⑴ 同時蒸餾萃取的介紹
同時蒸餾萃取(simultaneous distillation extraction)是通過同時加熱樣品液相與有機溶劑至沸騰來實現的,試驗裝置如右圖,它是把樣品的漿液置於一瓶中,連接於儀器左側,以另一燒瓶盛裝溶劑,連接於儀器右側,兩瓶分別電爐加熱、水浴加熱,水蒸氣和溶劑蒸氣同時在儀器中被冷凝下來,水和溶劑不相混溶,在儀器U形管中被分開來,分別流向兩側的燒瓶中,結果蒸餾和提取同時進行,只需要少量溶劑就可提取大量樣品,香氣成分得到濃縮。
⑵ 蒸餾操作中有哪些需要注意的事項
高中化學中蒸餾應注意事項:1、 控制好加熱溫度。2、選用短頸蒸餾瓶或版者採取其它保溫權措施等,保證蒸餾順利進行。3、蒸餾之前,必須了解被蒸餾的物質及其雜質的沸點和飽和蒸氣壓,以決定何時收集餾分。4、 蒸餾燒瓶應當採用圓底燒瓶。5、在蒸餾燒瓶中放少量碎瓷片,防止液體暴沸。6、溫度計水銀球的位置應與支管口下端位於同一水平線上。7、蒸餾燒瓶中所盛放液體不能超過其容積的2/3,也不能少於1/3。8、冷凝管中冷卻水從下口進,上口出。9、加熱溫度不能超過混合物中沸點最高物質的沸點。蒸餾是指利用液體混合物中各組分揮發性的差異而將組分分離的傳質過程。一、特點1.通過蒸餾操作,可以直接獲得所需要的產品,而吸收和萃取還需要如其它組分。2.蒸餾分離應用較廣泛,歷史悠久。3.能耗大,在生產過程中產生大量的氣相或液相。二、分類1.按方式分:簡單蒸餾、平衡蒸餾 、精餾、特殊精餾。2.按操作壓強分:常壓、加壓、減壓。3.按混合物中組分:雙組分蒸餾、多組分蒸餾。4.按操作方式分:間歇蒸餾、連續蒸餾。三、主要儀器蒸餾燒瓶(帶支管的),溫度計,冷凝管,牛角管,酒精燈,石棉網,鐵架台,支口錐形瓶,橡膠塞
⑶ 萃取精餾操作應注意哪些問題
首先溫度要控制好,所以要將溫度計放到試管口,加熱精餾的物質,將溫度計的溫度控制在精餾物質的沸點。當然安全問題很重要,所以精餾時要加入沸石,防止爆沸,要是精餾有毒氣體,還要做好尾氣吸收問題,保持室內通風。
⑷ sde的蒸餾萃取
同時蒸餾萃取抄,英文:simultaneous distillation extraction 簡稱SDE. 是通過同時加熱襲樣品液相與有機溶劑至沸騰來實現的,試驗裝置如右圖,它是把樣品的漿液置於一圓底燒瓶中,連接於儀器右側,以另一燒瓶盛裝溶劑,連接於儀器左側,兩瓶分別水浴加熱,水蒸氣和溶劑蒸氣同時在儀器中被冷凝下來,水和溶劑不相混溶,在儀器U形管中被分開來,分別流向兩側的燒瓶中,結果蒸餾和提取同時進行,只需要少量溶劑就可提取大量樣品,香氣成分得到濃縮。
同時蒸餾萃取是將樣品的水蒸氣蒸餾和餾分的溶劑萃取兩步過程合二為一,與傳統的水蒸氣蒸餾方法相比,減少了實驗步驟,節約了大量溶劑,同時也降低了樣品在轉移過程中的損失。
同時蒸餾萃取作為一種前處理技術,同固相微萃取、頂空進樣等相比,具有良好的重復性和較高的萃取量,而且操作簡便、定性定量效果好,是一種行之有效的前處理方法。
⑸ 蒸餾和萃取的注意事項!謝謝
蒸餾
加料:將待蒸餾液通過玻璃漏斗小心倒入蒸餾瓶中,要注意不使液體從支管流出。加入幾粒助沸物,安好溫度計,溫度計應安裝在通向冷凝管的側口部位。再一次檢查儀器的各部分連接是否緊密和妥善。
加熱:用水冷凝管時,先由冷凝管下口緩緩通入冷水,自上口流出引至水槽中,然後開始加熱。加熱時可以看見蒸餾瓶中的液體逐漸沸騰,蒸氣逐漸上升。溫度計的讀數也略有上升。當蒸氣的頂端到達溫度計水銀球部位時,溫度計讀數就急劇上升。這時應適當調小煤氣燈的火焰或降低加熱電爐或電熱套的電壓,使加熱速度略為減慢,蒸氣頂端停留在原處,使瓶頸上部和溫度計受熱,讓水銀球上液滴和蒸氣溫度達到平衡。然後再稍稍加大火焰,進行蒸餾。控制加熱溫度,調節蒸餾速度,通常以每秒1~2滴為宜。在整個蒸餾過程中,應使溫度計水銀球上常有被冷凝的液滴。此時的溫度即為液體與蒸氣平衡時的溫度,溫度計的讀數就是液體(餾出物)的沸點。蒸餾時加熱的火焰不能太大,否則會在蒸餾瓶的頸部造成過熱現象,使一部分液體的蒸氣直接受到火焰的熱量,這樣由溫度計讀得的沸點就會偏高;另一方面,蒸餾也不能進行得太慢,否則由於溫度計的水銀球不能被餾出液蒸氣充分浸潤使溫度計上所讀得的沸點偏低或不規范。
觀察沸點及收集餾液:進行蒸餾前,至少要准備兩個接受瓶。因為在達到預期物質的沸點之前,帶有沸點較低的液體先蒸出。這部分餾液稱為「前餾分」或「餾頭」。前餾分蒸完,溫度趨於穩定後,蒸出的就是較純的物質,這時應更換一個潔凈乾燥的接受瓶接受,記下這部分液體開始餾出時和最後一滴時溫度計的讀數,即是該餾分的沸程(沸點范圍)。一般液體中或多或少地含有一些高沸點雜質,在所需要的餾分蒸出後,若再繼續升高加熱溫度,溫度計的讀數會顯著升高,若維持原來的加熱溫度,就不會再有餾液蒸出,溫度會突然下降。這時就應停止蒸餾。即使雜質含量極少,也不要蒸干,以免蒸餾瓶破裂及發生其他意外事故。
蒸餾完畢,應先停止加熱,然後停止通水,拆下儀器。拆除儀器的順序和裝配的順序相反,先取下接受器,然後拆下尾接管、冷凝管、蒸餾頭和蒸餾瓶等。
萃取:
萃劑原液互不溶,質溶程度不相同。充分振盪再靜置,下放上倒切分明。
解釋:
1、萃劑原液互不溶,質溶程度不相同:「萃劑」指萃取劑;「質」指溶質。這兩句的意思是說在萃取操作實驗中,選萃取劑的原則是:萃取劑和溶液中的溶劑要互不相溶,溶質在萃取劑和原溶劑中的溶解度要不相同(在萃取劑中的溶解度要大於在原溶液中的溶解度)。
2、充分振盪再靜置:意思是說在萃取過程中要充分震盪,使萃取充分,然後靜置使溶液分層。
3、下放上倒切分明:這句的意思是說分液漏斗的下層液從漏斗腳放出,而上層液要從漏鬥口倒出。
熱氣冷水逆向行:意思是說冷卻水要由下向上不斷流動,與熱的蒸氣的流動的方向相反。
⑹ 為了強化萃取效果,萃取操作的強化手段有哪些
1、可以在接近室溫(35-40℃)及CO2氣體籠罩下進行提取,有效地防止了熱敏性物質的氧化和逸散,完整保留生物活性,而且能把高沸點,低揮發渡、 易熱解的物質在其沸點溫度以下萃取出來。%B2、由於全過程不用有機溶劑,因此萃取物絕無殘留溶媒,同時也防止了提取過程對人體的毒害和對環境的污染,100%的純天然,符合當今「綠色環保」、「回歸自然」的高品位追求。%B3、控制工藝參數可以分離得到不同的產物,可用來萃取多種產品,而且原料中的重金屬、無機物、塵土等都不會被CO2溶解帶出。
4、蒸餾和萃取合二為一,可以同時完成蒸餾和萃取兩個過程,尤其適用於分離難分離的物質,如有機混合物、同系物的分離精製等 。
5、能耗少;熱水、冷水全都是閉路循環,無 廢水、廢渣排放。CO2也是閉路循環,僅在排料時帶出少許,不會污染環境。由於能耗少、用人少、物料消耗少,所以運行費用非常低。
因此,CO2特別適合天然產物有效成分的提取。對於天然物料的萃取,其產品真正稱得上是100%純天然的「綠色產品」。
⑺ 求過濾,蒸發,蒸餾和萃取的具體操作
1.過濾
原理:利用物質的溶解性差異,將液體和不溶於液體的固體分離開來的方法。例如用過濾法除去粗鹽中的泥沙 。
儀器:漏斗,濾紙,燒杯,玻璃棒,鐵架台(鐵圈)
操作:一帖,二低,三靠,過濾一定要洗滌
即濾紙緊貼漏斗的內壁,濾紙的邊緣應低於漏鬥口,漏斗里的液面要低於濾紙的邊緣,燒杯要緊靠在玻璃棒上,玻璃棒的末端要輕輕地靠在三層濾紙的一邊,漏斗下端的管口要緊靠燒杯的內壁。
2.蒸發
原理:通過蒸發水,減少一部分溶劑使溶液達到飽和而析出晶體。
操作:蒸發過程中要不斷用玻璃棒攪拌;蒸發皿內溶液不能超過其容量的2/3
3.蒸餾
蒸餾
distillation
利用液體混合物中各組分揮發度的差別,使液體混合物部分汽化並隨之使蒸氣部分冷凝,從而實現其所含組分的分離。是一種屬於傳質分離的單元操作。廣泛應用於煉油、化工、輕工等領域。
其原理以分離雙組分混合液為例。將料液加熱使它部分汽化,易揮發組分在蒸氣中得到增濃,難揮發組分在剩餘液中也得到增濃,這在一定程度上實現了兩組分的分離。兩組分的揮發能力相差越大,則上述的增濃程度也越大。在工業精餾設備中,使部分汽化的液相與部分冷凝的汽相直接接觸,以進行汽液相際傳質,結果是汽相中的難揮發組分部分轉入液相,液相中的易揮發組分部分轉入汽相,也即同時實現了液相的部分汽化和汽相的部分冷凝。
工業蒸餾的方法有:①閃急蒸餾。將液體混合物加熱後經受一次部分汽化的分離操作。②簡單蒸餾。使混合液逐漸汽化並使蒸氣及時冷凝以分段收集的分離操作。③精餾。藉助迴流來實現高純度和高回收率的分離操作 ,應用最廣泛。對於各組分揮發度相等或相近的混合液,為了增加各組分間的相對揮發度,可以在精餾分離時添加溶劑或鹽類,這類分離操作稱為特殊蒸餾,其中包括恆沸精餾、萃取精餾和加鹽精餾;還有在精餾時混合液各組分之間發生化學反應的,稱為反應精餾。
2.3.1 基本原理
液體的分子由於分子運動有從表面溢出的傾向。這種傾向隨著溫度的升高而增大。如果把液體置於密閉的真空體系中,液體分子繼續不斷地溢出而在液面上部形成蒸氣,最後使得分子由液體逸出的速度與分子由蒸氣中回到液體的速度相等,蒸氣保持一定的壓力。此時液面上的蒸氣達到飽和,稱為飽和蒸氣,它對液面所施的壓力稱為飽和蒸氣壓。實驗證明,液體的飽和蒸氣壓只與溫度有關,即液體在一定溫度下具有一定的蒸氣壓。這是指液體與它的蒸氣平衡時的壓力,與體系中液體和蒸氣的絕對量無關。
將液體加熱,它的蒸氣壓就隨著溫度升高而增大,當液體的蒸氣壓增大到與外界施於液面的總壓力(通常是大氣壓力)相等時,就有大量氣泡從液體內部逸出,即液體沸騰,這時的溫度稱為液體的沸點。顯然沸點與所受外界壓力的大小有關。通常所說的沸點是在0.1MPa壓力下液體的沸騰溫度。例如水的沸點為100℃,即是指在0.1MPa壓力下,水在100℃時沸騰。在其它壓力下的沸點應註明壓力。例如在85.3KPa時水在95℃沸騰,這時水的沸點可以表示為95℃/85.3KPa。
將液體加熱至沸騰,使液體變為蒸氣,然後使蒸氣冷卻再凝結為液體,這兩個過程的聯合操作稱為蒸餾。很明顯,蒸餾可將易揮發和不易揮發的物質分離開來,也可將沸點不同的液體混合物分離開來。但液體混合物各組分的沸點必須相差很大(至少30℃以上)才能得到較好的分離效果。在常壓下進行蒸餾時,由於大氣壓往往不是恰好為0.1MPa,因而嚴格說來,應對觀察到的沸點加上校正值,但由於偏差一般都很小,即使大氣壓相差2.7KPa,這項校正值也不過±1℃左右,因此可以忽略不計。
將盛有液體的燒瓶放在石棉網上,下面用煤氣燈加熱,在液體底部和玻璃受熱的接觸面上就有蒸氣的氣泡形成。溶解在液體內的空氣或以薄膜形式吸附在瓶壁上的空氣有助於這種氣泡的形成,玻璃的粗糙面也起促進作用。這樣的小氣泡(稱為氣化中心)即可作為大的蒸氣氣泡的核心。在沸點時,液體釋放大量蒸氣至小氣泡中,待氣泡的總壓力增加到超過大氣壓,並足夠克服由於液柱所產生的壓力時,蒸氣的氣泡就上升逸出液面。因此,假如在液體中有許多小空氣或其它的氣化中心時,液體就可平穩地沸騰,如果液體中幾乎不存在空氣,瓶壁又非常潔凈光滑,形成氣泡就非常困難。這樣加熱時,液體的溫度可能上升到超過沸點很多而不沸騰,這種現象稱為「過熱」。一旦有一個氣泡形成,由於液體在此溫度時的蒸氣壓遠遠超過大氣壓和液柱壓力之和,因此上升的氣泡增大得非常快,甚至將液體沖溢出瓶外,這種不正常沸騰的現象稱為「暴沸」。因此在加熱前應加入助沸物以期引入氣化中心,保證沸騰平穩。助沸物一般是表面疏鬆多孔、吸附有空氣的物體,如碎瓷片、沸石等。另外也可用幾根一端封閉的毛細管以引入氣化中心(注意毛細管有足夠的長度,使其上端可擱在蒸餾瓶的頸部,開口的一端朝下)。在任何情況下,切忌將助沸物加至已受熱接近沸騰的液體中,否則常因突然放出大量蒸氣而將大量液體從蒸餾瓶口噴出造成危險。如果加熱前忘了加入助沸物,補加時必須先移去熱源,待加熱液體冷至沸點以下後方可加入。如果沸騰中途停止過,則在重新加熱前應加入新的助沸物。因為起初加入的助沸物在加熱時逐出了部分空氣,再冷卻時吸附了液體,因而可能已經失效。另外,如果採用浴液間接加熱,保持浴溫不要超過蒸餾液沸點20ºC,這種加熱方式不但可以大大減少瓶內蒸餾液中各部分之間的溫差,而且可使蒸氣的氣泡不單從燒瓶的底部上升,也可沿著液體的邊沿上升,因而可大大減少過熱的可能。
純粹的液體有機化合物在一定的壓力下具有一定的沸點,但是具有固定沸點的液體不一定都是純粹的化合物,因為某些有機化合物常和其它組分形成二元或三元共沸混和物,它們也有一定的沸點。不純物質的沸點則要取決於雜質的物理性質以及它和純物質間的相互作用。假如雜質是不揮發的,則溶液的沸點比純物質的沸點略有提高(但在蒸餾時,實際上測量的並不是不純溶液的沸點,而是逸出蒸氣與其冷凝平衡時的溫度,即是餾出液的沸點而不是瓶中蒸餾液的沸點)。若雜質是揮發性的,則蒸餾時液體的沸點會逐漸升高或者由於兩種或多種物質組成了共沸點混合物,在蒸餾過程中溫度可保持不變,停留在某一范圍內。因此,沸點的恆定,並不意味著它是純粹的化合物。
蒸餾沸點差別較大的混合液體時,沸點較低者先蒸出,沸點較高的隨後蒸出,不揮發的留在蒸餾器內,這樣,可達到分離和提純的目的。故蒸餾是分離和提純液態化合物常用的方法之一,是重要的基本操作,必須熟練掌握。但在蒸餾沸點比較接近的混合物時,各種物質的蒸氣將同時蒸出,只不過低沸點的多一些,故難於達到分離和提純的目的,只好藉助於分餾。純液態化合物在蒸餾過程中沸程范圍很小(0.5~1℃)。所以,蒸餾可以利用來測定沸點。用蒸餾法測定沸點的方法為常量法,此法樣品用量較大,要10 mL以上,若樣品不多時,應採用微量法。
蒸餾操作是化學實驗中常用的實驗技術,一般應用於下列幾方面:(1)分離液體混合物,僅對混合物中各成分的沸點有較大的差別時才能達到較有效的分離;(2)測定純化合物的沸點;(3)提純,通過蒸餾含有少量雜質的物質,提高其純度;(4)回收溶劑,或蒸出部分溶劑以濃縮溶液。
2.蒸餾操作
加料:將待蒸餾液通過玻璃漏斗小心倒入蒸餾瓶中,要注意不使液體從支管流出。加入幾粒助沸物,安好溫度計。再一次檢查儀器的各部分連接是否緊密和妥善。
加熱:用水冷凝管時,先由冷凝管下口緩緩通入冷水,自上口流出引至水槽中,然後開始加熱。加熱時可以看見蒸餾瓶中的液體逐漸沸騰,蒸氣逐漸上升。溫度計的讀數也略有上升。當蒸氣的頂端到達溫度計水銀球部位時,溫度計讀數就急劇上升。這時應適當調小煤氣燈的火焰或降低加熱電爐或電熱套的電壓,使加熱速度略為減慢,蒸氣頂端停留在原處,使瓶頸上部和溫度計受熱,讓水銀球上液滴和蒸氣溫度達到平衡。然後再稍稍加大火焰,進行蒸餾。控制加熱溫度,調節蒸餾速度,通常以每秒1~2滴為宜。在整個蒸餾過程中,應使溫度計水銀球上常有被冷凝的液滴。此時的溫度即為液體與蒸氣平衡時的溫度,溫度計的讀數就是液體(餾出物)的沸點。蒸餾時加熱的火焰不能太大,否則會在蒸餾瓶的頸部造成過熱現象,使一部分液體的蒸氣直接受到火焰的熱量,這樣由溫度計讀得的沸點就會偏高;另一方面,蒸餾也不能進行得太慢,否則由於溫度計的水銀球不能被餾出液蒸氣充分浸潤使溫度計上所讀得的沸點偏低或不規范。
觀察沸點及收集餾液:進行蒸餾前,至少要准備兩個接受瓶。因為在達到預期物質的沸點之前,帶有沸點較低的液體先蒸出。這部分餾液稱為「前餾分」或「餾頭」。前餾分蒸完,溫度趨於穩定後,蒸出的就是較純的物質,這時應更換一個潔凈乾燥的接受瓶接受,記下這部分液體開始餾出時和最後一滴時溫度計的讀數,即是該餾分的沸程(沸點范圍)。一般液體中或多或少地含有一些高沸點雜質,在所需要的餾分蒸出後,若再繼續升高加熱溫度,溫度計的讀數會顯著升高,若維持原來的加熱溫度,就不會再有餾液蒸出,溫度會突然下降。這時就應停止蒸餾。即使雜質含量極少,也不要蒸干,以免蒸餾瓶破裂及發生其他意外事故。
蒸餾完畢,應先停止加熱,然後停止通水,拆下儀器。拆除儀器的順序和裝配的順序相反,先取下接受器,然後拆下尾接管、冷凝管、蒸餾頭和蒸餾瓶等。
4.萃取
原理:利用某溶質在互不相溶的溶劑中的溶解度不同,用一種溶劑把溶質從它與另一種溶劑組成的溶液中提取出來,在利用分液的原理和方法將它們分離開來。
操作:1)選擇的萃取劑,應對被提取物有較大的溶解能力,而對雜質不溶或微溶;跟原溶液的溶劑要互不相溶;
2)操作時先檢驗分液漏斗是否漏液。萃取溶液和萃取劑 總量不要超過漏斗容積的1/2;
3)振盪時,用右手掌壓緊蓋子,左手用
拇指、食指和中指握住活塞。把漏鬥倒轉過來振盪,如圖。並不時旋開活塞,放出易揮發物質的蒸氣。這樣反復操作幾次,當產生的氣體很少時,再劇烈振盪幾次,把漏斗放在漏斗架上靜置。
4)靜置後,當液體分成清晰的兩層時分液。
⑻ 同時蒸餾萃取法為什麼樣品和水的混合液一定要在左側,而有機溶劑要在右側
這個同時蒸餾萃取(simultaneous distillation
extraction)是通過同時加熱樣品液相與有機溶劑至沸騰來專實現的,試驗裝置如屬右圖,它是把樣品的漿液置於一瓶中,連接於儀器左側,以另一燒瓶盛裝溶劑,連接於儀器右側,兩瓶分別電爐加熱、水浴加熱,水蒸氣和溶劑蒸氣同時在儀器中被冷凝下來,水和溶劑不相混溶,在儀器U形管中被分開來,分別流向兩側的燒瓶中,結果蒸餾和提取同時進行,只需要少量溶劑就可提取大量樣品,香氣成分得到濃縮。
⑼ 如何提高溶劑萃取收率
是指夾帶劑佔加料量的質量分數。
往往夾帶劑和萃取劑不是一種狀態的物質,所以一般不用物質的量之比、體積比等表示夾帶劑多少,而採用比較方便的質量分數表示。
下面是有關超臨界流體萃取及夾帶劑的一些介紹和一篇論文,僅供參考。
超臨界流體萃取(Superitical Fluid Extraction,以下簡稱SFE)是一項發展很快、應用很廣的實用性新技術。傳統的提取物質中有效成份的方法,如水蒸汽蒸餾法、減壓蒸餾法、溶劑萃取法等,其工藝復雜、產品純度不高,而且易殘留有害物質。超臨界流體萃取是利用流體在超臨界狀態時具有密度大、粘度小、擴散系數大等優良的傳質特性而成功開發的。它具有提取率高、產品純度好、流程簡單、能耗低等優點。
什麼是超臨界:任何一種物質都存在三種相態----氣相、液相、固相。三相呈平衡態共存的點叫三相點。液、氣兩相呈平衡狀態的點叫臨界點。在臨界點時的溫度和壓力稱為臨界溫度和臨界壓力。不同的物質其臨界點所要求的壓力和溫度各不相同。超臨界流體(SCF)是指在臨界溫度(Tc)和臨界壓力(Pv)以上的流體。高於臨界溫度和臨界壓力而接近臨界點的狀態稱為超臨界狀態。
超臨界萃取的原理:超臨界流體萃取分離過程的原理是利用超臨界流體的溶解能力與其密度的關系,即利用壓力和溫度對超臨界流體溶解能力的影響而進行的。在超臨界狀態下,超臨界流體具有很好的流動性和滲透性,將超臨界流體與待分離的物質接觸,使其有選擇性地把極性大小、沸點高低和分子量大小的成分依次萃取出來。當然,對應各壓力范圍所得到的萃取物不可能是單一的,但可以控制條件得到最佳比例的混合成分,然後藉助減壓、升溫的方法使超臨界流體變成普通氣體,被萃取物質則完全或基本析出,從而達到分離提純的目的,所以在超臨界流體萃取過程是由萃取和分離組合而成的。
超臨界流體(SCF)的選取:溶質在某溶劑中的溶解度與溶劑的密度呈正相關,SCF也與此類似。因此,通過改變壓力和溫度,改變SCF的密度,便能溶解許多不同類型的物質,達到選擇性地提取各種類型化合物的目的。可作為SCF的物質很多,如二氧化碳、一氧化亞氮、六氟化硫、乙烷、甲醇、氨和水等。其中二氧化碳因其臨界溫度低(Tc=31.3℃),接近室溫;臨界壓力小(Pv=7.15MPa),擴散系數為液體的100倍,因而具有驚人的溶解能力。且無色、無味、無毒、不易燃、化學惰性、低膨脹性、價廉、易製得高純氣體等特點,現在應用最為廣泛。�
二氧化碳超臨界萃取的溶解作用:在超臨界狀態下,CO2對不同溶質的溶解能力差別很大,這與溶質的極性、沸點和分子量密切相關,一般來說有以下規律:親脂性、低沸點成分可在104KPa以下萃取,如揮發油、烴、酯、內酯、醚、 環氧化合物等,像天然植物和果實中的香氣成分,如桉樹腦、麝香草酚、酒花中的低沸點酯類等;化合物的極性基團( 如-OH、-COOH等)愈多,則愈難萃取。強極性物質如糖、氨基酸的萃取壓力則要在4×104KPa以上;化合物的分子量愈大, 愈難萃取。分子量在200~400范圍內的組分容易萃取,有些低分子量、易揮發成分甚至可直接用CO2液體提取;高分子量 物質(如蛋白質、樹膠和蠟等)則很難萃取。超臨界CO2萃取的特點 :
1、可以在接近室溫(35-40℃)及CO2氣體籠罩下進行提取,有效地防止了熱敏性物質的氧化和逸散,完整保留生物活性,而且能把高沸點,低揮發渡、 易熱解的物質在其沸點溫度以下萃取出來。%B2、由於全過程不用有機溶劑,因此萃取物絕無殘留溶媒,同時也防止了提取過程對人體的毒害和對環境的污染,100%的純天然,符合當今「綠色環保」、「回歸自然」的高品位追求。%B3、控制工藝參數可以分離得到不同的產物,可用來萃取多種產品,而且原料中的重金屬、無機物、塵土等都不會被CO2溶解帶出。
4、蒸餾和萃取合二為一,可以同時完成蒸餾和萃取兩個過程,尤其適用於分離難分離的物質,如有機混合物、同系物的分離精製等 。
5、能耗少;熱水、冷水全都是閉路循環,無 廢水、廢渣排放。CO2也是閉路循環,僅在排料時帶出少許,不會污染環境。由於能耗少、用人少、物料消耗少,所以運行費用非常低。
因此,CO2特別適合天然產物有效成分的提取。對於天然物料的萃取,其產品真正稱得上是100%純天然的「綠色產品」。
影響超臨界萃取的主要因素:
1.密度:溶劑強度與SCF的密度有關。溫度一定時,密度(壓力)增加,可使溶劑強度增加, 溶質的溶解度增加。
2.夾帶劑:適用於SFE的大多數溶劑是極性小的溶劑,這有利於選擇性的提取,但限制了其對極性較大溶質的應用。因此可在這些SCF中加入少量夾帶劑(如乙醇等)以改變溶劑的極性。加一定夾帶劑的SFE-CO2可以創造一般溶劑達不到的萃取條件,大幅度提高收率。
3. 粒度:溶質從樣品顆粒中的擴散,可用Fick第二定律加以描述。粒子的大小可影響萃取的收率。一般來說,粒度小有利於 SFE-CO2萃取。
4. 流體體積:提取物的分子結構與所需的SCF的體積有關。 增大流體的體積能提高回收率。
超臨界流體萃取技術研究與應用進展
趙東勝,劉桂敏,吳兆亮
(河北工業大學化工學院,天津300130)
摘要:綜述了超臨界流體萃取的基本原理,以及提高超臨界流體萃取效率的方法,包括加入夾帶劑,利用
高壓電場和超聲波等.並對超臨界流體萃取技術在生物化工,食品,醫葯和環保行業的最新應用情況作
了介紹.
關鍵詞:超臨界流體萃取;萃取效率;夾帶劑;應用
中圖分類號:TQ028.8文獻標識碼:A文章編號:1008-1267(2007)03-0010-03
超臨界流體萃取技術(SFE)是利用超臨界流體
作為萃取劑,從液體或固體中萃取了特定成分,以
達到分離目的產物的一種新型分離技術.超臨界流
體萃取具有其它分離方法無可比擬的優點:易於和
產物分離,安全無毒,不造成環境污染,操作條件溫
和不易破壞有效成分等.因此,超臨界流體萃取技
術在生化,醫葯,日化,環保,石化及其它領域具有
廣闊的應用前景.
1超臨界流體萃取
1.1超臨界流體
超臨界流體(SCF)是指超過臨界溫度(TC)和臨
界壓力(PC)的非凝縮性的高密度流體[1].超臨界流體
兼有氣體和液體兩者的特點,密度接近於液體,而
粘度和擴散系數卻接近於氣體,因此不僅具有與液
體溶劑相當的溶解能力,而且具有優良的傳質性
能.
超臨界流體的溶解能力除了與超臨界流體和
待分離溶質二者性質相似性有關外,還與操作溫度
和壓力等條件有關.操作溫度與超臨界流體的臨界
溫度越接近,其溶解能力越強;無論操作壓力多高,
超臨界流體都不能液化,但流體的密度隨壓力的增
大而增大,其溶解能力也隨之增強.
1.2超臨界流體萃取的原理
超臨界流體萃取技術就是利用上述超臨界流
體的特殊性質,將其在萃取塔的高壓下與待分離的
固體或液體混合物接觸,調節系統的操作溫度和壓
力,萃取出所需組分;進入分離塔後,通過等壓升
溫,等溫降壓或吸附等方法,降低超臨界流體的密
度,使該組分在超臨界流體中的溶解度減小而從中
分離出來.
1.3提高萃取效率的方法
提高萃取效率的方法除了適當提高萃取壓力,
選取合適萃取溫度和增大超臨界流體流量之外,還
可以採用加入適量的夾帶劑,利用高壓電場和超聲
波等措施.
1.3.1加入夾帶劑
加入適量合適的夾帶劑可明顯提高超臨界流
體對被萃取組分的選擇性和溶解度.張昆等[2]對夾
帶劑甲醇的加入對超臨界流體的溶解能力和萃取
選擇性進行了研究,結果表明甲醇的加入可以顯著
增加流體的溶解能力,且其增加的程度隨甲醇的添
加量的增加而增加,這在一定程度上有利於極性物
質的提取,但是加入甲醇後會使流體的選擇性降
低.因此在添加夾帶劑時,應選擇最優添加量.
表面活性劑也可以作為夾帶劑提高超臨界流
體萃取效率,提高的程度與其分子結構有關,分子
的脂溶性部分越大,其對超臨界流體的萃取效率提
高越多[3].關於夾帶劑的作用原理,8zlemCü>lü-
stündag等[4]研究認為是夾帶劑的加入改變了溶劑
密度或內部分子間的相互作用所致.
在選擇萃取劑時應注意以下幾點:(1)在萃取
階段,夾帶劑與溶質的相互作用是首要的,即夾帶
劑的加入能使溶質的溶解度較大幅度提高;(2)在
溶質再生(分離)階段,夾帶劑應易於與溶質分離;
(3)在分離涉及人體健康的產品時,如葯品,食品和
收稿日期:2006-10-10
第21卷第3期
2007年5月
Vol.21No.3
May.2007
天津化工
TianjinChemicalInstry
化妝品等,還需注意夾帶劑的毒性問題.
1.3.2利用高壓電場
高壓脈沖電場可顯著改善萃取溶質與膜脂等
成分的互溶速率及通過細胞壁物質的傳質能力,從
而提高萃取效率.寧正祥等[5]用高壓脈沖電場強化
超臨界CO2萃取荔枝種仁精油,在300MPa以下時,
高壓脈沖處理可明顯改善超臨界萃取效率;尤其是
在萃取率低於80%時,高壓脈沖電場效果顯著.
1.3.3利用超聲波
在超臨界流體萃取天然生物資源活性有效成
分的過程中,採用強化措施減少萃取的外擴散阻力
往往能取得很好的萃取效果.陳鈞等[6]研製了帶有
超聲換能器的萃取器,利用超聲強化超臨界萃取中
的傳質過程.方瑞斌等[7]用超聲波強化超臨界CO2
萃取紫杉醇.研究表明,如要完全萃取紫杉醇,未強
化超聲超臨界CO2的萃取時間是強化超聲超臨界
CO2的3倍.在對1.1%紫杉醇浸膏的萃取實驗中,
強化超聲的超臨界CO2很快達到100%萃取,而未
強化超聲的超臨界萃取在3倍時間及用量相同條
件下只達到41%的萃取率,這充分顯示了超臨界萃
取與超聲技術並用的優越性.Ai-junHu等[8]對超聲
強化超臨界流體萃取薏苡種子中的薏苡油和薏苡
仁酯的研究也表明,超聲強化技術可以很大程度地
提高萃取效率.
此外,還有一些強化措施包括攪拌,增加流量
或採用移動床等,這些措施都是為了達到減少萃取
中外擴散阻力的目的.
2超臨界流體萃取技術在工業上的
應用
2.1在生物化工中的應用
由超臨界流體的特性可知,它特別適合用於熱
敏性生物物質的分離和提取.目前超臨界流體萃取
技術已應用於提取和精製混合油脂,如用EPA(二
十碳五烯酸)和DHA(二十二碳六烯酸)總含量為
60%的魚油為原料,可得到純度高達90%的EPA和
DHA[9].MarionLétisse等[10]對超臨界流體萃取法富集
沙丁魚中EPA和DHA的操作條件進行了優化.
袁成凌等[11]對超臨界流體萃取微生物發酵法生
產的真菌油脂進行了研究,結果表明採用超臨界
CO2富集微生物菌絲體中多不飽和脂肪酸的方法在
工藝上是可行的,但富集效果還有待進一步提高.
N.Vedaraman等[12]對超臨界流體萃取牛腦中的膽固
醇進行了研究.
2.2在食品工業中的應用
超臨界流體萃取技術在食品工業的應用已有
相當長的歷史.用超臨界流體萃取技術脫除咖啡豆
和茶葉中的咖啡因早已實現工業化生產.德國SKW
公司生產脫咖啡因茶,採用超臨界流體萃取技術生
產能力達6000t/a.此外,SKW公司還將超臨界流
體萃取技術應用於啤酒的生產,該公司超臨界流體
萃取加工酒花的設備的生產能力為104t/a[13].
SeiedMahdiPourmortazavi等[14]研究了利用超臨
界流體萃取植物中的精油,結果表明,與蒸餾法相
比此法具有明顯優勢:萃取時間短,成本低,產品更
純凈.P.Ambrosino等[15]對超臨界流體萃取玉米中白
僵菌毒素進行了研究.
將超臨界流體技術應用於食品領域,可使食品
的外觀,風味和口感更好,因此超臨界流體萃取技
術在食品工業具有廣闊的應用前景.
2.3在醫葯行業中的應用
超臨界流體萃取在醫葯行業的應用是非常廣
泛的,尤其值得一提的是在中葯有效成分的提取方
面,我國做了大量工作.目前,超臨界流體萃取中葯
有效成分已實現工業化生產,浙江康萊特公司將其
用於萃取抗癌中葯,雲南森菊公司擁有兩套1000L
的萃取除蟲菊成分的超臨界流體萃取裝置[16].
杜玉枝等[17]研究表明,CO2超臨界萃取比石油
醚抽提優越,具有收率高,提取時間短及無溶劑殘
留等優點,適合於藏成葯安神丸的制備.Benliu等[18]
研究了利用超臨界流體萃取黃連根中的黃連成分.
很多學者對超臨界流體萃取中葯有效成分進行了
研究,如川芎,白芷,當歸和黃連等.
2.4在環境保護中的應用
超臨界流體萃取技術在環境保護領域尤其是
處理被污染的固體物料和水體等方面具有廣闊的
應用前景.
於恩平[19]利用超臨界流體萃取方法處理多氯聯
苯污染物的研究表明,用超臨界流體萃取技術可以
清除固體物料中的有機毒性物質.高連存等[20]對煉
鋼廠煉焦車間土壤進行了SFE研究,比較了溫度和
壓力對超臨界流體萃取PAH(苯丙胺酸羥化酵素)
類化合物的影響,並且用GC-MS(氣-質聯用法)分
析結果和索式提取法做了對比,結果其回收率遠遠
第21卷第3期趙東勝等:超臨界流體萃取技術研究與應用進展11
高於索式提取法的回收率.游靜等[21]研究了用固相
吸附與超臨界流體萃取相結合富集水中有機污染
物的方法,表明超臨界流體萃取對水中極性較大的
有機化合物的處理是可行的.V.Librando等[22]對超
臨界流體萃取海洋沉積物和土壤樣本中的多環芳
烴污染物進行了研究,多環芳烴回收率達到90%以
上.Kong-HwaChiu等[23]也將超臨界流體萃取技術
應用於治理環境中的有機污染物.
除了上面提到的幾個方面的應用,超臨界流體
萃取技術還在日化,陶瓷和儀器分析等領域有著重
要的應用.
3展望
超臨界流體與氣體和液體相比,可以說兼具後
兩者的優點而又克服了它們的不足,而且超臨界流
體萃取操作條件溫和,所以超臨界流體萃取技術相
比其它分離方法優勢非常明顯.目前,超臨界流體
萃取技術在各領域應用過程中還有很多問題有待
解決,相信通過國內外專家的共同努力,該技術在
各領域的應用必將深入,而且會不斷拓寬,其在工
業生產上的作用也將隨之日益凸顯
⑽ 蒸餾,萃取為什麼可以分離混合物如何操作
蒸餾的原理就是通過不同物質的沸點不同,通過控制溫度(高於低沸點物質沸回點,低於高沸點物答質沸點)使低沸點的物質變成氣體被蒸餾出來,而留在蒸餾瓶中的高沸點物質濃度就會增加,從而達到分離混合物的目的。
萃取的原理又和蒸餾不同,它是利用不同物質可能在某種溶液當中的溶解度不同來進行分離。
至於如何來操作,單純用文字不好解釋,你可以看看化學實驗一類的教材,上面圖文並茂,很容易理解。