導航:首頁 > 污水知識 > 香蘭素生產廢水特徵

香蘭素生產廢水特徵

發布時間:2023-05-16 04:42:26

『壹』 國外是怎麼處理抗生素生產廢水

抗生素生產廢水成份復雜,有機物濃度高,溶解性和膠體性固體濃度高,PH值經常變化,溫度較高,帶有顏色與氣味,懸浮物含量高,含有難降解物質和有抑菌性作用的抗生素,並且有生物毒性。其具體特徵如下:
處理方法:
1、混凝預處理
抗生素廢水的濁度和懸浮物濃度較高,因而在水質預處理部分採用混凝法預處理,去除高懸浮物和濁度,以便使水質史適宜進行後續生物處理。
混凝的基本原理
混凝澄清是給水和廢水處理實踐中的一種常用的單元操作它是指在混凝劑的作用下,使廢水中的膠體和細微懸浮物凝聚為絮凝體,然後予.以分離除去的水處理方法。膠體溶液或懸浮液穩定的原因是:固體微粒的粒度太細,同時帶有同性電荷形成布朗運動;另外,溶液中還有一種親水的膠體,它是可溶性的大分子,如蛋白質、澱粉和腐植酸等,它們的分子上都帶有親水的極性基團如一OH、一COOH、一NH3等對水具有較強的親和力,在分了的周圍保持較厚的水層,能發生膨脹,有形成真溶液的傾向。膠體或懸浮液形成分散體系就是依靠細微粒度,荷同性電荷以及在水中的溶解作用而形成穩定狀態的,因而必須投加混凝劑來破壞他們的穩定性,使其相互聚集為數百微米以至數毫米的絮凝體,才能予以除去。混凝就是在混凝劑的離解和水解產物的作用下,使水中膠體污染物質和細微懸浮物脫穩並聚集為具有可分離性的絮凝體的過程,其中包括凝聚和絮凝兩個過程,統稱為混凝。
混凝的作用機理
在混凝處理中,主要是通過壓縮雙電層和電性中和機理起作用的。
凝聚作用:
凝聚作用是指加入無機電解質,通過電性中和作用,壓縮雙電層,降價了ζ電位,減少微粒間的排斥能,解除布朗運動,使微粒能夠靠近接觸而聚集在一起的作用。
混凝預處理對原水中的COD及硫酸鹽濃度的影響
在進行混凝預處理時,除了希望通過混凝預處理去除較高的SS外,還希望能夠同時去除水中的高濃度COD及某些生物抑制性物質,如硫酸鹽。由於在進行水質保存時,引入了硫酸根離子,根據前述內容可知,抗生素制葯廢水中主要的生物抑制性物質就是硫酸鹽。因而,在預處理部分,混凝預處理過程對COD及硫酸鹽濃度變化的影響。隨沉降時間的延長,COD及硫酸鹽的去除率均會逐漸地增大,這主要是因為隨著沉降時間的延長,不溶性的COD附著在絮凝體上而不斷下沉,最終被除去的緣故。硫酸鹽的去除為下一步的厭氧生物處理提供了便利,降低硫酸鹽濃度,從而減少硫酸鹽還原菌作用後生成的硫化氫不能及時地外排而造成對厭氧微生物的毒害作用。
抗生素廢水的生化處理
2、廢水的好氧生物處理
廢水的好養生物處理原理
好氧生物處理是在提供游離氧的前提下,以好氧微生物為主,使有機物降解,穩定的無害化處理方法。廢水中存在的各種有機污染物,以膠體狀、溶解狀的有機物為主,作為微生物的營養源。這些高能位的有機物質經過一系列的生化反應,逐級釋放能量,最終以低能位的無機物質穩定下來。有機物被微生物攝取後,通過代謝活動,有機物一方面被分解、穩定,並提供微生物生命活動所需的能量;另一方面被轉化,合成為新的原生質的組成部分,即微生物自身生長繁殖。這一部分就是廢水生物處理中的活性污泥或生物膜的增長部分,通常稱為剩餘活性污泥。
活性污泥法的基本流程
活性污泥法是一種應用最廣的廢水好氧生物處理技術,它是指將空氣連續鼓入大量溶解有機污染物的廢水中,經過一段時間,水中即形成生物絮凝體一活性污泥,在活性污泥上棲息、生活著大量的好氧微生物,這種微生物以溶解有機物為食料,獲得能量,並不斷增長,使廢水得到凈化。它由曝氣池、二次沉澱池、曝氣系統及污泥迴流系統等組成。由初次沉澱池流出的廢水與二次沉澱池底部迴流的活性污泥同時進入曝氣池,在曝氣池的作用下,混合液得到足夠的溶解氧並使活性污泥和廢水充分接觸,廢水中的可溶性有機污染物為活性污泥所吸附並為存活在活性污泥上的微生物群體所分解,使廢水得到凈化。
活性污泥處理系統有效運行的基本條件是:
(l)廢水中含有足夠的可溶性易降解有機物,作為微生物生理活動所必需的營養物質:(2)混合液含有足夠的溶解氧:(3)活性污泥在池內呈懸浮狀態,能夠充分地與廢水相接觸:(4)活性污泥連續迴流,及時地排除剩餘污泥,使混合液保持一定濃度的活性污泥:(5)沒有對微生物有毒害作用的物質進入。
活性污泥法的凈化過程
在正常發育的活性污泥的微生物體內,存在著由蛋白質、碳水化合物和核酸組成的生物聚合物,這些生物聚合物是帶有電荷的電介質。因此,由這種微生物形成的生物絮凝體,都具有生理、物理、化學吸附作用和凝聚、沉澱作用,在其與廢水中呈懸浮狀和膠休狀的有機污染物接觸後,能夠使後者失穩、凝聚,並被吸附在活性污泥表面。
活性污泥具有很大的表面積,能夠與混合液廣泛接觸,在較短的時間內,通過吸附作用,就能夠除去廢水中大量的呈懸浮和膠體狀的有機污染物,使廢水的COD值大輻度地下降。
小分子有機物能夠直接在透膜酶的催化作用下,透過細胞壁被攝入細菌體內,但大分子有機物則首先被吸附在細胞表面,在水解酶的作用下,水解成小分子後再被攝入到細胞體內。一部分被吸附的有機物可能通過污泥排放被去除。
3、廢水的厭氧處理
廢水的厭氧處理原理
廢水的厭氧處理是在沒有游離氧的情況下,以厭氧微生物為主對有機物進行降解,穩定的一種無害化處理方法[。在厭氧生物處理過程中,復雜的有機化合物被降解,轉化為簡單、穩定的化合物,同時釋放能量。其中,大部分能量以CH4的形式出現,可回收利用。同時,僅少量有機物被轉化,合成新的細胞組成部分。
第一階段,可稱為水解、發酵階段。復雜有機物在微生物的作用下進行水解發酵。水解可定義為復雜的非溶解性的聚合物被轉化為簡單的溶解性單體或二聚體的過程。高分子有機物因相對分子質量巨大,不能透過細胞膜,因此不可能為細菌直接利用,因此它們在第一階段被細胞外酶分解為小分子。如纖維素被纖維素酶水解為纖維二糖與葡萄糖,澱粉被澱粉酶水解為麥芽糖和葡萄糖,這些小分子的水解產物能夠溶解於水並透過細胞膜為細菌所利用。而後,這些物質在發酵細菌的細胞內轉化為更簡單的化合物並被分泌到細胞外。發酵是有機化合物既作為電子受體也是電子供體的生物降解過程,在此過程中,溶解性有機物被轉化為以揮發性脂肪酸為主的末端產物。這一階段的主要產物有揮發性脂肪酸、酸類、乳酸、CO2、H2、H2S、甲胺等。與此同時,酸化菌也利用部分物質合成新的細胞物質。
酸化過程是由大量的、多種多樣的發酵細菌完成的。其中重要的類群有權梭狀芽孢桿菌和擬桿菌。它們大多是嚴格厭氧的,但通常有約1%的兼性厭氧菌存在於厭氧環境中,這些兼性厭氧菌能夠保護嚴格厭氧菌免受氧的損害與抑制。
第二階段,稱為產氫、產乙酸階段,是由一類專門的細菌,稱為產氫產乙酸菌,將丙酸、丁一酸等脂肪酸和乙醇等轉化為乙酸、C02、HZ。
在標准條件卜,乙醇、丁酸和丙酸不會被降解,因為在這些反應中不產生能。但氫濃度的降低可使這些反應導向產物方向。在運轉良好的反應器中,氫的分壓一般不高於lOPa,平均值約為0. 1 Pa。當作為反應產物之一的氫的分壓如此之低時,乙醇、丁酸和丙酸的降解則可以產生能,即反應的實際自由能成為負值。
在由氫和二氧化碳形成甲烷時,只有在產乙酸產生的氫被產甲烷菌有效利用時,系統中氫才能維持在很低的分壓。根據平均氫分壓可以計算出反應器里一個氫分子平均在0. 5s以內被消耗,這意味著氫分子在其產生後僅僅能移動0. 1 mm的距離。也說明這種生化反應需要密切的共生關系存在於菌種之間。這種現象稱為「種間氫傳遞」。不僅存在著氫的傳遞,有跡象證明「種間甲酸傳遞」也是相當重要的。
第三階段,稱為產甲烷階段。由產甲烷菌利用乙酸、H2、C02,產生CH4。
在厭氧反應器中,所產甲烷的大約70%由乙酸歧化菌產生。在反應中,乙酸中的羧基從乙酸分子中分離,甲基最終轉化為甲烷,羧基轉化為二氧化碳,在中性溶液中,二氧化碳以碳酸氫鹽的形式存在。
已知利用乙酸的產甲烷菌是索氏甲烷絲菌和巴氏甲烷八疊球菌。兩者的生長速率有較大的區別。當乙酸濃度較低時,索氏甲烷絲菌較巴氏甲烷八疊球菌優勢生長。由於索氏甲烷絲菌對底物有更高的親和力,在廢水處理中可能取得較高的有機物去除率,且索氏甲烷絲菌的生長有利於形成品質良好的顆粒污泥。因此這種優勢生長對系統運行是非常有利的。
厭氧消化微生物
1、發酵細菌(產酸細菌)
主要包括梭菌屬、擬桿菌屬、丁酸弧菌屬、真菌屬和雙歧桿菌屬等。
這類細菌的書要功能是先通過胞外酶的作用將不溶性有機物水解成可溶性有機物,再將可溶性的大分子有機物轉化成脂肪酸、醇類等。研究表明,該類細菌對有機物的水解過程相當緩慢,pH和細胞平均停留時間等因素對水解速率的影響很大。不同的有機物的水解速率不同,如類脂的水解就很困難。因此當處理的廢水中含有大量類脂時,水解就會成為厭氧消化過程的限速步驟。但產酸的反應速率較快,並遠高於產甲烷反應。
發酵細菌大多數為專性厭氧菌,按其代謝功能,發酵細菌可分為纖維素分解菌、半纖維素分解菌、澱粉分解菌、蛋自質分解菌和脂肪分解菌。
2、產氫產乙酸細菌
產氫產乙酸菌包括互營單胞菌、互營桿菌屬、梭菌屬和暗桿菌屬等。這類細菌能把各種揮發性脂肪酸降解為乙酸和H2。
3、產甲烷細菌
產甲烷菌分為兩類:一類主要利用乙酸產生甲烷,另一類數量較少,利用氫和二氧化碳的合成生成甲烷。
厭氧反應中的硫酸鹽還原
在處理含硫酸鹽或亞硫酸鹽廢水的厭氧反應器中,這些含硫化合物會被細菌還原。硫酸鹽和亞硫酸鹽會被硫酸鹽還原菌(SRB)在其氧化有機污染物的過程中作為電子受體而加以利用。SRB將硫酸鹽和亞硫酸鹽還原為硫化氫,會使甲烷產量減少。
根據所利用底物的不同,SRB可被分為三類:
氧化氫的硫酸鹽還原菌(HSRB);
氧化乙酸的硫酸鹽還原菌(ASRB);
氧化較高級脂肪酸的硫酸鹽還原菌(FASRB)。
有機物的降解中少量硫酸鹽的存在不會影響處理過程,但與甲烷相比,硫化氫在水中的溶解度要大得多,每克以硫化氫形式存在的硫相當於2克COD,因而在處理含硫廢水時,盡管有機物的氧化已相當不錯,COD的去除率卻不令人滿意。
4、抗生素廢水的活性炭吸附
活性炭水處理的特點
活性炭吸附技術用於醫葯、化工及食品工業等方面,在國內外有多年的歷史。活性炭水處理的特點為:
1、活性炭對水中有機物有卓越的吸附特性
由於活性炭具有發達的細孔結構和巨大的比表面積,因此對水中溶解的有機污染物,如苯類化合物、酚類化合物、石油及石油產品等具有較強的吸附能力,而且對用生物法和其它化學法難以去除的有機污染物,如色度、異臭、亞甲藍表面活性物質、除草劑、殺蟲劑、農葯、合成洗滌劑、合成染料、胺類化合物及許多人工合成的有機化合物等都有較好的去除效果。
2、活性炭對水質、水溫及水量的變化有較強的適應能力,對同一種有機物污染物的污水,活性炭在高濃度或低濃度時都有較好的去除效果。
3、活性炭對某些重金屬化合物也有較強的吸附能力,如汞、鉛、鐵、鎳、鉻、鋅、鑽等,因此,活性炭用於電鍍廢水、冶煉廢水處理上也有很好的效果。
4、活性炭水處理裝置佔地面積小,易於自動控制,運行管理簡單。
5、飽和炭可經再生後重復使用,不產生二次污染。
6、可回收有用物質,如處理高濃度含酚廢水,用鹼再生後可回收酚鈉鹽。
活性炭吸附的基礎理論
固體表面由於存在著未平衡的分子引力或化學鍵力,而使所接觸的氣體或溶質被吸引並保持在固休表面上,這種表面現象稱為吸附。固體都有一定的吸附作用,但具有實用價值的吸附劑是比表面積較大的多孔性固體。活性炭就因為具有較大的比表面積而具有較高的吸附能力,可用作吸附劑。
吸附劑與被吸附物質之間是通過分子間引力(即范德華力)而產生吸附的,稱為物理吸附;吸附劑與被吸附物質之間產生化學作用,生成化學鍵引起吸附的,稱為化學吸附離子交換吸附是指一種吸附質的離子,由於靜電引力,被吸附在吸附劑表面的帶電點上。
活性炭的吸附速度
吸附速度是指單位重量吸附劑在單位時間內所吸附的物質量。在廢水中,吸附速度決定了廢水和吸附劑的接觸時間。吸附速度越快,所需的接觸時間越短,吸附設備容積也越小。
吸附速度決定於吸附劑對吸附質的吸附過程。多孔吸附劑對溶液中吸附質吸附過程基本上可分為三個連續階段:第一階段稱為顆粒外部擴散階段,吸附質從溶液中擴散到吸附劑表面:第二階段稱為顆粒孔隙擴一散階段,吸附質在吸附劑孔隙中繼續向吸附點擴散:第三階段稱為吸附反應階段,吸附質被吸附在吸附劑孔隙內的表面上。一般而言,吸附速度主要由膜擴散速度或孔隙擴散速度來控制。
由實驗得知,顆粒外部膜擴散速度與溶液濃度成正比。對一定重量的吸附劑,膜擴散速度還與吸附劑的表面積的大小成正比。因為表面積與顆粒直徑成反比,所以顆粒直徑越小,膜韋、一散速度就越大。另外,增加溶液和顆粒之間的相對運動速度,會使液膜變薄,可以提高膜擴散速度。
孔隙擴散速度與吸附劑孔隙的大小及結構、吸附質顆粒大小及結構等因素有關。一般來說,吸附劑顆粒越小,孔隙擴散速度越快,即擴散速度與顆粒直徑的的較高次方成反比。因此,採用粉狀吸附劑比粒狀吸附劑有利。其次,吸附劑內孔徑大可使孔隙擴散速度加快,但會降低吸附量。
影響活性炭吸附的因素
1、吸附劑的理化性質
吸附劑的種類不同,吸附效果也不一樣。一般是極性分子(或離子)型的吸附劑容易吸附極性分了(或離子)型的吸附質,非極性分子型的吸附劑容易吸附非極性分子型的吸附質。由於吸附作用是發生在吸附劑的內外表面上,所以吸附劑的比表面積越大,吸附能力就越強。另外,吸附劑的顆粒大小、孔隙構造和分布情況,以及表面化學特性等,對吸附也有很大的影響。
2、吸附質的物理化學性質
吸附質在廢水的溶解度對吸附有較大的影響。一般來說,吸附質的溶解度越低,越容易吸附。吸附質的濃度增加,吸附量也是隨之增加:但濃度增加到一定程度後,吸附量增加很慢。如果吸附質是有機物,其分子尺寸越小,吸附反應就進行得越快。
3、廢水的pH值
pH值對吸附質在廢水中的存在形態(分子、離子、絡合物等)和溶解度均有影響,因而其吸附效果也就相應地有影響。廢水pH值對吸附的影響還與吸附劑性質有關。例如,活性炭一般是在酸性溶液中比在鹼性溶液中有較高的吸附率。
4、溫度
吸附反應通常是放熱的,因此溫度越低對吸附越有利。但在廢水處理中,一般溫度變化不大,因而溫度對吸附過程影響很小,實踐中通常在常溫下進行吸附操作。
5、共存物的影響
共存物質對主要吸附質的影響比較復雜。有的能相互誘發吸附,有的能相當獨立地被吸附,有的則能相互起千擾作用。但許多資料指出,某種溶質都以某種方式與其他溶質爭相吸附。因此,當多種吸附質共存時,吸附劑對某一種吸附質的吸附能力要比只含這種吸附質時的吸附能力低。懸浮物會阻塞吸附劑的孔隙,油類物質會濃集於吸附劑的表面形成油膜,它們均對接觸時間吸附有很大影響。因此在吸附操作之前,必須將它們除去。
6、接觸時間
吸附質與吸附劑要有足夠的接觸時間,才能達到吸附平衡。吸附平衡所需時間取決於吸附速度,吸附速度越快,達到平衡所需時間越短。
四、研究結果(廢水處理試驗結論)
1、針對此種廢水,其混凝處理的最佳條件為:混凝劑品種為三氯化鐵,質量百分比濃度為10%,每lL廢水中需投加此種混凝劑0.2ml,其最適pH值為7
2、進行廢水的生化處理,可知廢水中含有大量的隋性物質、難降解物質。
3、在T=33士1℃的條件下,確定其厭氧水解常數
4、由於廢水中含有多種有機化合物,在用活性炭進行吸附試驗時,表現了一定的競爭作用,活性炭總吸附量不高。
5、對於厭氧處理中的硫酸鹽,它的去除與廢水中所含的COD有一定的關系。詳細資料摘自:http://wenku..com/link?url=-rZYzotwVqhEibE74YEzhcMF_gxdXU3ZhB0sJEQVO8NtKcdqDwSeh_m6m-fjJY7ooOxeuuSJvT_2rnAuTtVNHi4TdsfeE3r-0esoZroDqEm www.juheliusuantie.com.cn 詳情請到網路文庫了解

『貳』 食品廢水應該怎麼處理

由於食品種類繁多,原料來源廣泛,食品工業廢水具有懸浮物、油脂含量高,重金屬離子多,COD和BOD數值大,誰知和水量變化幅度大,氮、磷化合物含量高,某些情況下水溫也較高等特點。污水處理工藝分成一級處理、二級處理和三級處理。對於食品工業污水,一級處理一般是採用固液分離技術去除污水中的懸浮物和漂浮物;二級處理是主要處理過程,一般採用生物處理技術去除水中有機物等有毒物質,一般採用膜處理法、強氧化劑等技術將污水進一步進化。

食品廢水在處理過程中會產生污泥、廢油、廢酸、廢鹼、加工過程中產生的動植物廢棄物也應該進行無害化處理。 食品加工廢水主要來自三個生產工段。 (1)原料清洗工段。大量砂土雜物、葉、皮、鱗、肉、羽、毛等進入廢水中,使廢水中含大量懸浮物。 (2)生產工段。原料中很多成分在加工過程中不能全部利用,未利用部分進入廢水,使廢水含大量有機物。 (3)成形工段。為增加食品色、香、味,延長保存期,使用了各種食品添加劑,一部分流失進入廢水,使廢水化學成分復雜。

食品加工廢水的水量水質特性主要體現在6個方面: (1)生產隨季節變化,廢水水質水量也隨季節變化。 (2)廢水量大小不一,食品工業從家庭工業的小規模到各種大型工廠,產品品種繁多,其原料、工藝、規模等差別很大,廢水量從數m3/d到數千m3/d不等。 (3)食品工業廢水中可降解成分多,對於一般食品工業,由於原料來源於自然界有機物質,其廢水中的成分也以自然有機物質為主,不含有毒物質,故可生物降解性好,其BOD5/COD高達0.84。 (4)高濃度廢水多。 (5)廢水中含各種微生物,包含致病微生物,廢水易腐敗發臭。 (6)廢水中氮、磷含量高。

選擇食品排放污水處理工藝,不僅要考慮污水中有害物質的組成,而且要了解排出污水水質、水量的瞬間變化情況,這些對選擇污水處理工藝、設備和日後運行管理都很重要。

『叄』 化工廢水的處理方法

化工廢水的特點

化工廢水具有極高的COD、高鹽度、對微生物有毒性,是典型的難降解廢水,是目前水處理技術方面的研究重點和熱點。化工廢水的特徵分析如下:

(1)水質成分復雜,副產物多,反應原料常為溶劑類物質或環狀結構的化合物,增加了廢水的處理難度;

(2)廢水中污染物含量高,這是由於原料反應不完全和原料、或生產中使用的大量溶劑介質進入了廢水體系所引起的;

(3)有毒有害物質多,精細化工廢水中有許多有機污染物對微生物是有毒有害的,如鹵素化合物、硝基化合物、具有殺菌作用的分散劑或表面活性劑等;

(4)生物難降解物質多,B比C低,可生化性差;

(5)廢水色度高。

化工廢水處理辦法

1.化工廢水處理物理處理法

化工廢水處理時常用的物理處理法是包括過濾法、重力沉澱法、氣浮法等。這些都是以傳質作用來處理化工廢水,不單單涉及化學作用,還具有相關的物理作用,因此被稱為物理化學法,是一種將物理作用和化學作用相結合的污水處理化處理方法來凈化廢水。

過濾法是以具有孔粒狀料層截留水中雜質,主要是降低水中懸浮物;

重力沉澱法是利用氏早水中懸浮顆粒的可沉澱性能,在重力場的作用下自然沉降作用,以達到固液分離的一種過程;

氣浮法是通過生成吸附微小氣泡附裹攜帶懸浮顆粒而帶出水面的方法。這三種物理方法工藝簡單,管理方便,但不能適用於可溶性廢水成分的去除,具有很大的局限性。

2.化學方法處理化工廢水。

化學方法是利用化學反應的作用以去除化工廢水中的有機物、無機物雜質,主要有化學混凝法、化學氧化法、電化學氧化法等段襪。

例如,通過添加化學物質來產生化學反應(常見的中和反應、氧化還原反應和混凝反應)。

在化工廢水處理過程中採用化學實驗的方法,所使用的設備都具備配套的水池、灌、塔和一些輔助設備。化學處理法具有低投資、低成本、操作簡單的優點,一個成熟的技術優勢,能承受量大、含量高的負荷沖擊,可適用於各種化工廢水處理,但化工原料需要不斷的消耗和產生污泥、排出水回用是困難的,並且佔地面積較大。

3.物理化學法

以傳質作用來處理廢水時,不單單涉及到化學作用,而且還具有相關的物理作用,故稱為物握核激理化學法。它是一種將物理作用與化學作用相結合的污水理化處理方法來凈化廢水。

這些方法主要包括萃取、汽提、剝離、吸附、電滲析、離子交換和反滲透等等。使用該方法前,先應該對廢水進行預處理,去除廢水中的油、懸浮物和有害氣體等,必要時還需要調整pH值。

4.生物處理法

生物法是一種處理效率高、成本低的廢水處理方法,但是它對進水水質要求比較高,故一般與其它預處理技術聯合使用。常見的生物法是活性污泥法、生物膜法、厭氧生物法。各有優劣,一般要結合使用。

『肆』 染料生產廢水如何進行處理

染料生產廢水中含有酸、鹼、鹽、鹵素、烴、胺類、硝基或染料及其中間體等物專質,也含有吡啶、氰、苯酚、聯屬苯胺或重金屬汞、鎘、鉻等。這些廢水成分復雜有毒,處理困難。

因此,染料生產廢水的處理必須符合廢水的特性及其排放要求。選擇適當的處理方法。例如,凝結和過濾可用於去除固體雜質和無機物。有機物和有毒物質的去除主要採用化學氧化法、生物法、反滲透法等。脫色一般可採用混凝法和吸附法組成的工藝,重金屬去除可採用離子交換法等。

『伍』 制葯廢水有哪些特點

您好,很高興為您解答:
制葯廢水主要表現為:(1)有機污染物濃度高。不完全原材料,包括發酵殘余基質和發酵殘余基質和養分、溶萃殘余液、溶溶萃殘余液、印染灌注廢液以及印染灌注廢水、以及大量副產品、少量成產品將流出水,少量成產品將流出水,導致COD濃度在廢水中COD濃度在5000mg/L以上5000mg/L以上;
(2)難生物分解物、有毒有害物多。醫葯生產廢水中殘留的抗生素、鹵素化合物、醚類、硝類、硫醚、礬類、一些雜環化合物和有機溶劑等葯物,大多屬於生物難降解物質,當濃度達到一定程度時,對微生物有抑製作用。此外,鹵素化合物、硝基化合物、有機氮化合物、分散劑或具有殺菌作用的表面活性劑對微生物有很大的毒性作用,給制葯廢水的生化處理帶來很大的困難;
(3)大沖擊載荷。制葯廠的廢水由於生產工藝要求,一般是間歇排放,溫度、污染物濃度和酸鹼度均隨時間變化較大。此外,大量高濃度、短時間集中排放的廢水,如發酵罐倒罐出水,會造成較大的負荷影響;
(4)高鉻和高濃重的高鉻和重臭和重臭味。醫葯廢水是利用大量的化學劑和動植物組織作為原料生產出來的,這些材料進入廢水中會產生更大的氣味和更深的鉻。並且經一般污水處理流程後難以徹底去除,對環境影響較大。
(5)懸浮固體濃度高。抗生素、中葯等葯用廢水常含有大量的微生物菌絲體或中葯殘留物,廢水ss高。例如青黴素生產廢水SS一般為5000~23000mg/L。

『陸』 求助高濃度化工廢水怎麼處理

化工廢水的特徵:

1、化工廢水成分復雜,反應原料常為溶劑類物質或環狀結構的化合物,增加了廢水的處理難度;

2、該廢水中含有大量污染物物質,主要是由於原料反應不完全和原料或生產中使用大量溶劑造成的。

3、有毒有害物質多,精細化工廢水中有許多有機污染物對微生物是有毒有害的,如鹵素化合物、硝基化合物、具有殺菌作用的分散劑或表面活性劑等;

4、生物難降解物質多,BOD/COD低,可生化性差;

化工污水處理

高濃度化工廢水的處理工藝是多種多樣的,不同的廢水採用的工藝和技術方法也是不同的,以上只是廣東青藤環境科技有限公司整理出來的一些關於高濃度廢水處理的一些資料方法。

『柒』 化工廢水的水質特點

化工廢水的特點有以下幾方面:
1. 有毒性和刺激性
化工廢水中含有許多污染物,有些是有毒或有劇毒的物質,如氰、酚、砷、汞、鎘和鉛等,有的物質不易分解,在生物體內長期積累會造成中毒,如有機氯化合物;有些據稱是致癌物質,如多環芳烴化合物等;此外,還有一些有刺激性、腐蝕性的物質,如無機酸、鹼類等;
2. 生化需氧量(BOD)和化學需氧量(COD)都較高
化工廢水(特別是石油化工生產廢水),含有各種有機酸、醇、醛、酮、醚和環氧化物等,其特點是生化需氧量和化學需氧量都較高。這種廢水一經排入水體,就會在水中進一步氧化分解,從而消耗水中大量的溶解氧,直接威脅水生生物的生存;
3. pH不穩定
化工生產排放的廢水,時而呈強酸性,時而呈強鹼性,pH不穩定,對水生生物、構築物和農作物都有極大危害;
4. 營養化物質較多
化工生產廢水中有的含磷、氮量過高,造成水域富營養化,使水中藻類和微生物大量繁殖,嚴重時還會形成「赤潮」,造成魚類大批死亡;
5. 廢水溫度較高
由於化學反應常在高溫下進行,排出的廢水水溫較高。這種高溫廢水排入水域後,會造成水體的熱污染,使水中溶解氧降低,從而破壞水生生物的生存條件。
6. 油污染較為普遍
石油化工廢水中一般都含有油類,不僅危害水生生物的生存,而且增加了廢水處理的復雜性;
7. 恢復比較困難
受化工有害物質污染的水域,即使減少或停止污染物排出,要恢復到水域原來狀態,仍需要很長時間,特別是對於可以被生物所富集的重金屬污染物,停止排放後仍很難消除污染狀態。

『捌』 工業廢水的主要特徵

一,工業廢水的主要特點是:
1,工業廢水對環境造成的污染危害,以及應採取的防治版對策,取決於工業廢水權的特性,即污染物的種類、性質和濃度。工業廢水的水質特徵,不單依廢水的類別而異,往往因時因地而多變。
2,工業廢水的特點主要表現為排放量大、組成復雜和污染嚴重。對廢水水質常用兩項最主要的污染指標來表示,也就是指懸浮物和化學需氧量。不同的工業廢水,其水質差異很大。以化學需氧量為例,較低的也在250-3500mg/L之間,高的常達每升數萬毫克,甚至幾十萬毫克。
二,工業廢水的定義
所謂工業廢水是指各行業生產過程中所產生和排出的廢水。它可分為生產污水(包括生活污水)和生產廢水兩大類。
1、生產污水是指在生產過程中所形成的,被有機或無機生產廢料所污染的廢水(包括溫度過高而能夠造成熱污染的工業廢水)。
2、生產廢水是指在生產過程中形成的,但未直接參與生產工藝、只起輔助作用,未被污染物污染或污染很輕的水,有的只是溫度稍上升(諸如冷卻水等)。

『玖』 物化法處理精細化工污水


物化法處理精細化工污水具體內容是什麼,下面中達咨詢為大家解答。
一 廢水的來源
「精細化工」一詞首先來源於日本,70年代,日本把凡生產具有專門功能,研究開發製造及應用技術密集度高,配方技術能左右產品性能,附加價值高,收益大,小批量,多品種的化工產品,稱為精細化學品,生產精細化學品的工業,稱為精細化學工業,簡稱精細化工。我國化工界得到多數人公認的定義是:凡能增進或賦予一種(類)產品以特定的功能,或本身擁有特定功能的小批量,高純度的化學品,稱為精細化工品。精細化工的全稱是「精細化學工程」,屬化學工程學科範疇。
精細化工產品的種類繁多,所包括的范圍很廣,如醫葯,農葯,染料,顏料,各種中間體,塗料,香料和香精,化妝品,盥洗衛生用品,合成洗滌劑,表面活性劑,印刷油墨等。精細化工廠排出的廢水主要來源於以下幾類:
1.工藝廢水
工藝廢水是指生產過程中生成的濃廢水(如蒸餾殘液、結晶母液、過濾母液等),一般來說有的有機污染物含量較多,有的含鹽濃度較高,有的還有毒性。不易生物降解,對水體污染較重。
2.洗滌廢水
洗滌廢水包括一些產品或中間產物的精製過程中的洗滌水,間歇反應時反應設備的洗滌用水。這類廢水的特點是污染物濃度較低,但水量較大,因此污染物的排放總量也較大。
3.地面沖洗水
地面沖培卜洗水中主要含有散落在地面上的溶劑、原料、中間體和生產成品。這部分廢水的水質水量往往與管理水平有很大關系。當管理較差時.地而沖洗水的水量較大.且水質也較差,污染物總量會在整個廢水系統中佔有相當的比例。
4.冷卻水
卻水一般均是從冷凝器或反應釜夾套中放出的冷卻水。只要設備完好沒有滲漏,冷卻水的水質一般都較好,應盡量設法冷卻後回用,不宜直接排放。直接排放一方面是資源浪費,另外也會引起熱污染。一般來說,冷卻水回用後,總是有一部分要排放出去的,這部分冷卻水與其他廢水混合後,會增加處理廢水的體積。
5 .跑、冒、滴、漏及意外事故造成的污染
操作的失誤或設備的泄漏會使原料、中間產物或產品外溢而造成污染,因此,在對廢水治理的統籌考慮中,應當有事故的應急措施。
6 .二次污染廢水
二次污染廢水一般來自於廢水或廢氣處理過程中可能形成的新的廢水污染源,如預處理過程中從污泥脫水系統中分離出來的廢水、從廢氣處理吸收塔中排出的廢水。
7.工廠內的生活污水
二 精細化工廢水的特點
1 原料以石化製品、煤加工副產品合成或植物提取、合成等。產品繁多, 工藝復雜;
2 過程使用大量有毒有害化工原料,如鹵素化合物、硝基化合物, 苯、苯酚、萘以及衍生物, 具有較強刺激性氣味;
3 過程副反應多, 產生的廢水組分復雜;
4 中含有大量有機物(CODcr 常達幾萬mg/L)、色度高, 含鹽高、pH極端、難生化降解;
5 高氨氮或含氮化合物;缺乏營養元素磷:
6 是目前最難處理的工業廢水之一, 必須加強清潔生產和減排措施, 才能達到有效的污染控制;
三 精細化工工業廢旅運水的治理原則
大部分精細化工廢水均屬於高難度廢水范圍(B:C小於0.3)。精細化工高難度工業廢水其主要處理內容只有兩個,其一是可溶物質,其二是不可溶配鎮穗物質,歸納這兩大類物質的去除手段為兩個基本原則:其一,利用地球引力進行固液分離;其二,運用自然界中微生物將其降解為二氧化碳和水及剩餘污泥。
對於可溶性有機物中難降解性的有毒有害溶劑去除可採用:吸附法,滲透法,吹脫發,高溫氧化法,化學凝聚法,復合氧化法,膜分離法,技術關鍵在於將不可生化降解物質轉化為可生化降解物質,在運用高溫復合氧化和微捕技術,水與溶劑的分離技術,高鹽去除的水中結晶技術等脫除。
針對具體的廢水處理,其技術手段有多種形式:物理法,化學法,生物法,電化學法,復合法等。高級氧化是廢水可生化轉化的關鍵技術,包括高溫催化氧化,光輻射氧化,氣體氧化,電解等,這些都是非常有用的技術手段。我們可以根據不同水樣的分析,針對不同內容,不同處理要求,技術性及經濟性指標制定出不同處理工藝。
四 精細化工廢水物化處理技術應用
精精細化工廢水含有許多有毒有害難降解的有同物,比值較低, 直接採用生化法處理這類廢
1 混凝處理
在眾多物化法處理工藝中,混凝處理具有工藝簡便、運行費用低廉等優點,特別是在脫除有色污染物時更是優先採用。由於目前常見的混凝劑只有少數幾種對染料脫色效果好,而且產生的大量化學污泥還沒有出路,所以近幾年研究方向在於研製適用范圍廣、脫色能力強、同時對有機物也有較好去除效果的多功能高效混凝劑,並研究開辟污泥綜合利用途徑。一般認為,起脫色作用的主要是混凝產生的膠體物質和微小絮體的吸附作用,這對水溶性染料的去除非常重要;同時,通過架橋、電中和作用,生成的絮體也載帶微細懸浮物。混凝劑的配方設計目標就是改善上述兩方面的作用,並按印染廢水的差異,設計成通用型和對某幾種染料特別有效的專用型,成為系列產品。
1.1 FC系列
FC系列混凝劑對活性染料、分散染料、直接染料和硫化染料廢水的脫色率達85%~95%,通常用量為200~300ppm,Fe對COD和PVA也有一定的去除效果。當投葯量為300PPm時,實驗所得的COD去除率為38%,PVA去除率為67.4%。
1.2 XP系列
XP系列混凝劑也有較廣的適用性,實驗表明,它對由13類染料構成的印染廢水均有效,COD一次去除率平均為78.6%。
1.3 PFS一MS高效混凝技術
PFS是一種無機高分子絮凝劑,MZ是一種新研製的助凝劑,即新技術關鍵助劑,其特殊的助凝作用在於改變了某些染料的水溶性環境,打破了某些染料的親水基,破壞了某些染料的雙鍵結構,對某些燃料及可溶性有機物起吸附和氧化作用,同時起架橋作用。當PFS和MZ混合時,即形成以配位鍵結合的具有極限高電荷和極限高分子型的純 無機高聚合體的復鹽。PFS一MZ共同使用時,其凝聚效果和處理效果優於市場常用的無機混凝劑,降低PFS的投加量,可起到低耗高效的處理效果。PFS一MZ的工藝技術主要優點是工藝流程短、處理效果好、運行成本低、基建投資低,其主要構築物可合為一體,操作管理簡單。技術特點是由混合、絮凝、沉澱、迴流4個步驟完成處理的全過程。
1.4 NE凝聚劑在廢水處理中的應用
新型NE凝聚劑是一種無機凝聚劑,它主要是由含鐵、鎂、鋁等元素化合物組成的復合物。其特徵是高效、價廉、污泥沉降速度快。使用該凝聚劑對印染廢水和煉鋼除塵廢 水進行處理,具有良好效果。NE凝聚劑和高效凝聚劑TS(代號)的處理效果比較如下:
(1)COD的去除 NE凝聚劑的去除率普遍高於TS,使用NE的CODcr去除率一般在75%-85%,而使用TS時一般在60%左右,有些即使在使用量相同的情況下,使用NE的CODcr去除率也比TS高40%左右。
(2)脫色率 使用NE的脫色率都高於TS,使用NE的脫色率一般在95%~100%,而TS的脫色率對一部分廢水的處理可達95%~100%,但對另一部分廢水則為50%~75%。
(3)凝聚劑的使用量及成本 相對而言,NE使用量對COD去處率的影響小於TS,在使用量相同的情況下,葯劑費低一倍左右。
(4)沉降速率 NE的沉降性能優於TS,在實驗中發現,使用NE經凝聚10min左右大部分凝聚物已沉降。
(5)NE的使用性 尤其適用於鹼度高的廢水,退漿、煮煉和染色是污染較嚴重的工段,而且鹼度高,可採用NE進行處理。
1.5綜合利用混凝產生的化學污泥
將其與其它化工原料以一定配比製成建築材料,如地面磚、貼面磚等。用XP系列混凝劑產生的化學污泥以25%的比例與其它材料搭配製成的貼面磚具有良好的機械性能,其強度優於普通白瓷磚,溶出實驗結果符合要求,完全可以用於一般用途,而且價格低於白瓷磚。
2電凝聚法處理精細化工行業廢水
電凝聚浮上法的基本原理是將需處理的廢水作為電解質溶液,在直流電源的作用下發生電化學反應。在陽極上發生氧化反應,使有機物分解氧化成無害成分;在陰極上發生還原反 應,使氧化型色素還原成無色。常規電凝聚法是根據實驗獲得的電凝聚槽電壓與電極上電流密度的關系,然後決定電凝聚槽的總電壓,通常這個槽電壓小於安全電壓36V。但要滿足廢水處理時電極上的電流密度達 到一定的處理效果,總電流密度就很大,一般在1000-3000安培之間,因而廢水處理單位電能消耗較大。
隨著電子技術的迅速發展,將可控硅脈沖電路應用到電凝聚的整流設備中,並對電凝聚槽進行優化設計。通過反復實驗研究和生產性運轉證明,採用較高的槽電壓可以大大降 低 總電流強度和減少電解歷時,從而提高電流效率,降低電耗和鐵耗。脈沖作用可以使極板表面減少沉澱物,保持高的電流效率。高壓脈沖電凝聚法就是基於這一原理發展起來的一種廢水處理新方法,對廢水脫色處理效果尤其明顯。其特性如下:
(l)高壓脈沖電凝聚浮上法處理工藝對色度的去除率高達90%~95%,出水清澈,適用范圍廣。
(2)與常規電凝聚法比較,電耗、鐵耗大大降低,運行費用降低。
(3)該工藝運轉靈活,適應性強,無論生產加工何種產品,均能取得較好的處理效果。該工藝尤其適用於中小型紡織印染加工企業和鄉鎮企業,有廣闊的推廣應用前景。
(4)污泥採用離心脫水,經脫水後污泥含水率為70%左右,可直接裝袋運出制磚,無二次污染。
(5)廢水經該工藝處理可回用,具有良好的環境和經濟效益。對染料的電化學性能研究表明,各類染料在電解處理時,其CODcr去除率的大小順序為:硫化染料、還原染料>酸性染料、活性染料>中性染料、直接染料>陽離子染料。除陽離子染料外,各類染料的脫色率均在90%以上,且脫色率高低與CODcr去除率一致。
總之,電解法具有投資省、佔地少、處理效果好、機械化程度高等優點。目前該方法已有定型設備,並已投人實用。
3 鐵屑微電解法處理精細化工行業廢水
鐵屑微電解機理 以鐵屑微電解法為主要處理工藝處理廢水, 在技術和經濟上都是可行的, 具有工藝可靠、投資少、運行費用低、操作管理簡便等優點。當將含碳鑄鐵屑和惰性焦炭顆 粒浸於具有傳導性的電解質溶液中時, 就形成無數個微小的原電池, 在其作用空間形成一個電場, 在電位較低的鐵陽極上, 鐵失去電子生成Fe2+, 進人溶液中, 使電子流向碳陰極, 在陰離子附近, 溶液中的溶解氧吸收電子生成OH-, 在偏酸性溶液中, 陰極產生的新生態[H], 進而生成氫氣逸出。其電極反應
如下
陽極:Fe­ — 2e →Fe2+ Eo (Fe2+ / Fe)=0.44V
陰極:2H+ +2e →2[H] →H2, Eo (H+ / H)=0.00V
O2 + 4H+ + 4e →2H2O Eo (O2)=1.23V
O2 + 2H2O + 4e →4 OH- Eo (O2 / OH-)=1.23V
從上述反應式可知, 由於Fe2+的不斷生成,能有效地克服陽極的極化作用, 從而促進鐵的電化學腐蝕, 使大量的Fe2+進人溶液, 形成具有較高吸附絮凝活性的絮凝劑, 能有 效去除染色廢水中的染料膠體微粒和雜質。在偏酸性溶液中, 電極反應所產生的新生態 [H],能與溶液中的許多組分發生氧化一還原反應, 可破壞染色廢水中染料分子的發色基 團, 達到脫色的目的。因此, 可以認為鐵屑微電解處理染色廢水的機理是通過氧化一還原吸附絮凝等綜合作用的結果。通常條件為鐵屑微電解柱進水pH為4~6, 中和沉澱pH為7~8;染色廢水在鐵屑微電解柱HRT=30min, 沉澱槽沉澱時間為60min,砂濾柱HRT=30min.
以鐵屑微電解法為主要處理工藝處理廢水, 在技術和經濟上都是可行的, 具有工藝可靠、投資少、運行費用低、操作管理簡便等優點。
4 電化學法——自凝一靜電混凝法處理精細化工廢水
4.1 自凝效應
廢水中的各污染物質在混合以後, 由於膠體污染顆粒表面反應自由能的降低, 會在廢水處理體系中自行從分散狀態變為聚集狀態, 產生自凝效應。適當調節廢水的pH值會促成這一作用, 對使用染料品種比較單一的印染廢水, 在間斷投加少量混凝劑的情況下, 也可促進自凝作用。
4.2靜電混凝
處於分散狀態的廢水中的污染顆粒, 當進人一種粒狀材料空隙間的同號靜電場以後, 由於靜電場對膠粒的吸引和對膠粒漫散層電荷的壓縮, 產生強制電中和作用, 進而由於表面能 的釋放而聚沉, 於是被粒狀材料所構成的濾床所截留。
由於靜電處理是利用電揚對膠粒的聚沉作用,沒有電子得失, 故電耗甚微, 可以忽略不計。
5 沉澱一氣浮法處理精細化工廢水
目前, 國內外處理精細化工廢水的物化法大多採用沉澱法、氣浮法或上述方法的相互組合以及開發的新技術。主要方法有組合式沉澱法、氣浮加組合沉澱法和CS系列雙汲氣浮加沉澱法。
氣浮分離的速度決定於顆粒和液體密度的大小, 氣浮處理工業廢水, 具有投資省、佔地少、分離速度快、處理效果好等優點
6 吸附法對精細化工廢水進行深度處理
6.1吸附劑的研究與應用
6.1.1活性炭吸附劑
實踐證明, 顆粒活性炭對各種染料的吸附去除能力順序為鹼性>酸性>直接>硫化染料。活性炭對分子量在400左右的染料分子脫色效果最為理想, 對分子量小的染料吸附也較好, 而對疏水性染料脫色效果較差。
6.1.2 礦物吸附劑
(1) Imamura將高嶺土、大理石粉末、熔岩粉末按1:1:1混合, 鍛燒得到的脫色劑可以較好地去Imamura除廢水中的染料成分和色度。
(2) Okada:水鋁英石(allopane)的膠態土可用於印染廢水。
(3) 活性白土對苯系偶氮分散染料有很好的脫色效應。
(4)斜發沸石用酸、鹼處理後再活化可有效地去除廢水中的染料成分, 脫色率99.7%。
(5)麥飯石對染料的吸附效率高, 具有良好的脫色率和CODcr去除率, 我國麥飯石資源豐富,開辟此技術前景廣闊。
(6)利用凹凸棒石粉作吸附劑去除印染廢水色度。
(7)利用鎂型吸附MgO、Al2O3、粘土活性一MgO­—粘土處理印染廢水。
(8)利用活化硅藻土(Al2O3和Fe2O3為主)進行印染廢水深度脫色。
(9)SiO2吸附去除鹼性染料是一種經濟、高效的處理工藝。
(10)天然蒙脫土處理含酸性陽離子染料廢水, 脫色率可達90%以上, CODcr去除率高達96.9%
6.1.3煤及煤渣吸附劑
實驗證明, 具有最好脫色效果的是粒徑80%,色度>70%。活化煤處理印染廢水具有投資低、佔地少、操作簡便、便於管理、處理效果穩定等優點。
6.1.4天然廢料吸附劑
木炭、稻殼、玉米棒、甘蔗渣、泥炭、鋸屑等都是天然的吸附劑。
6.1.5離子交換樹脂吸附劑
近年來, 針對水溶性離子型染料廢水脫色困難這一問題, 進行了利用磺化煤和改性纖維素離子交換樹脂進行脫色的研究。此外, 國外利用特殊纖維和特別加工製成的聚酞胺纖維, 活性炭纖維的脫色技術也有很多的研究。
6.2吸附法的組合新工藝
6.2.1活性炭填充電極電解法
此工藝具有以下特點處理效果好, 無二次污染脫色效果好, 不投加其它脫色氧化劑, 脫色效果達以上活性炭不需再生處理設備製造簡單適用范圍廣。
6.2.2腐蝕電極法
腐蝕電極法處理廢水具有多種機制, 以電化學為主, 兼有還原降解、吸附和混凝作用。此法具有以廢治廢、節約資源、投資省和運行費用低等特點。該工藝流程簡單、佔地少、便於上馬、操作管理簡單, 尤其適用於中小型紡織印染廠的廢水治理。
,
6.2.3吸附一化學凝聚法
利用煙道灰吸附一化學凝聚法處理毛紡織廠印染廢水。也可採用化學凝聚一半煤渣吸附法處理棉紡印染廢水。
實踐證明, 開發廉價、高效和新型的吸附材料和研究吸附法的優化組合工藝流程是廢水脫色和深度處理的一條新途徑。
7 膜分離法處理精細化工廢水
7.1 動態膜
經過研究, 認為從處理效果和經濟上講ZRO,PAA動態膜是可行的, 並進行實際的全封閉循環,表明膜的穩定性、流量及截流率是令人滿意的水洗後的廢水經過反滲透之後, 其滲透水及化學物質的再利用率可達88%~96%, 其餘的也達到廢水的排放標准。
對剩餘廢液及反滲透濃縮物的有效再利用也是完全可行的, 實現這一目的的有效手段是通過實驗確定助劑及染料的補加量, 這樣無疑會大大提高廢染液的利用率, 最終實現無廢水排放的全循環過程。而操作壓力高、能耗大是動態反滲透膜的不足。
7.2纖維素類膜
維生素類膜(CA)的選擇性隨膜表面與各種染料互變異構體的相互作用而發生巨大變化, 然而由於膜材料本身在耐pH、耐溫等方面的不足,正逐步被新的膜材料所淘汰。
CTA反滲透膜解決了染色廢水用於水的再循環, CTA在耐pH值、耐壓、耐溫等方面都優於CA, 但反滲透所需的高壓操作仍是它的不足。
7.3 聚礬超濾
聚礬超濾膜由於其良好的物化穩定性成為目前最富競爭力的超濾膜之一, pH使用范圍是1~18, 最高允許溫度120℃ , 同時具有良好的抗氧化、耐氯等性能。
7.4荷電超濾膜和疏鬆反滲透膜
7.4.1 簡介
荷電超濾膜或疏鬆反滲透膜是用來描述分離性能介於反滲透和超濾之間的一種膜。荷電超濾膜是以其化學結構含有荷電基團而定義的疏鬆反滲透膜是以其物理結構而命 名他們往往指的是一種膜, 對一價鹽如NaCl的截留只有20%~30%而對於500~2000分子量的物質應具有較高的分離率, 同時保持高的水通量。此外, 荷電超濾保持了超濾低壓的特點, 該膜在耐pH值、耐壓密、耐污染、耐溫等方面都比較突出。一般染料的分子量正好在這種膜的截流范圍, 特別是離子性染料, 由於膜上固定離子的作用, 其分離性能是中性膜難以比擬的。
7.4.2 製取
利用化學方法改性聚礬, 然後製成基膜, 進一步將親水性的復合層與基膜進行化學反應, 然後在親水性的溶劑里進行交聯製成復合膜, 這樣復合層與基膜不僅不出現剝離現象, 而且表現出耐溶劑、耐壓密、耐酸鹼, 最高使用溫度70℃
7.4.3 結論
荷電超濾膜由於其特殊的截留分子量范圍, 同時具有高流量低壓操作的特點, 將是未來處理印染廢水中最具有競爭力的膜材料。此外, 該膜具有耐壓密、耐酸鹼、耐污染等特點, 如果再配以計算機輔助配色等手段, 將會使印染廢水得到最大的回收和再利用, 而且還符合排放標准。
8 化學處理方法
8.1 化學氧化
(1)氧化脫色, 適宜的催化劑可提高O3氧化的脫色率。催化率包括以活性炭為骨架的MnO2催化劑和以ZnSO4為催化劑。
(2) H2O2氧化脫色。
(3)Fenton試劑脫色技術。
(4) ClO2氧化脫色。
8.2化學還原
還原劑主要是鐵屑。
9 離子對萃取法
9.1萃取機理
在酸性條件下, 長鏈胺與含有磺酸基團的染料分子反應形成疏水的離子對蓄積在有機相中, 如過量的胺相中, 從而與水相分離。相分離可藉助於惰性非極性溶劑, 優先的是碳氫化合物。合適的胺包括伯胺如萘胺等芳香族胺、仲胺以及叔胺。
包括伯胺如萘胺等芳香族胺、仲胺以及叔胺。
9.2操作
萃取法操作時, 先將廢水調節到合適的pH值,然後混以胺和非極性惰性溶劑, 再予以振盪。廢水的pH值處理到, 一狀態時脫色就基本完成了。有機相的回收如果有機相中含有活性染料, 惰性溶劑可以通過蒸餾加以回收, 而且如果調節得當, 胺還可以回用, 在這種情況下, 蒸餾殘渣必須按照特殊廢品法規加以處理, 而有機相則可以選擇通過直接焚燒處理掉。
對含有NaOH水溶液的胺與溶劑的混合物則進行再提取。
對有金屬絡合染料存在的情況下, 用水溶液處理胺、溶劑和染料的混合物是非常巧妙的解決方法, 這樣染料進人到水相中, 並以溶液的形式重新在染色工廠得到應用, 胺與溶劑的混合物在返回到脫色循環中去。
物理化學法作為重要的污水處理方法正在精細化工行業環境保護中起著越來越重要的作用, 許多新方法也在不斷的涌現, 它們為我國的環境保護和精細化工行業發展起到了很大的促進作用。

更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

閱讀全文

與香蘭素生產廢水特徵相關的資料

熱點內容
液相用溶劑過濾器 瀏覽:674
納濾水導電率 瀏覽:128
反滲透每小時2噸 瀏覽:162
做一個純凈水工廠需要多少錢 瀏覽:381
最終幻想4回憶技能有什麼用 瀏覽:487
污水提升器采通 瀏覽:397
反滲透和不發滲透凈水器有什麼區別 瀏覽:757
提升泵的揚程 瀏覽:294
澤德提升泵合肥經銷商 瀏覽:929
飲水機後蓋漏水了怎麼辦 瀏覽:953
小型電動提升器 瀏覽:246
半透膜和細胞膜區別 瀏覽:187
廢水拖把池 瀏覽:859
十四五期間城鎮污水處理如何提質增效 瀏覽:915
怎麼測試空氣凈化器的好壞 瀏覽:519
提升泵是幹嘛的 瀏覽:744
布油做蒸餾起沫咋辦 瀏覽:252
廣州工業油煙凈化器一般多少錢 瀏覽:204
喜哆哆空氣凈化器效果怎麼樣 瀏覽:424
油煙凈化器油盒在什麼位置 瀏覽:582