❶ 在实验中发现引起测量误差的主要原因是什么在实验中哪一步特别重要急!
根据误差产生的原因及其性质的差异,可以分为系统误差和随机误差两类。
一、系统误差
系统误差是定量分析误差的主要来源,对测定结果的准确度有较大影响。它是由分析过程中某些确定的、经常性的因素引起的,因此对测定值的影响比较恒定。系统误差的特点是具有“重现性”和“单向性”。即在相同的条件下,重复测定时会重复出现;使测定结果系统偏高或偏低,即总是产生正误差或负误差,不会摆动,一会正,一会负。如果能找出产生误差的原因,并设法测出其大小,那么系统误差可以通过校正的方法子以减小或消除,因此也称之为可测误差。
产生系统误差的原因主要有以下几种。
(一)方法误差
方法误差来源于分析方法本身不够完善或有缺陷。例如,反应未能定量完成,干扰组分的影响,在滴定分析中滴定终点与化学计量点不相符合,在重量分析中沉淀的溶解损失、共沉淀和后沉淀的影响等,都可能导致测定结果系统地偏高或偏低。
(二)仪器和试剂误差
由于仪器不够精确或未经校准,从而引起仪器误差。例如,砝码因磨损或锈蚀造成其真实质量与名义质量不符;滴定分析器皿或仪表的刻度不准而又未经校正;由于实验容器披侵蚀引入了外来组分等。而试剂不纯和蒸馏水中的微量杂质则可能带来试剂误差。
由上述两种因素造成的误差,其大小一般不因人而异。
(三)操作误差
由于分析者的实际操作与正确的操作规程有所出入而引起操作误差。例如,使用了缺乏代表性的试样;试样分解不完全或反应的某条件控制不当等。
与上述情况有所不同,有些误差是由于分析者的主观因素造成的,称之为“个人误差”。例如,在判断滴定终点的颜色时,有的人习惯偏深,有的人则偏浅;在读取滴定剂的体积时,有的人偏高,有的人则偏低等。还有的操作者有着“先人为主”的成见,特别对于那些终点不太明显的体系,他们不是注意溶液颜色的变化,而总是盯着滴定管的刻度,根据前次的结果来判定终点,从而产生操作误差。操作误差的大小可能因人而异,但对于同一操作者则往往是恒定的。
二、随机误差
在平行测定中,即使消除了系统误差的影响,所得的数据仍然是参差不齐的,这是随机误差影响的结果。与系统误差不同,随机误差是由一些随机因素引起的,例如,测定时环境的温度、湿度、气压和外电路电压的微小变化;尘埃的影响;测量仪器自身的变动性;分析者处理各份试样时的微小差别以及读数的不确定性等。这些因素很难被人们觉察或控制,也无法避免,随机误差就是这些偶然因素综合作用的结果。它不但造成测定结果的波动,也使得测定值与真实值发生偏离。由于上述原因,随机误差的特点是其大小和正负都难以预测,且不可被校正,故随机误差又称为偶然误差或不可测误差。
对于有限次数的测定,随机误差似乎无规律可言。但是经过相当多次重复测定后,就会发现它的出现服从统计规律,并且可以通过适当增加平行测定的次数予以减小。
虽然系统误差与随机误差的性质和处理方法不同,但它们经常同时存在,有时也难以区分。例如,在重量分析中,因称量时试样吸湿而产生系统误差,但吸潮的程度又有偶然性。又如,滴定管的刻度误差属系统误差,但在一般的分析工作中常因其误差较小而不予校正,将其作为随机误差处理。
除了上述两种原因之外,在分析过程中还存在着因操作者的过失而引起的误差。例如损失试样、加错试剂、记录或计算错误等,有时甚至找不到确切的原因。过失是造成测定中大误差的重要因素,但在实质上它是一种错误,并不具备上述误差所具有的性质。作为分析者应加强责任感,培养严谨细致的工作作风,严格按照操作规程进行操作,那么过失是可以避免的。若在测定值中出现了误差很大的数据,就应该分析其产生的原因,如确系过失所引起的则应将其弃去,以保证测定结果准确可靠。
❷ 粗盐提纯实验误差的原因
称量误来差,操作误差,计算误差。源为防止称量误差天平要调平平放桌面,托盘两边放两张等质量的称量纸,左物右码。粗盐要充分溶解转移时防止溅落。蒸发时玻棒不断搅拌防止液滴飞溅。粗盐大部分结晶后停止加热,用余热把水分蒸干,冷却,称量。计算时要注意数据的处理,托盘天平精确到0。1克。
❸ 实验误差有哪些因素造成的呢
线刻度标准器支点在其全长之0.5594位置,其全长弯曲误差量为最小,此处称之为贝塞专尔点(BesselPoints)误差测量因素测量时属,因仪器设计或摆置不良等所造成的误差。误差的来源 一个客观存在的具有一定数值的被测成分的物理量,称为真实值,测定值与真实值之差称为误差。根据产生误差的原因,通常分为两类,即系统误差和偶然误差。系统误差是由固定原因造成的误差,在测定的过程中按一定规律重复出现,有一定的方同性,即测定值总是偏高或总是偏低,这种误差的大小是可测的,所以又称“可测误差”。它来源于分析方法误差、仪器误差、试剂误差和主观误差,如分析人员掌握操作规程与操作条件等因素。偶然误差是由于一些偶然的外因所引起的误差,产生的原因往往是不固定的、未知的,且大小不一、或正或负,其大小是不可测的,这类误差的来源往往一时难于觉察,可能是由于环境(气压、温度、湿度)等的偶然波动或仪器的性能、分析人员对各份试样处理时不一致所产生的。
❹ 关于酸碱滴定实验的误差分析 请大家帮我写下试验中的误差 以及 原因.
1)标准液配制时的误差.用于直接测定的标准液浓度如果偏低(比如配制重铬酸钾版标准溶液时,重铬酸钾的质量权称取有损失),将会使标准液用量增多,直接导致测定的结果偏大;如果是用于标定滴定溶液的标准液实际浓度偏低,则会使滴定溶液的浓度增高,但是用滴定溶液滴定时,体积的用量是准确的,所以最后结果也将偏高.
2)读数的误差.滴定管读数时可能有一下原因造成误差:
1】读数时未将滴定管取下而是直接在滴定管管架上读数.
2】读数时视线未与凹液面最低处平行,仰视会将读数读大,俯视会将读数读小.
3)滴定终点的判定误差.不同的操作者对于滴定终点的观察不同,可能会造成滴定终点判定推前或延迟,使滴定体积出现误差.
4)操作失误.如滴定时不慎多加入了半滴或者一滴,使滴定液耗用体积增大.
这个是模板,你配合着你具体的实验说明下就可以了.
❺ 环境监测分析中,误差的来源有哪些方面
误差的复来源可分为系制统误差、偶然误差。
系统误差又包括:
(1)仪器误差:所用仪器或量具在测量中产生的误差;
(2)方法误差(理论误差):由于实验方法或理论不完善产生的误差;
(3)装置误差:由于对测量装置和电路布置、安装和调整不当产生的误差;
(4)环境误差:由于外界环境(如光线、温度、湿度、气压、电磁场等)的影响产生的误差;
(5)人身误差:由于观测者的感觉器官等不完善产生的误差,这种误差因人而异,并和实验训练的素养有关。
偶然误差(又叫随机误差)是实验中各种偶然因素所产生的误差,它只在大量观测数据中才表现出统计的规律。
环境监测分析中误差的来源也是如此
❻ 恒压过滤常数的测定实验怎样进行误差分析
一、实验目的
⒈ 掌握恒压过滤常数 、 、 的测定方法,加深对 、 、 的概念和影响因素的理解。
⒉ 学习滤饼的压缩性指数s和物料常数 的测定方法。
⒊ 学习 一类关系的实验确定方法。
⒋ 学习用正交试验法来安排实验,达到最大限度地减小实验工作量的目的。
⒌ 学习对正交试验法的实验结果进行科学的分析,分析出每个因素重要性的大小,指出试验指标随各因素变化的趋势,了解适宜操作条件的确定方法。
二、实验内容
⒈ 设定试验指标、因素和水平。因课时限制,必须合作共同完成一个正交表。故统一规定试验指标为恒压过滤常数 ,实验室提供的实验条件可以设定的因素及其水平如表3-1所示,其中除滤浆浓度可以选二水平或四水平外,其余因素的水平必须按表3-1选取。并假定各因素之间无交互作用。
⒉ 统一选择正交表,按所选正交表的表头设计,填入与各因素水平对应的数据,使它变成直观的“实验方案”表格。
⒊ 分小组进行实验,测定每个实验条件下的过滤常数 、 、 。
⒋ 对试验指标 进行极差分析和方差分析;指出各个因素重要性的大小;讨论 随其影响因素的变化趋势;以提高过滤速度为目标,确定适宜的操作条件。
三、实验原理
⒈ 恒压过滤常数 、 、 的测定方法
过滤是利用过滤介质进行液—固系统的分离过程,过滤介质通常采用带有许多毛细孔的物质如帆布、毛毯、多孔陶瓷等。含有固体颗粒的悬浮液在一定压力的作用下液体通过过滤介质,固体颗粒被截留在介质表面上,从而使液固两相分离。
在过滤过程中,由于固体颗粒不断地被截留在介质表面上,滤饼厚度增加,液体流过固体颗粒之间的孔道加长,而使流体流动阻力增加。故恒压过滤时,过滤速率逐渐下降。随着过滤进行,若得到相同的滤液量,则过滤时间增加。
恒压过滤方程
(3-1)
式中: —单位过滤面积获得的滤液体积,m3 / m2;
—单位过滤面积上的虚拟滤液体积,m3 / m2;
—实际过滤时间,s;
—虚拟过滤时间,s;
—过滤常数,m2/s。
将式(3-1)进行微分可得:
(3-2)
这是一个直线方程式,于普通坐标上标绘 的关系,可得直线。其斜率为 ,截距为 ,从而求出 、 。至于 可由下式求出:
(3-3)
当各数据点的时间间隔不大时, 可用增量之比 来代替。
在本实验装置中,若在计量瓶中收集的滤液量达到100ml时作为恒压过滤时间的零点。
那么,在此之前从真空吸滤器出口到计量瓶之间的管线中已有的滤液再加上计量瓶中100ml滤液,这两部分滤液可视为常量(用 表示),这些滤液对应的滤饼视为过滤介质以外的另一层过滤介质。在整理数据时,应考虑进去,则方程式(3-2)变为:
(各套 为200ml)
过滤常数的定义式:
(3-4)
两边取对数
(3-5)
因 ,故 与 的关系在对数坐标上标绘时应是一条直线,直线的斜率为 ,由此可得滤饼的压缩性指数 ,然后代入式(3-4)求物料特性常数 。
⒉ 正交试验法原理,参阅《化工基础实验》第3章。
四、实验装置
⒈ 本实验共有八套装置,设备流程如图3-1所示,滤浆槽内放有已配制有一定浓度的硅藻土~水悬浮液。用电动搅拌器进行搅拌使滤浆浓度均匀(但不要使流体旋涡太大,使空气被混入液体的现象),用真空泵使系统产生真空,作为过滤推动力。滤液在计量瓶内计量。
⒉ 滤浆升温靠电热,用调压变压器即时调节电热器的加热电压来控温。每个滤浆内有电热器两个。
⒊ 滤浆浓度的水平分别指存放在滤浆槽内浓度不同的滤浆。
⒋ 过滤介质的水平1、2分别指真空吸滤器(玻璃漏斗)G2、G3(G2、G3是玻璃漏斗的型号,出厂时标注在漏斗上)。真空吸滤器的过滤面积为0.00385m2。
14
13
12
11
10
9
8
7
6
5
4
2
3
1
图3-1 正交试验法在过滤研究实验中的应用的流程图
1—搅拌装置;2—温度显示仪;3—真空吸滤器;4—电热棒;5—调节阀;6—滤液计量瓶;7—放液阀;
8—放液阀;9—真空表;10—进气阀;11—缓冲罐;12—调节阀;13—真空泵;14—滤浆槽
五、实验方法
⒈ 每个小组完成正交表中两个试验号的试验,每个大组负责完成一个正交表的全部试验。
⒉ 同一滤浆槽内,先做低温,后做高温。两个滤浆槽内同一水平的温度应相等。
⒊ 每组先把低温下的实验数据输入计算机回归过滤常数。当回归相关系数大于0.95时,该组实验合格,否则重新实验。使用同一滤浆槽的两组实验均合格后,才能升温。
⒋ 每一大组用同一台计算机汇总并整理全部实验数据,每个小组打印一份结果。
⒌ 每个实验的操作步骤:
⑴ 开动电动搅拌器将滤浆槽内硅藻土料浆搅拌均匀。将真空吸滤器按图示安装好,放入滤浆槽中,注意滤浆要浸没吸滤器。
⑵ 打开进气阀,关闭调节阀5。然后接通真空泵电闸。
⑶ 调节进气阀10,使真空表读数恒定于指定值,然后打开调节阀5,进行抽滤,待计量瓶中收集的滤液量达到100ml时,按表计时,作为恒压过滤零点。记录滤液每增加100ml所用的时间。当计量瓶读数为800ml时停表并立即关闭调节阀5。
⑷ 打开进气阀10和8,待真空表读数降到零时,停真空泵。打开调节阀5,利用系统内大气压把吸附在吸滤器上滤饼卸到槽内。放出计量瓶内滤液,并倒回滤浆槽内。卸下吸滤器清洗待用。
⒍ 结束实验后,切断真空泵、电动搅拌器电源,清洗真空吸滤器并使设备复原。
六、注意事项
⒈ 每次实验前都必须认真核对将做的实验是否符合正交表中因素和水平的规定。
⒉ 每个人实验的好坏,都会对整个大组的实验结果产生重大影响。因此,每个人都应认真实验,切不可粗心大意!
⒊ 放置真空吸滤器时,一定要把它浸没在滤浆中,并且要垂直放置,防止气体吸入,破坏物料连续进入系统和避免在器内形成滤饼厚度不均匀的现象。
⒋ 开关玻璃旋塞时,不要用力过猛,不许向外拔,以免损坏。
⒌ 每次实验后应该把吸滤器清洗干净。
⒍ 加热滤浆时加热电压不能超过220V。当滤浆温度快升到温度的水平2所规定温度时,加热电压应迅速降到40~50V。然后再酌情调节电压进行升温或保温。
七、报告内容
⒈ 列出全部过滤操作的原始数据,表格由各组统一设计。
⒉ 用最小二乘法或作图法求解正交表中一个试验的 、 、 。
⒊ 把计算机输出的恒压过滤常数 、 、 填入实验结果表中。
⒋ 对试验指标K进行极差分析和方差分析,并写出表中某列值的计算举例。
⒌ 画出表示K随各因素水平变化趋势的线图,并做理论分析。
⒍ 由本次正交试验可得出的结论。
⒎ 回答下列思考题
⑴ 为什么每次实验结束后,都得把滤饼和滤液倒回滤浆槽内?
⑵ 本实验装置真空表的读数是否真正反映实际过滤推动力?为什么?
表3-1 正交试验的因素和水平
因素
水平
压强差△P(Mpa)
过滤温度t℃
滤浆浓度C
过滤介质M
1
0.03
室温: ℃
5%
G2
2
0.04
室温+10℃
10%
G3
3
0.05
15%
4
0.06
20%
❼ 实验误差有哪些因素造成
测量时,由于各种因素会造成少许的误差,这些因素必须去了解,并有效的解决,方可使整个测量过程中误差减至最少.测量时,造成误差的主要有系统误差和随机误差,而系统误差有下列情况:误读、误算、视差、刻度误差、磨耗误差、接触力误差、挠曲误差、余弦误差、阿贝 (Abbe) 误差、热变形误差等.系统误差的大小在测量过程中是不变的,可以用计算或实验方法求得,即是可以预测,并且可以修正或调整使其减少.这些因素归纳成五大类,详细内容叙述如下:
1.人为因素
由于人为因素所造成的误差,包括误读、误算和视差等.而误读常发生在游标尺、分厘卡等量具.游标尺刻度易造成误读一个最小读数,如在10.00 mm处常误读成10.02 mm或9.98 mm.分厘卡刻度易造成误读一个螺距的大小,如在10.20 mm常误读成10.70 mm或9.70 mm.误算常在计算错误或输入错误数据时所发生.视差常在读取测量值的方向不同或刻度面不在同一平面时所发生,两刻度面相差约在0.0.4 mm之间,若读取尺寸在非垂直于刻度面时,即会产生 的误差量.为了消除此误差,制造量具的厂商将游尺的刻划设计成与本尺的刻划等高或接近等高,(游尺刻划有圆弧形形成与本尺刻划几近等高,游尺为凹V形且本尺为凸V形,因此形成两刻划等高.
2.量具因素
由于量具因素所造成的误差,包括刻度误差、磨耗误差及使用前未经校正等因素.刻度分划是否准确,必须经由较精密的仪器来校正与追溯.量具使用一段时间后会产生相当程度磨耗,因此必须经校正或送修方能再使用.
3.力量因素
由于测量时所使用接触力或接触所造成挠曲的误差.依据虎克定律,测量尺寸时,如果以一定测量力使测轴与机件接触,则测轴与机件皆会局部或全面产生弹性变形,为防止此种弹性变形,测轴与机件应采相同材料制成.其次,依据赫兹 (Hertz) 定律,若测轴与机件均采用钢时,其弹性变形所引起的误差量
应用量表测量工件时,量表固定于支持上,支架因被测量力会造成弹性变形,如图2-4-3所示,在长度 的断面二次矩为 ,长 的支柱为 ,纵弹性系数分别为 、 ,因此测量力为P时,挠曲量 为 .为了防止此种误差,可将支柱增大并尽量缩短测量轴线伸出的长度.除此之外,较大型量具如分厘卡、游标尺、直规和长量块等,因本身重量与负载所造成的弯曲.通常,端点标准器在两端面与垂直线平行的支点位置为0.577全长时,其两端面可保持平行,此支点称之为爱里点 (Airey Points) .线刻度标准器支点在其全长之0.5594位置,其全长弯曲误差量为最小,此处称之为贝塞尔点 (Bessel Points)
4.测量因素
测量时,因仪器设计或摆置不良等所造成的误差,包括余弦误差、阿贝误差等.余弦误差是发生在测量轴与待测表面成一定倾斜角度 ,如图2-4-5所示其误差量为 ,为实际测量长度.通常,余弦误差会发生在两个测量方向,必须特别小心.例如测量内孔时,径向测量尺寸需取最大尺寸,轴向测量需取最小尺寸.同理,测量外侧时,也需注意取其正确位置.测砧与待测工件表面必须小心选用,如待测工件表面为平面时需选用球状之测砧、工件为圆柱或圆球形时应选平面之测砧.阿贝原理 (Abbe’ Law) 为测量仪器的轴线与待测工件之轴线需在一直在线.否则即产生误差,此误差称为阿贝误差.通常,假如测量仪器之轴线与待测工件之轴线无法在一起时,则需尽量缩短其距离,以减少其误差值.若以游标尺测量工件为例,如图2-4-6所示,其误差为 ,因此欲减少游标尺测量误差,需将本尺与游尺之间隙所造成之 角减小及测量时应尽量靠近刻度线.若以量表测量工件为例,如图2-4-7所示其量表之探针为球形,工件为圆柱,两轴心有偏位量 时,其接触的误差量为 .若量表之探针和工件均为平面时,若两平面倾斜一定角度 时,其接触的误差量为 如图2-4-8所示,此误差称为正弦误差.图2-4-9所示为凸轮在机构设计的误差分析图,为了减少磨损,常将从动件的端头设计成半径为 的圆球或圆柱体,两者间的压力角为 ,因此引起误差为.
5.环境因素
测量时受环境或场地之不同,可能造成的误差有热变形误差和随机误差为最显着.热变形误差通常发生于因室温、人体接触及加工后工件温度等情形下,因此必须在温湿度控制下,不可用手接触工件及量具、工件加工后待冷却后才测量.但为了缩短加工时在加工中需实时测量,因此必须考虑各种材料之热胀系数 作为补偿,以因应温度材料的热膨胀系数 不同所造成的误差.
❽ 实验中分析实验误差的原因
我以复前回答过一个差不多的问题来着制= =黏贴过来。。。
一般来说根据个人的经验最常见的有以下误差0 0....
首先是设备误差
1)比如说仪器的精确度什么的...这个一般如果需要计算的时候老师会给你数字和公式再让你算的...
2)比如说仪器老化什么的就会导致测量的不精确=。=
然后是环境误差
这个主要就是温度湿度什么的对测量结果的影响...比如说测量空气密度的时候这个影响就要计算在内~
还有人员误差
1)计算时有效数字导致算出来的结果的误差
2)读数产生的误差....比如说仰视俯视什么的就不精确了=。=
3)比如说因为预计的不准确导致测量的数据没有很好的反应了整个实验的过程...就是说没有正态分布0 0
还有一些根据实际情况再说~~.......比如说做碰撞实验的时候因为有空气阻力和摩擦所以速度不准确什么的...
http://..com/question/228529135.html
❾ 造成实验误差的原因有什么
具体是什么实验呢?我才好帮你分析具体实验数据误差的原因哈,要不这个我也帮不了你