同時,空氣經超重機進氣口進入超重機殼體,在一定風壓下,由超重機轉子外腔沿徑向進入內腔。在填料層內,氣液兩相在大的氣液接觸面積的情況下完成氣液接觸,將水中的游離氨吹出。氣體送至除霧器,將夾帶的少量液體分離後,至吸收裝置,脫氨後排空。利用超重機的水力學特性與傳遞特性,可獲得良好的吹脫效果並減少設備投資與運行費用。
與工業上傳統僅使用塔設備的吹脫法相比,超重力法吹脫法具有以下幾點優勢:
(1)設備體積質量小,設備及基建費用少,過程放大容易,啟動、停車迅速,運行更穩定;
(2)擺脫了重力場的影響,對物料粘度適應性廣,操作彈性大;
(3)氣相動力消耗小,物料停留時間短,傳質系數大;
(4)去除氨氮效率高,有利於氣相中氨的回收利用:
(5)能夠增加水中的溶解氧,為可能的後續生化處理提供充足氧源。但是目前超重力法吹脫氨氮技術的大規模工業應用較少,主要是因為該技術不夠成熟。特別是大型的結構,仍需要根據具體的物系進行合理設計和試驗。
1.2 離子交換法
離子交換法是一種特殊的吸附過程即交換吸附。其主要機理是:利用離子間的濃度差和交換劑上的功能基對離子的親和力作為推動力達到吸附特定離子的目的。吸附過程是可逆的,吸附飽和的交換劑通過添加特定的解吸液可對交換劑上吸附的離子進行解吸,從而實現交換劑的循環使用。常見的交換劑有沸石等天然交換劑和人工合成的離子交換樹脂兩大類,而後者還可根據樹脂上功能團的不同分為陽離子交換樹脂和陰離子交換樹脂。
天然沸石(主要是斜發沸石)對NH+4具有強的選擇吸附能力,並且天然沸石的價格低於人工合成的離子交換樹脂。因此,工程上常用沸石對NH+4的強選擇性,將NH+4截留於沸石表面,從而去除廢水中的氨氮。pH值=4~8是沸石離子交換的最佳范圍。當pH值<4時,H+與NH+4發生競爭;pH值>8時,NH+4變為NH3,從而失去離子交換性能。但是沸石交換容量容易飽和,吸附容量低,更換頻繁,飽和後的沸石需再生才能再次使用。
離子交換樹脂主要是利用特定陽離子交換樹脂與水中的NH+4進行交換,交換後的樹脂再通過解吸而還原。與沸石相比,強酸型陽離子交換樹脂吸附容量大,處理效果穩定,但目前對強酸型陽離子交換樹脂的研究多處於實驗室階段。
離子交換法的優點是去除率高,適用於處理中低濃度的氨氮廢水。處理含氨氮10mg/L~20mg/L的城市污水,出水濃度可達1mg/L以下。但對於高濃度的氨氮廢水,會造成短時間交換劑飽和,從而再生頻繁,使處理成本增大,且再生液仍為高濃度氨氮廢水,仍需進一步處理。在實際工程應用中,離子交換法常結合其它污水處理工藝來處理高濃度氨氮廢水,先用其它方法作預處理,使經預處理後的廢水濃度在100mg/L左右,然後再用離子交換法處理剩餘氨氮廢水。
1.3 折點氯化法
折點氯化法是將氯氣通入氨氮廢水中達到某一點,在該點時水中游離氯含量最低,而氨氮的濃度降為零。當通入的氯氣量超過該點時,水中的游離氯就會增多,該點稱為折點,該狀態下的氯化稱為折點氯化,折點氯化法的原理就是氯氣與氨反應生成了無害的氮氣。加氯量對反應有很大影響,當氯的投加量與氨的摩爾比為1∶1時,化合余氯增加,主要為氯氨。當該比例為1.5∶1時余氯下降至最低點即「折點」,反應方程式為:NH+4+1.5HClO→0.5N2+1.5H2O+2.5H++1.5Cl-。pH值也是主要影響因素,pH值高時產生NO-3,低時產生NCl3。為了保證完全反應,通常pH值控制在6~8,一般加9mg~10mg的氯氣可氧化1mg氨氮。
折點加氯法的優點是氨氮去除率高(可達90%~100%),不受水溫影響,處理效果穩定,反應迅速完全,設備投資少,並有消毒作用。缺點是由於在處理氨氮廢水中要調節pH值,處理成本較高。同時液氯使用安全要求高且貯存時要求的環境條件高。另外,折點加氯法處理氨氮廢水後會產生副產物氯代有機物和氯胺,會給環境帶來二次污染。因此,折點氯化法多用於較低濃度氨氮廢水,適用於廢水的深度處理,工業上一般用於給水處理,對於大水量高濃度氨氮廢水不適合。
1.4 化學沉澱法
化學沉澱法去除廢水中氨氮的原理是:向氨氮廢水中投加磷酸鹽和鎂鹽,使廢水中的氨氮與磷酸鹽和鎂鹽生成一種難溶性的磷酸氨鎂沉澱(MgNH4PO4•6H2O),從而達到去除廢水中氨氮的目的。
磷酸銨鎂(MAP)又稱鳥糞石,可溶於熱水和稀酸,不溶於醇類、磷酸氨以及磷酸鈉的水溶液,遇鹼易分解、在空氣中不穩定,升溫至100℃時便會失水變為無機鹽,繼續加熱至融化(約600℃)則會分解成焦磷酸鎂。MAP可以用作飼料和肥料的添加劑,是一種很好的長效復合肥;也可用於塗料生產、氨基甲酸酯、軟泡阻燃劑製造和醫葯行業。因此,磷酸銨鎂脫氮除磷技術既可以去除廢水中的氨氮,又可回收較有經濟價值的MAP,達到變廢為寶的目的。
化學沉澱法的優點是工藝簡單、效率高,經處理後產生的沉澱物MAP經進一步加工處理後,能成為性能優良的農家復合肥料。缺點是處理成本高。在處理氨氮廢水過程中需加入大量價格昂貴的混凝劑。此外,去除1gNH+4-N可產生8.35gNaCl,由此帶來的高鹽度將會影響後續生物處理的微生物活性。因此,該方法一直停留在實驗室規模未在工程上運用,較少用於實際氨氮廢水處理。
1.5 膜分離法
膜分離法包括反滲透法、液膜法、電滲析法等。
1.5.1 反滲透法
反滲透就是藉助外界的壓力使膜內部的壓力大於膜外的壓力,使小於膜孔徑的分子(水)透過,大於膜孔徑的分子截留在膜內,這種作用現象稱作反滲透。其作用機理關鍵在於半透膜的選擇透過性,半透膜上有好多細小的微孔,像水分子這樣的小分子可以自由的透過,而大於半透膜上微孔的NH+4則不能通過。當溶液進入膜系統後,在外加壓力的作用下半透膜就會選擇性的讓某些小分子物質透過,大分子物質NH+4則會留在半透膜內側通過管道另外的出口排出。
反滲透裝置處理廢水需要對原水進行預處理,不然會損壞裝置內的膜件,並且該裝置需要高質量的膜。
1.5.2 液膜法
液膜法又稱氣態膜法,目前已應用於水溶液中揮發性物質的脫除、回收富集和純化,如NH3、CO2、SO2、Cl2、Br2等。液膜法去除氨氮的機理是:採用疏水性中空纖維微孔膜,膜一側是待處理的氨氮廢水,另一側是酸性吸收液,疏水的微孔結構在兩液相間提供一層很薄的氣膜結構。廢水中NH3在廢水側通過濃度邊界層擴散至疏水微孔膜表面,隨後在膜兩側NH3分壓差的推動下,NH3在廢水和微孔膜界面處氣化進入膜孔,然後擴散進入吸收液發生快速不可逆反應,從而達到脫除氨氮的目的。
液膜法具有比表面積大,傳質推動力高,操作彈性大,氨氮脫除率高,無二次污染等優勢,適合處理含鹽量較高、油性污染物含量低的高氨氮廢水。氨氮或含鹽量較高時,能有效抑制水的滲透蒸餾通量,減弱對吸收液的稀釋作用;但當廢水中含有油性污染物時,會造成膜的污染,使膜的傳質系數不能得到完全恢復。由於廢水的復雜性、膜材料的研發更新換代、可逆吸收劑的研發以及後續副產品的生產應用等多種原因,氣態膜法脫氨工業化進程很慢,國內生產應用實例較少。不過對於高鹽高濃度氨氮廢水,氣態膜處理成本較低,其應用前景廣闊。
1.5.3 電滲析法
電滲析法的原理是:當進水通過多組陰陽離子滲透膜時,NH+4在施加的電壓影響下,透過膜到達膜另一側濃水中並集聚,從而從進水中分離出來,實現溶液的淡化、濃縮、精製和提純。國內外專家在電滲析法處理氨氮廢水方面作了大量研究,並取得了一定成績。但由於高選擇性的防污膜仍在發展中,且對廢水預處理的要求很高,電滲析法用於工業尚需時日。
1.6 高級氧化法
高級氧化法是通過化學、物理化學方法將廢水中污染物直接氧化成無機物,或將其轉化為低毒、易降解的中間產物。應用於脫除廢水中氨氮的高級氧化法主要有濕式催化氧化法和光催化氧化法。
1.6.1 濕式催化氧化法
濕式催化氧化法是20世紀80年代國際上發展起來的一種治理廢水的新技術,其原理是:在特定的溫度、壓力下,通過催化劑作用,經空氣氧化可使污水中的有機物和氨氮分別氧化分解成CO2、N2和H2O等無害物質,達到凈化的目的。
濕式催化氧化法技術優點是:氨氮負荷高,工藝流程簡單,氨氮去除率高,佔地面積少等。缺點是:在處理氨氮廢水中會使用大量催化劑,造成催化劑的流失和增加對設備的腐蝕,使氨氮廢水處理成本增大。
濕式催化氧化法從處理效果上來說適合高濃度氨氮廢水的處理,但這種方法對溫度、壓力、催化劑等條件要求非常嚴格,反應設備須抗酸抗鹼耐高壓,一次性投資巨大,而且處理水量較大時費用很高,經濟上不劃算,目前在國內還鮮有工程應用的實例。
1.6.2 光催化氧化法
光催化氧化法是最近發展起來的一種處理廢水的高級氧化技術,它可以使廢水中的有機物在特定氧化劑的作用下完全分解為簡單的無機物CO2和H2O,達到降解污染物的目的,處理方法簡單高效,沒有二次污染。但由於反應過程中需要的催化劑難以分離回收,使該方法在實際工程中一定程度上受到了限制。
1.7 電解法
電解法利用陽極氧化性可直接或間接地將NH+4氧化,具有較高的氨氮去除率,該方法操作簡便,自動化程度高,其缺點是耗電量大,因此並不適用於大規模含氨氮廢水的處理。
1.8 土壤灌溉法
土壤灌溉法是把低濃度的氨氮廢水(50mg/L)作為農作物的肥料來使用,該法既為污灌區農業提供了穩定的水源,又避免了水體富營養化,提高了水資源利用率。土壤灌溉法只適合處理低濃度氨氮廢水,當廢水中的氨氮濃度低於50mg/L左右時,廢水中的氨氮在土壤表層發生硝化作用,在土壤深度30cm左右達到峰值,隨後由於脫氮等作用,在100cm處減小到10mg/L左右,在400cm以下土壤中未測出NH+4,直接污染到地下水的可能性幾乎為零。
2、生物法
生物脫氨氮的原理:首先通過硝化作用將氨氮氧化成亞硝酸氮(NO-2-N),再通過硝化作用將亞硝酸氮進一步氧化為硝酸氮(NO3-N),最後通過反硝化作用將硝酸氮還原成氮氣(N2)從水中逸出。
生物法的優點是:可去除多種含氮化合物,對氨氮可以徹底降解,總氨氮去除率可達95%以上,二次污染小且運行費用低。然而生物法對水質有嚴格的要求,高濃度的氨氮對微生物活性有抑製作用,會降低生化系統對有機污染物的降解效率,從而導致出水難於達標排放。
因此,生物法主要用來處理低濃度的氨氮廢水,且沒有或少有毒害物質存在,主要在處理生活污水以及垃圾滲濾液等方面應用較廣泛。常見的氨氮廢水生物處理工藝有傳統硝化反硝化、同步硝化反硝化、短程硝化反硝化、厭氧氨氧化、A/O、A2/O、氧化溝和SBR。
3、方法比較
根據廢水中氨氮濃度不同可將廢水分為三類:
(1)低濃度氨氮廢水:氨氮濃度小於50mg/L;
(2)中濃度氨氮廢水:氨氮濃度為50mg/L~500mg/L;
(3)高濃度氨氮廢水:氨氮濃度大於500mg/L。

9. 污水生物處理各方式優缺點對比

污水處理工藝方案技術比較表

氧化溝 生物接觸氧化法 A/O法

技術適用性 國內外使用情況,水量、水質的適應程度 運行管理復雜, 國外採用較多,適應中、小規模污水處理廠,對水質水量的變化適應能力較差 運行管理簡單,國內外採用較多,對水質水量變化適應性強,適用於工業廢水處理與深度處理 運行管理復雜,國內外採用較多,對水質水量的變化適應能力較差,適應大中小規模污水廠
二 水質目標
出水水質 滿足污水排放標準的保證率 出水水質好,對於工業廢水處理運行缺乏經驗,且運行復雜,工程實例少 適用於處理難生化降解的低濃工業廢水,出水水質好 適合一般城市污水,出水水質好,能高效脫氮,污泥產量小且穩定。污泥無需消化
對外界條件的適應性 氣溫、水溫、營養、水量變化等對出水水質的影響 出水水質穩定,對外界條件變化適應性較強 出水水質穩定,對外界條件變化適應性好 出水水質穩定,對外界條件變化適應性強
三 工程實施
分步實施 分步實施的可能 可分組實施 可分組實施 可分組實施
施工難易 施工的難易程度 容易 容易 容易
佔地面積 處理萬噸水量佔地 ≤8畝 ≤8畝 ≥12畝
四 環境影響
對周圍環境的影響 指雜訊及臭味等 噪音及臭味低 噪音及臭味低 噪音及臭味低
污泥的影響 污泥的產量及穩定性 污泥量小,污泥穩定性好 污泥量小,污泥穩定性好 污泥量略多,污泥穩定性好
五 運行管理
運轉操作 指運行和操作的方便程度 運行復雜,需根據水質調整,對員工技術要求高。 簡單 簡單
維護管理 設備維修難易及工作量 設備多,系統復雜,維修量大 設備較少,維修要求相對低 設備較少,維修要求相對低

10. UV光氧催化的優缺點

UV光催化設備的優勢:
一、除惡臭:能去除揮發性有機物(VOC)、苯、甲苯、二甲苯的分子、無機物、硫化氫、氨氣、硫醇類等主要污染物,
以及各種惡臭味,凈化、脫臭效率可達99%以上,凈化、脫臭效果大大超過1993年頒布的惡臭污染物排放標准(GB14554-93)。
二、無需添加任何物質:只需要設置相應的排風管道和排風動力,使工業廢氣通過本設備進行分解凈化,無需添加任何物質參與化學反應。,
三、適應性強:可適應高濃度,大氣量,不同工業 廢氣 物質的凈化處理,可每天24小時連續工作,運行穩定可靠。
四、運行成本低:本設備無任何機械動作,無噪音,無需專人管理和日常維護,只需作定期檢查,
本設備能耗低,(每處理1000立方米/小時,僅耗電約0.2度電能),設備風阻極低。
UV光催化設備工作原理:
1、利用特製的高能高臭氧UV紫外線光束照射來裂解排放的廢氣廢氣,能有效的處理:硫化氫、甲硫氫、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯,
硫化物H2S、VOC類,等廢氣的分子鏈結構,使有機或無機高分子廢氣化合物分子鏈,在高能紫外線光束照射下,
降解轉變成低分子化合物,如CO2、H2O等,從而達到有效的治理,從而實現達標排放。

閱讀全文

與光催化氧化降解廢水的缺點相關的資料

熱點內容
污水處理廠水質超標應急 瀏覽:427
某城鎮污水處理 瀏覽:284
別墅污水提升泵應該建到哪 瀏覽:986
陽離子交換膜製作方法 瀏覽:297
漢川市鄉鎮自來水水垢多 瀏覽:33
水處理微生物學論文3500字 瀏覽:228
選擇蒸餾瓶應考慮什麼因素6 瀏覽:456
空氣凈化器怎麼清洗水箱 瀏覽:418
二氧化氯污水處理流程 瀏覽:731
超濾膜包怎麼使用 瀏覽:545
茶具廢水盤 瀏覽:637
巴彥污水管道有哪些 瀏覽:433
減壓蒸餾實驗的意義 瀏覽:515
貴州印染廢水聚丙烯醯胺多少錢 瀏覽:963
怎麼用礦泉水瓶變成飲水機 瀏覽:721
怎麼往熱水器里放除垢劑 瀏覽:29
脫硫廢水如何去除汞 瀏覽:550
循環水水垢預防方法 瀏覽:253
負離子去黑頭If 瀏覽:950
廢水溫度計 瀏覽:787