导航:首页 > 净水问答 > 离子交换层析分离单抗

离子交换层析分离单抗

发布时间:2025-06-27 04:31:03

⑴ 抗原抗体反应的应用

(1)抗原:免疫动物是制备抗血清的第—步。免疫所用的抗原可用病毒、细菌或者其他蛋白质抗原,如果使用半抗原如小分子激素等,必须与大分子载体连接。抗原的用量视抗原种类及动物而异,—次注射小鼠可以少至几个微克,免、羊甚至更大的动物每次注射的量就相应增加,从几百μg/次至几mg/次。
〔2)佐剂及乳化:佐剂可以帮助抗原在注射部位缓慢释放,以增加免疫刺激的效果。佐剂有完全和不完全佐剂之分。完全佐剂加有灭活的分枝杆菌(如卡介苗)或棒状杆菌。福氏佐剂可从试剂公司购买,也可用羊毛脂和石蜡油按1:2—4混合自行制备。佐剂与抗原按1:1的比例混合乳化为均匀的乳液,放置后不会发生油水分离。
(3)免疫动物:常用于制备抗血清的动物打豚鼠、家免、小鼠、大鼠等,如果大量生产可用动物羊、马等,动物接受免疫的乳液量小鼠为1.0—2.0 mL,家兔为2—4mL。抗原免疫动物的途径取决于动物种类、抗原特性和是否使用佐剂。腹腔注射(i.p),肌肉注射(i.m),皮内注射(i.d.)和皮下注射(s.c.)适合于任何抗原,这些途径主要刺激局部淋巴结发生免疫应答,初次免疫和免疫加强注射均可使用。静脉注射(i.v.)则只适合于可溶性抗原及分散的单细胞悬液,且不能使用佐剂,其诱发的免疫应答主要发生在脾脏。此外,在单克隆抗体制备时,亦可用脾脏直接注射或体外免疫方法,尤其对微量抗原比较实用。体外免疫方法也常用于人源单克隆抗体的制备。体外免疫时将脾细胞或外周血淋巴细胞(包括B细胞,T细胞及抗原递呈细胞)与抗原一起作体外培养,然后再与骨髓瘤细胞融合。初次免疫后要经过2—3次以上的免疫加强以保证能形成较高水平的IgC抗体。两次免疫注射之间的时间间隔,一般3—4周比较适合大部分动物,小动物可间隔10—14d,大动物则在2月左右。在免疫加强最后一次注射后的一周内采集抗血清,可获得高水平的抗体。 (1)采血:加强免疫的动物2—3次后,可通过耳静脉或眼球(小鼠)采血,进行抗血清效价测定。当效价达到理想的高度后,可以采血。采血方式可以从心脏直接取血,也可通过动脉放血。待血液凝固后用针筒或吸管吸取血清。
(2)抗血清的纯化与保存:除抗体外血清中含有多种其他蛋白成分。为了避免这些蛋白质干扰抗体(免疫球蛋白)标记反应和抗原抗体反应,抗血清可经过纯化以获得单一的机体(常为IgG)组分。常用的纯化IgG的方法为饱和硫酸胺盐析和层析法。蛋白质在不同的盐浓度的溶液中,其溶解度不一样,盐离子干扰蛋白质和水分子间氢键形成,因为水—盐结合比水—蛋白质结合更稳定,蛋白质即可从溶液中沉淀出来。蛋白质分子越大,沉淀时所需盐离子浓度越低。免疫球蛋白(Mr 1.5×105)比血清中主要蛋白质白蛋白(M r 6.7×104)的分子大得多,抗体在30%—50%饱和度的硫酸盐中析出,而白蛋白需在70%—80%饱和度才析出,因此常用33%饱和度的硫酸胺纯化血清中的IgG。盐析时为了减少抗体变性,需在4℃进行,同时用pH8.0缓冲液稀释抗血清,以减少蛋白浓度过高而发生共沉淀。铵盐的溶解度不随温度变化而明显改变,0℃和25℃仅差3%,而钠盐则相差5倍,因此常在低温沉淀时用铵盐,室温沉淀用钠盐。铵盐对抗体的标记反应(如FITC和biotin标记时)有一定的干扰作用。
盐析法只能部分纯化抗体,更高纯度的抗体制剂可用层析法制备。IgM五聚体相对分子质量达9.7×10,比血清中任何其他蛋白都大,用分子筛层析很容易将其纯化。IgG在PH 8.0时带负电荷,能与DEAE纤维素上的阳离子结合,因此可用离子交换层析来纯化IgG。IgG纯化最常用的方法为亲和层析。IgG与葡萄球菌A蛋白和链球菌G蛋白具合高度的亲和性,可用这两种蛋白质交联亲和层析柱将IgG纯化。大部分IgG与蛋白A结合PH为8—9,洗脱PH为2—4;而与蛋白G的结合PH为5—7,洗脱PH为9—10。C蛋白更适合于IgG的纯化,不但反应条件为温和的弱酸性或弱碱性,并且与IgG的结合力高于A蛋白。G蛋自能与大部分动物种类的IgG结合,而A蛋白对小鼠IgG1、大鼠IgG2b、人IgG3、马和绵羊IgG结合力弱或不能结合G蛋白和A蛋白均不能与鸡IgG结合。
抗血清或纯化的抗体在低温保存可维持活性数年,反复冻融使抗体很快失活,被细菌或霉菌污染的抗血清或IgG制品也易失去活性。稀释的抗血清加入防腐剂叠氮化钠和保护剂如BSA等可于4℃保存。长期保存常用等量甘油于—20℃以下冷藏。也可置于 50%饱和硫酸铵中4℃保存,还可以冷冻干燥保存。 根据不同目的制备的抗血清,对其中所含抗体的浓度,特异性及免疫球蛋白种类的要求也不一样。为了获得质量和数量上合符要求的抗血清,在收集动物血清前必须对免疫效果进行检测,对收获后的抗血清也必须对—些参数进行分析,如效价、亲和力及交叉反应等。根据不同的抗原性质选用合适的检测方法。最常用的为免疫沉淀,ELISA,放射免疫等。
效价又称滴度(titer),是常用于表达抗血清中特异性抗体相对含量的—个半定量指标,即在给定的条件下,结合—定量抗原的抗血清的稀释度。抗血清经一系列稀释后(如倍比稀释)与定量的抗原反应,以能检测抗血清最大稀释倍数即为该抗血清的效价。不同的检测方法测定同一种抗血清的效价,灵敏度不一样,抗血清的效价也不一样,如沉淀反应(琼脂双扩散)与ELISA二者的效价相差甚大,后者远高于前者。放射免疫分析(RIA)常用于标记小分子抗原来检测抗血清的效价。
亲和力(affinity)表示抗血清与相应抗原的结合强度,是描述抗体持异性的重要指标,
常用亲和常数K表示。亲和常数K与抗原抗体反应的平衡常数有关:
抗体特异性与交叉反应:抗体是特异的。只与相应抗原反应。实际制备的抗体却常有非特异性反应,这是因为抗原不纯造成的。多组分抗原之间存在共同的抗原决定簇,或者两个抗原决定簇结构类似能与同一抗体结合,均可出现抗体与异源抗原的交叉反应。用琼脂双扩散能简便直观地反映不同抗原与同一抗血清,或不同抗血清与同一抗原的交叉反应。 原理1:单克隆抗体(MAb)与抗血清(又称多克隆抗体,PAb)最主要的区别是MAb为单一种B细胞克隆所产生的一种均一的免疫球蛋白分子。所以MAb是B细胞克隆的标志,是一种独特型的抗体,它的特异性是针对一个抗原决定簇的。制备单克隆抗体不能用化学分离的方法从多克隆抗体中去分离纯化得到它,而是用分离产生抗体的B细胞克隆的方法得到它。为了使B细胞克隆能在体外人工培养下长期存活并产生完全均一的MAb,G.KÖhler合Milstein于1975年创立了杂交瘤方法。所以制备单克隆抗体的技术又称杂交瘤技术(hybredoma technique)。
杂交瘤技术的基本原理是用分泌抗体但不能长期培养的B细胞与能在体外长期培养并可低温保存的肿瘤细胞进行杂交。筛选得到的杂交瘤细胞应该是既能分泌抗体又有瘤细胞的特性,可长期传代培养,又可在液氮中保存的细胞。把这些细胞单克隆化,用单克隆化的杂交瘤细胞进行单克隆抗体的生产。
原理:最常用的单克隆抗体是小鼠的单抗,此外也有大鼠的和人源的单抗。人源单抗制备比较复杂。小鼠单抗的制备通常是使用Balb/c小鼠的B细胞和它的骨髓瘤细胞。大鼠的单抗制备通常用Lou/c大鼠及其骨髓瘤和Y3/AO大鼠及其骨髓瘤细胞。B细胞是从免疫动物的脾脏中分离出来的。动物免疫方法与抗血清制备相同,只是在制备脾脏前3d必须进行一次静脉加强注射以保证得到的B细胞有旺盛的分泌抗体的活性。骨髓瘤细胞有许多细胞株是经过诱变和筛选得到的缺陷型。筛选的标准是①瘤细胞本身不产生抗体或者产生抗体的某种链,但不能分泌;②是次黄嘌呤鸟嘌呤核苷酸转移酶(HGPRT)和胸腺嘧啶激酶(TK)的缺陷型。因为这种缺陷型的瘤细胞正常的核酸合成途径被氨基喋吟(aminopterin)阻断后,由于缺失这些酶,即使补充它的底物次黄嘌呤(H)和胸腺嘧啶(T),核酸合成的旁路也不能起到救援的作用,结果导致瘤细胞死亡(图7—2)。而杂交瘤细胞因带有B细胞的全套基因,在HAT存在的条件下借助于HGPRT和TK的作用通过替代的核酸合成途径能正常合成DNA和RNA。所以杂交瘤能正常地生长繁殖而被选择出来。未被融合的游离的B细胞只能存活3d而后自行死亡。这就是用HAT培养基进行选择的原理。 (1)融合:细胞杂交之前,要分别准备好脾脏的B细胞悬液和小鼠骨髓瘤细胞(如SP2/0—Agl4细胞株)。免疫后的小鼠脾脏在无菌条件下破碎,将B细胞悬浮在没有血清的培养液中(通常使用RPMIl640商品配制),并洗涤3次去掉小鼠的血清。SP2/0细胞是用加有10%胎牛或小牛血清培养的,每天更换新鲜培养液使成为对数分裂期生长旺盛的细胞。细胞用RPMIl640洗涤2—3次,把两种细胞合并在同—试管中,用50%的聚乙二醇(相对分子质量为1000—1500)作为融合剂,在37℃条件下融合l—2min。然后用1640培养液缓慢稀释,然后除去PEG,将细胞分散至HAT选择培养板中。电融合方法也可用于单克隆抗体制备,虽融合率较高,但一次融合的细胞数少,且需专门设备,故限制了其广泛使用。融合时脾细胞和骨髓瘤细胞的比例在5:1—10:1均可获得满意结果,每次融合细胞数量在10—10较为合适。融合后的细胞在40或96孔板上的HAT培养液(RPMIl640含10%—20%胎牛或小牛血清和HAT)中37℃,5%CO2条件下培养。融合后的细胞悬液中只有脾细胞和骨髓瘤细胞形成的杂交瘤细胞能在HAT培养基中生长,其他形式的融合细胞均不能生长.未融合的细胞也不能在HAT培养液中生存。
在融合后的细胞培养过程中,饲养细胞(feeder cell)有助于杂交瘤细胞的生长。饲养细胞可用同种动物的腹腔细胞或胸腹细胞。腹腔细胞中的吞噬细胞能清除死亡细胞碎片。使背景更为清洁“干净”。同时饲养细胞分泌的细胞因子或活性物质有助于杂交瘤细胞的生长。现有商品“杂交瘤细胞生长因子”可用于替代饲养细胞。
(2)阳性杂交瘤细胞的筛选与单克降化:杂交细胞经约10—14d培养后,形成可用的细胞集落(克隆)。经过几次更换培养液(HT培养液)后进行抗体活性检测。常用的筛选枪测方法是ELISA和凝集试验,前者常用于可溶性抗原,后者适用于细胞、细菌等表面抗原。此外,Dot-ELISA、免疫印迹及免疫荧光试验均可用于杂交瘤细胞的筛选。
使许多细胞克隆混合生长的细胞分离为单个的细胞克隆的过程称克隆化(colonization)最常用的单克隆化方法是有限稀释法(limited dilution),即将混合细胞经稀释后分装于培养板上,使培养板的大部分孔中只出现一个细胞。为了确保抗体分泌细胞来源于单个细胞,克隆化过程可重复进行,称为亚克隆化(subclonization)。除有限稀释法外,荧光激活细胞分拣法(FACS)也用于杂交瘤细胞的克隆化过程。 产生特异性抗体的单克隆杂交瘤细胞株应立即扩大培养,以获得足够的细胞用于保存和生产可供应用的抗体。生产大量单克隆抗体的方法目前常用的有3种:小鼠腹水制备、大瓶培养和中空纤维反应器,前者多用于实验室制备,后二者适应于工厂化生产。
腹水制备:杂交骨髓瘤细胞在腹腔中定植,并产生大量腹水。选用与单克隆抗体制备所用相同的动物品系或者含有相同基因的Fl代杂交品系。杂交F1代品系更适合于腹水制备,如果用异源动物制备腹水时可选用无MHC限制性的裸鼠。用小鼠制备腹水时,先用矿物油或Pristane致敏,以抑制其免疫功能,利于腹水的形成。腹腔注射10—10个杂交瘤细胞,经过7—10 d后形成腹水。每只小鼠可获得3—5mL腹水,每mL含IgG抗体可达5—10mg。腹水中含有较多的杂蛋白和非特异性IgG,并且含有许多蛋白酶,易使抗体失活,因此腹水收集后应尽快纯化,以防止降解。
大瓶培养:采用1000mL或更大的摇瓶培养。大瓶培养上清体积大,但抗体浓度低,给抗体纯化带来很大困难,消耗人力和培养液,增加生产成本。
中空纤维反应器:是比较经济的单克隆抗体生产方法。该装置由具有半透膜性质的成束的微孔纤维组成,杂交瘤细胞位于纤维外部的小量培养液中,培养液在纤维的微孔中循环,供给营养和带走废物,抗体大分子和小分子化合物被隔开。高密度的杂交瘤细胞能在此系统中维持数月,每天可产生数百毫克的抗体,抗体浓度高,体积小易于纯化。
胎(小)牛血清一直是细胞培养所必须的,在单克隆抗体生产过程中培养液中的血清蛋白使抗体的纯化增加了困难,近年开发的无血清培养技术已逐渐用于单克隆抗体的生产中。 小鼠的单克隆抗体蛋白应用于人体后,作为抗原能引起人的免疫应答,大大降低其生物活性,并可能导致变态反应。因此人源单克隆抗体在临床治疗上有广泛应用前景,引起人们的普遍兴趣。但是人单克隆抗体制备存在许多技术上和伦理上的障碍,如人杂交瘤细胞系不稳定,有些抗原不能对人进行人工免疫,人B细胞只能从外周血中分离而无法从脾脏取得等。尽管如此,一些人源单克隆抗体已经获得,技术上也在逐步完善起来。
人的瘤细胞株U—266常用来与人外周血B细胞融合以获得人源单克隆抗体。另一些淋巴母细胞抹(LCL)则来源于EB病毒转化的淋巴细胞,如GMl500,W1—L2和ARH77等也用于杂交瘤细胞的制备。这些细胞系表现ED病毒核抗原(EBNA)阳性,且形成的杂交瘤细胞抗体的分泌水平不高。
获得人单克隆抗体的另一方法是用EBV直接转化某些抗体分泌细胞,使之成为“不死”的细胞在体外培养。EBV感染人B细胞后,病毒基因插入人B细胞基因组中,有1%的细胞转化为“不死”的细胞。B细胞转化可通过“病毒驱动”和“细胞驱动”两种方法获得。前者是将B细胞与分泌EBV的B95—8细胞系一同培养,后者则是与EBNA阳性的LCL细胞一同培养。“细胞驱动”转化的B细胞比较稳定,抗体分泌能力也较强。
人淋巴母细胞系和人杂交瘤细胞较难获得,人单克隆抗体也可以通过异源杂文的办法制备,即将EBV转化的B细胞与小鼠骨髓瘤细胞融合,将获得的异源杂交瘤细胞再与免疫后的B细胞融合,得到人单克隆抗体分泌细胞,不产生自身免疫球蛋白,EBVA也是阴性。 抗体的化学修饰:
抗体Fc段用双功能连接剂与荧光素,同位素,酶,发光化合物,稀土元素以及药物,毒素等连接后,并不影响其Fab功能区与特异性抗原结合。根据交联物的性质不同,标记的抗体可用作诊断试剂,也可作为药物的定向载体,引导药物或毒素到达抗原存在部位使药物或使毒素发挥更有效的作用,即俗称“生物导弹”。从而减少药物、毒素、同位素、酶在肿瘤治疗过程中引起严重的副作用,大大提高治疗肿瘤的效果。
许多毒素如蓖麻毒素,白喉毒素,天花粉,红豆毒素等均为蛋白质或糖蛋白,可用双功能剂与抗体相连;吗啡,前列腺素,氨甲喋吟,磷酸酯酶C等含有羧基能用碳二亚胺(EDC),混合酸酐法与抗体的氨基形成酰胺键;同样,含脂肪胺的药物如庆大雷素,阿霉素在水溶性EDC的作用下与抗体的羧基连接;而含芳香胺的药物则先在低温下与亚硝酸作用形成重氮化合物,再与抗体分子上的酪氨酸或组氨酸残基形成偶氮键。总之通过抗体的化学修饰把抗体的特异性用到定向给药和定位检测上。 抗体基因文库(antibody recombination library)是将不同的重链和轻链基因随机组合,克隆到合适的表达载体中,在原核细胞表达不同的抗体,形成一个抗体库,从这个抗体库中,用抗原可以筛选到相应的抗体基因。抗体基因来源于杂交瘤细胞或动物B细胞(免疫或未免疫)的DNA和mRNA。
用质粒作为抗体文库的载体,虽然也可能表达有活性的抗体分子或片段,但由线状噬菌体表达更为方便有效。M13、fd、F1等噬菌体的外壳蛋白由5种蛋白组成:pⅢ、pⅥ、pⅦ、pⅧ和pⅨ。每种含量不一,其中pⅧ含量最多,每个噬菌体有2700个pⅧ亚基,其余4种蛋白仅5个拷贝。增加噬菌体外壳蛋白的长度并不影响噬菌体的装配,抗体以融合蛋白的形式表达于噬菌体表面。噬菌体表达质粒常用的有fd-CAT1、fd-tet-DOG1、PHEN1、pComb3和pComb3H等。抗体融合蛋白构建多用pⅢ和pⅧ,pⅧ拷贝数高,低亲和力的抗体蛋白容易筛选出来。
在噬菌体表达抗体时,常常不表达完整的抗体分子,(因为CH2上不能进行糖基化)。根据不同的引物得到重链的VH或VHCH1区,轻链的VL或VLCL区。VL和VH两个片段用一短肽作连接片段,形成单链可变区(single-chain fragment variable,scFv);VHCH1和VLCL两片段则形成Fab片段。另外,单独的VH和VL也能结合抗原,如果二者形成同源或异源二聚体(dAb),则稳定性和亲和性明显提高(图7—4)。此外在抗体片段DNA末端加上一些功能蛋白(如碱性磷酸酶和蛋白毒素)的基因,则表达的抗体就带有一定生物活性功能片段,可用于检测或治疗。如果在抗体基因末端加上终止子(TAG)则表达的抗体片段是可溶性的,而不是结合在噬菌体表面。
用特异性抗原免疫的动物B细胞构建抗体的噬菌体文库,抗体亲和性高,用与免疫抗原不同的抗原筛选得到的抗体亲和性普遍较低。可用模拟天然体细胞突变的方法来提高亲和力。如混杂重组法,即将己获得的轻链或重链的V片段切下,再克隆至随机的文库中的V区构成二级文库,使H链和L链混杂,可以使抗体片段的亲和性提高。利用PCR错配将随机突变引人至抗体的抗原结合区,也能提高对抗原的亲和力。先用低亲和力的载体在噬菌体的PⅧ表达,筛选后、将抗体基因片段PCR扩增转至PⅢ上表达,可获得高亲和力的抗体片段。
抗体基因文库有两个优点,一是从不适合进行人工免疫的物种获得单克隆抗体,如人源单克隆抗体;二是可快速方便获得单克隆抗体。 将鼠源抗体的V区基因与人源抗体C区基因重组,获得的嵌合抗体(chimericalantibody),可保留鼠抗体对抗原的高亲和性,又减弱鼠源抗体对人的免疫原性,提高治疗性抗体的效果。
重组的嵌合抗体基因转化骨髓瘤细胞或中国地鼠卵细胞(CH0),可在其中表达。为了进一步地消除鼠抗体V区框架区(FW)的异源性,可实行CDR移植(CDR grafting),以获得与鼠FW类似的人FW结构的嵌合抗体。
噬菌体表达的抗体仅含V区(scFv)或Fab片段,缺乏Fc区,使抗体的稳定性下降,半衰期缩短,与Fc受体结合功能也消失。因此在抗体功能片段的末端连接A蛋白、酶、细胞因子、CD4和毒素等分子,既可增加抗体片段的稳定性,又可发挥某些生物学活性功能。
用抗体基因工程方法获得的抗体与效应分子交联物比用化学交联法具有优点:可以大量生产,不会因修饰作用影响抗体及效应分子的活性,效应分子还可根据需要进行改造。
此外在抗体片段的末端连接一段特异的双亲性螺旋(amphiphilic helixes)结构,如亮氨酸拉链结构(leucine zipper),可使单价的scFv或Fab片段在体内或体外形成稳定的双分子聚合体,从而提高抗体片段的亲和力。此法也可用于制备双特异性抗体。 噬菌体表达的抗体片段常常是在原核细胞(E.coli)中完成。原核系统表达抗体片段产量
高,成本低,快速易于操作。但抗体片段在原核表达系统中不能进行CH2糖基化,从而影响抗体的活性。因此重组抗体基因片段可转移至适合的骨髓瘤细胞系或哺乳动物细胞系(如CHO),甚至于植物细胞中表达,可以得到与淋巴细胞表达相同的抗体分子。免疫球蛋白IgA的重链和轻链及分泌片基因可以分别转化不同的植株,将表达这些蛋白的植株进行有性杂交,在杂交后代中可以装配成完整的IgA双分子。以植物作为生物反应器进行抗体的表达已有许多成功的研究报道,与动物细胞相比更为经济,具有广泛的应用前景。 抗体酶是抗原决定簇处于转换态结构的抗体。因为转换态分子极不稳定无法制备抗体,所以催化性抗体的获得主要是通过设计稳定的转换态的类似物作为半抗原,与载体蛋白交联后,免疫动物,获得针对半抗原的抗体,从中筛选具有催化活性的抗体。筛选催化性单克隆抗体所用的ELISA与筛选一般抗体的方法不完全一样,应根据催化反应的特点而进行适当的修改。经典的方法是先筛选出与底物或半抗原结合的抗体,然后从中再筛选出有催化活力的抗体,这种方法费时费力。利用催化性抗体对底物的催化活性,对底物进行适当修饰,使催化反应的产物可直接表现抗体的催化活性,这样可以简化检测步骤。
转换态类似物半抗原的设计,必须了解催化反应的转换态模型的结构特点。催化抗体的抗原结合位点上与转换态互补的某些催化基团的形成,能稳定转换态分子。此外有人把单克隆抗体分子用化学修饰方法引入一些活性基团,提高催化性抗体的催化与亲和效率。应用噬菌体抗体文库也可以筛选催化性抗体,可省去制备转换态类似物的复杂过程,直接用底物从文库中筛选有催化活性的抗体片段。如用半抗原免疫后制备的文库或文库经过多次混杂重组,则可以得到更高的亲和力的催化性抗体。抗独特型抗体也用于催化性抗体的制备,用酶作为抗原免疫小鼠获得能够封闭酶活性位点的单克隆抗体,将这个抗体用蛋白酶除去Fc片段,用Fab免疫其他品系的小鼠或家兔,得到的抗体具有相应的酶催化活性。
从理论上看,B细胞具有全套免疫球蛋白的多样性的胚系基因,当然也包括有催化作用的自身抗体在内。然而1989年Paul W.首次报道了人体的一种能催化蛋白质水解的免疫球蛋白。它是—种自身抗体,能水解血管活性肠肽(vasoactive intenstinal peptide,VIP)的Glnl6—Met17键。用VIP作为抗原能得到有催化作用的单克隆抗体,也能催化Glnl6—Met17键。大约有17%的人有这种自身抗体酶,但患有气喘的病人中该抗体与VIP的亲和力比健康人高50倍。由于VIP是一种气管松弛剂,因此有人认为这种VIP自身抗体的长期作用可能与气喘的过敏应答有一定关系。由此推测除了人工设计催化抗体以及发现的自身催化抗体外,用筛选单抗的方法,也有可能找到所需要的催化抗体。

⑵ 凝胶的生物

生物分子下游纯化的对象一般包括蛋白、酶、重组蛋白、单抗、抗体及抗原、肽类、病毒、核酸等。纯化前首先需要测定生物分子的各物理和化学特性,然后通过实验选择出最有效的纯化流程。
1.测定——分子量、PI
当目标蛋白的物理特性如分子量、PI等都不清楚时,可用PAGE电泳方法或层析方法加以测定。分离范围广阔的Superose HR预装柱很适合测定未知蛋白的分子量。用少量离子交换介质在多个含不同PH缓冲液的试管中,可简易地测出PI,并选择纯化用缓冲液的最佳PH。
2.选择——层析方法
若对目标蛋白的特性或样品成分不太了解,可尝试几种不同的纯化方法:
一 使用最通用的凝胶过滤方法,选择分离范围广阔的介质如Superose、Sephacryl HR依据分子量将样品分成不同组份。
二 用含专一配体或抗体的亲和层析介质结合目标蛋白。亦可用各种活化偶联介质偶联目标蛋白的底物、受体等自制亲和介质,再用以结合目标蛋白。一步即可得到高纯度样品。
三 体积大的样品,往往使用离子交换层析加以浓缩及粗纯化。高盐洗脱的样品,可再用疏水层析纯化。疏水层析利用高盐吸附、低盐洗脱的原理,洗脱样品又可直接上离子交换等吸附性层析。两种方法常被交替使用于纯化流程中。
3.纯化——大量粗品
处理大量原液时,为避免堵塞柱子,一般使用sepharose big beads、sepharoseXL、sepharose fast flow等大颗粒离子交换介质。扩张柱床吸附技术利用多种STREAMLINE介质,直接从含破碎细胞或组织萃取物的发酵液中俘获蛋白。将离心、超滤、初纯化结合为一。提高回收率,缩短纯化周期。
4.纯化——硫酸氨样品
硫酸氨沉淀方法常被用来初步净化样品,经处理过的样本处于高盐状态下,很适合直接上疏水层析。若作离子交换,需先用Sephadex G-25脱盐。疏水层析是较新技术,随着介质种类不断增多,渐被融入各生产工艺中。利用Hitrap HIC Test Kit 和RESOURCE HIC Test Kit可在八种疏水介质中选择最适合介质及最佳的纯化条件。低盐洗脱的样品可稍加稀释或直接上其它吸附性层析。
5.纯化——糖类分子
固化外源凝订素如刀豆球蛋白、花生、大麦等凝集素,可结合碳水化合物的糖类残基,很适合用作分离糖化细胞膜组份、细胞、甚至亚细胞细胞器,纯化糖蛋白等。两种附上外源凝集素的Sepharose 6MB亲和层析介质,专为俘获整个细胞或大复合物,如膜囊等。
6.纯化——膜蛋白
膜蛋白分离常使用去污剂以保持其活性。离子性去污剂应选用与目标蛋白相反电荷者,避免在作离子交换时和目标蛋白竞争交换介质,藉此除去去污剂。非离子性去污剂可以疏水层析除去。
7.纯化——单抗、抗原
单抗多为IgG.来源主要是腹水和融合瘤培养上清液。在培养前除去IgG.重组蛋白A介质Mabselect和rProtein A Sepharose FF对IgG有更高的载量和专一性,基团脱落更少。脱落的rProtein A用离子交换Q Sepharose HP或凝胶过滤Superdex 200,很容易去除。
疏水层析Phenyl Sepharose HP亦很适合纯化IgG.宿主抗体和污染IgG可用凝胶过滤Superdex 200在精细纯化中去除。
纯化IgG抗原最有效的方法是用活化偶联介质如CNBr、NHs activated Sepharose FF偶联IgG,再进一步获取IgG抗原。
HiTrap IgM是用来纯化融合瘤细胞培养的单抗IgM,结合量达5mg IgM.HiTrap IgY是专门用来纯化IgY,结合量达100mg纯IgY.
8.纯化——重组蛋白
重组蛋白在设计、构建时应已融入纯化构想。样品多夹杂了破碎细胞或溶解产物,扩张柱床吸附技术STREAMLINE便很适合做粗分离。Amersham biosciences提供三个快速表达、一步纯化的融合系统。
一 GST融合载体使要表达的蛋白和谷胱甘肽S转移酶一起表达,然后利用Glutathione Sepharose 4B作亲和层析纯化,再利用凝血酶或因子Xa切开。
2. 蛋白A融合载体使要表达的蛋白和蛋白A的IgG结合部位融合在一起表达,以IgG Sepharose 6 FF纯化。
二 含组氨酸标记(Histidine-tagged)的融合蛋白可用Chelating Sepharose FF螯合Ni2+金属,在一般或变性条件(8M尿素)下透过组氨酸螯合融合蛋白。HisTrap试剂盒提供整套His-Tag蛋白的纯化方法。
9.纯化——包涵体蛋白
包涵体蛋白往往需溶于6M盐酸胍或8M尿素中。一般包涵体蛋白样品的纯度越高,复性效果越好。SOURCE 30 RPC反相层析介质很适合纯化复性前的粗品,并可以1MnaOH重生。此方法纯化后的包涵体蛋白,复性回收率明显提高。
10.包涵体蛋白固相复性
许多文献报导将包涵体蛋白在变性条件下固定(吸附)在层析介质上,一般用各种Sepharose FF离子交换层析介质。而且无需大量稀释样品,并将复性和初纯化合二为一,大大节省时间及提高回收率。
固相复性方法也被用于以HiTrap Chelating金属螯合层析直接复性及纯化包涵体形式表达的组氨酸融合蛋白;以HiTrap Heparin肝素亲和层析直接复性及纯化包涵体形式表达的含多个赖氨酸的融合蛋白。两种亲和层析预装柱均可反复多次重复使用,比一般试剂盒更方便、耐用。
11.纯化——中草药有效成分
中药的化学成分极其复杂。例:如用甲醇分离黄酮甙,三糖甙先被洗下来,二糖甙其次,单糖甙随后,最后是甙元。Sephadex LH-20可使用水、醇、丙酮、氯仿等各种试剂,广泛用于各种天然产物的分离,包括生物碱、甙、黄酮、醌类、内脂、萜类、甾类等。
生物碱在酸性缓冲液中带正电,成为盐,HiTrap SP阳离子交换层析柱可以分离许多结构非常近似的生物碱。相反,黄酮、蒽醌、皂甙、有机酸等可溶于偏碱的缓冲液中,在HiTrap Q阴离子交换柱上分离效果良好。
一般多糖纯化大多使用分子筛如Sephadex,Sephacryl.若分子量在600KD以下,并需更高分辨率,可选择新一代的Superdex.一般植物可能含水溶性、酸溶性、碱溶性多种多糖。SOURCE5、15、30RPC反相层析也很适合各种中药有效成分的检测、分离和放大制备。由于中药的成分非常复杂,SOURCE反相层析可用范围为PH1-14 ,并可用1M NaOH,1M HCL清洗、再生。比传统硅胶反相层析更易于工艺优化及在位清洗,寿命也更长。
12.纯化——肽类
肽类的来源有天然萃取,合成肽和重组肽三种。肽容易被酶降解,但可从有机溶剂或促溶剂中复性,所以多以高选择性的反相层析如SOURCE 30RPC、SOURCE 15RPC、SOURCE 5RPC或离子交换Minibeads、Monobeads作纯化。Superdex Peptide HR是专为肽分子纯化设计的凝胶过滤预装柱,能配合反相层析做出更精美的肽图。肽分子制备可用离子交换配合凝胶过滤Superdex 30 PG。医学都市多功能
13.纯化——核酸、病毒
核酸的纯化用于去除影响测序或PCR污染物等研究。核酸可大致上分为质粒DNA、噬菌体DNA和PCR产物等。病毒也可视作核酸大分子,和质粒DNA一样,可用分离大分子的Sephacry S-1000 SF、Superose或Sepharoce 4FF凝胶过滤介质去除杂蛋白,再配合离子交换如Mono Q、 SOURCE Q分离核酸。
14.纯化——寡核苷酸寡酸苷酸
多应用在反义(anti-sense)DNA、RNA测序、PCR和cDNA合成等研究。合成后含三苯甲基的寡核苷酸以阴离子交换的Mono Q或快速低反压的SOURCE Q在PH12下可除副产物,并避免凝集和保护基的脱落。载量大大高过反相层析,可用做大量制备。不含三苯甲基的失败序列可用反相柱ProRPC去除。
15.脱盐、小分子去除
使用凝胶过滤介质Sephadex G10,G15,G25,G50等去除小分子,效率高,处理量可达床体积30%.只需在进样后收集首1/3-1/2柱体积的洗脱液,HiPrep Desalting(26ml)可在数分钟为多至10ml样品脱盐。
16.疫苗纯化
使用凝胶过滤介质Sepharose 4FF纯化疫苗,去除培养基中的杂蛋白,处理量可大于床体积10%.柱高一般40-70cm,整个过程约半至一小时。使用此法生产的疫苗品种有乙肝、狂犬、出血热、流感、肺结核、小儿麻痹疫苗等。分子量较小的疫苗可使用Sephacryl S-500HR,如甲肝疫苗等。
17.抗生素聚合物分析
中国药典从2000年版起要求抗生素头孢曲松钠需要找出聚合物占产品的白分比,规定使用Sephadex G10凝胶过滤法测定。
18.纯化-基因治疗用病毒载体
SORRCE 15Q
19.纯化-基因治疗用质粒
Q Sepharose XL,SOURCE 15Q,STREAMLINE Q,Sephacryl S500,Plasmidselect 在下游纯化中,可应用不同层析技术在纯化生物分子的同时,去除各种污染物。 1.去除——内毒素
内毒素又称热原。含脂肪A、糖类和蛋白,是带负电的复合大分子。
内毒素的脂肪A部份有很强的疏水性。但在高盐下会凝集,无法上疏水层析。利用疏水层析试验盒(17-1349-01)可选择结合目标蛋白的介质而去除内毒素。
内毒素与阴离子交换介质Q或DEAE Sepharose Fast Flow有较强结合。可在洗脱目标蛋白后用高盐缓冲液或NaOH去除。
利用CNBr或NHS Sepharose FF可偶联内毒素底物如LAL,PMB,自动成亲合层析介质结合内毒素。内毒素经常是多聚体,凝胶过滤层析可有效地将之去除。
2.去除——蛋白中的核酸
大量核酸增加样本黏度,令区带扩张,反压增加,降低分辨率和流速。药审和食检对核酸含量也有严格限制。
胞内表达蛋白的核酸问题尤其严重。核酸带阴电荷,在初步纯化时利用阳离子交换介质如STREAMLINESP,SP Sepharose Big Beads,SP或CM Sepharose FF,SP SepharoseXL结合目标蛋白,可除去大量核酸。
核酸在高盐下会和蛋白解离,疏水层析介质很适合用来结合目标蛋白,在纯化蛋白的同时去除核酸。
利用核酸酶将核酸切成小片断,用凝胶过滤做精细纯化时便很容易去除了。
3.去除——病毒和微生物
病毒和微生物可成为病原,应尽量减除。结合不同层析技术,使用注射用水,用NaOH定期进行仪器和凝胶的在位消毒和在位清洗,皆可避免污染物增加。
病毒大都有脂外壳。可用与目标蛋白电荷相反的S/D(solvent/detergent)处理,使病毒失活,如Triton和Tween.再用适当的离子交换介质如CM Sepharose FF结合目标蛋白,去除S/D.
其它污染物可以改变pH和离子强度使其从目标分子中解离或失活,凝胶过滤介质Superdex及多种吸附性介质,SOURCE都是很好的精细纯化介质,可去除多种微量污染物。 凝胶是指颗粒大小在1埃到10埃之间的混合物。高分子溶液和某些溶胶,在适当的条件下,整个体系会转变成一种弹性的半固体状态的稠厚物质,失去流动性。这种现象称为胶凝作用,所形成的产物叫做凝胶或冻胶.
“气凝胶”是指分散系为气态的,如:云,雾等,“固凝胶”有烟水晶等,“液凝胶”就是呈液态的胶体,如氢氧化铁胶体 。

⑶ 单克隆抗体的纯化技术操作步骤

从培养液或腹腔积液获得的单克隆抗体,不需要纯化即可应用于日常诊断或定性研究。如果用于免疫标记测定,须分离和纯化。可用半饱和、饱和硫酸铵进行沉淀,进行初步浓缩和纯化;可用亲和层析法进一步纯化。

一、腹水型单抗的纯化

在单抗纯化之前,一般均需对腹水进行预处理,目的是为了进一步除去细胞及其残渣、小颗粒物质、以及脂肪滴等。常用的方法有二氧化硅吸附法和过滤离心法,以前者处理效果为佳,而且操作简便。

1、二氧化硅吸附法

新鲜采集的腹水(或冻存的腹水),2000r/min 15分钟,除去细胞成分(或冻存过程中形成的固体物质)等;取上层清亮的腹水,等量加入PH7.2巴比妥缓冲盐水(VBS;0.004mol/L巴比妥,0.15mol/L NaCl,0.8mmol/L Mg2+,0.3mmol/L Ca2+)稀释;然后以每10ml稀释腹水中加150mg二氧化硅粉末,混匀,悬液在室温孵育30分钟,不时摇动;2000g离心20分钟,脂质等通过该法除去,即可得澄清的腹水。

2、过滤离心法

用微孔滤膜过滤腹水,以除去较大的凝块及脂肪滴;用10000g 15分钟高速离心(4℃)除去细胞残渣及小颗粒物质。

3、混合法

即上述两法的组合,先将腹水高速离心,取上清液再用二氧化硅吸附处理。

二、单抗的粗提

1、硫酸铵沉淀法

(1)饱和硫酸铵溶液的配制

500g硫酸铵加入500ml蒸馏水中,加热至完全溶解,室温过夜,析出的结晶任其留在瓶中。临用前取所需的量,用2mol/L NaOH调PH至7.8。

(2)盐析

吸取10ml处理好的腹水移入小烧杯中,在搅拌下,滴加饱和硫酸铵溶液5.0ml;继续缓慢搅拌30分钟;10000r/min离心15分钟;弃去上清液,沉淀物用1/3饱和度硫酸铵悬浮,搅拌作用30分钟,同法离心;重复前一步1-2次;沉淀物溶于1.5ml PBS(0.01mol/L PH7.2)或Tris-HCl缓冲液中。

(3)脱盐

常用柱层析或透析法。柱层析法是将盐析样品过Sephadex G-50层析柱,以PBS或Tris-HCl缓冲液作为平衡液和洗脱液,流速每分钟1ml。第一个蛋白峰即为脱盐的抗体溶液。透析法是将透析袋于2% NaHCO3,1mmol/L EDTA溶液中煮10分钟,用蒸馏水清洗透析袋内外表面,再用蒸馏水煮透析袋10分钟,冷至室温即可使用(并可于0.2mol/L EDTA溶液中,4℃保存备用)。将盐析样品装入透析袋中,对50-100倍体积的PBS或Tris-HCl缓冲液透析(4℃)12-24小时,其间更换5次透析液,用萘氏试剂(碘化汞11.5g,碘化钾8g,加蒸馏水50ml,待溶解后,再加20% NaOH 50ml)检测,直至透析外液无黄色物形成为止。

(4)蛋白质含量的测定

(Pr)(mg/ml)=(1.45×OD280-0.74×OD260)×稀释倍数;或(Pr)=OD280×稀释倍数/1.3

(5)分装冻存备用

2、辛酸-硫酸铵沉淀法

该法简单易行,适合于提纯IgG1和IgG2b,但对IgG3和IgA的回收率及纯化效果差。其主要步骤如下:取1份预处理过的腹水加2份0.06mol/L PH5.0醋酸缓冲液,用1mol/L HCl调PH至4.8;按每毫升稀释腹水加11ul辛酸的比例,室温搅拌下逐滴加入辛酸,于30分钟内加完,4℃静置2小时,取出15000g离心30分钟,弃沉淀;上清经尼龙筛过滤(125um),加入1/10体积的0.01mol/L PBS,用1mol/L NaOH调PH至7.2;在4℃下加入饱和硫酸铵至45%饱和度,作用30分钟,静置1小时;10000g离心30分钟,弃上清;沉淀溶于适量PBS(含137mmol/L NaCl,2.6mol/L KCl,0.2mmol/L EDTA)中,对50-100倍体积的PBS透析,4℃过夜,其间换水3次以上;取出10000g离心30分钟,除去不溶性沉渣,测定蛋白质含量后,分装,冻存备用。

3、优球蛋白沉淀法

该法适用于IgG3和IgM型单抗的提取,所获制品的抗体活性几乎保持不变,对IgG3单抗的回收率高于90%,对IgM单抗的回收率为40-90%不等。其操作步骤如下:取一定量的预处理过的腹水,先后加入NaCl和CaCl2,使各自的浓度分别达0.2mol/L和25mmol/L,随之可见纤维蛋白的产生;经滤纸过滤后,滤液对100倍体积的去离子水透析,4℃ 8-15小时(若是IgG3单抗,也可室温2小时),其间换水1-2次;取出后22000g离心30分钟,弃上清;将沉淀溶于PH8.0 1mol/L NaCl,0.1mol/L Tris-HCl溶液中,重复上述的透析与离心;将沉淀的优球蛋白浓度调至5-10mg/ml,分装冻存备用。

三、单抗纯化的方法

单抗纯化的方法有很多种,应根据具体单抗的特性和实验条件选择适宜的方法,常用的技术有DEAE离子交换层析柱、凝胶过滤法和亲和层析法三种。

1、离子交换层析:

分离蛋白质是根据在一定pH 条件下,蛋白质所带电荷不同而进行的分离方法。常用于蛋白质分离的离子交换剂有弱酸型的羧甲基纤维素(CM纤维素) 和弱碱型的二乙基氨基乙基纤维素(DEAE纤维素)。前者为阳离子交换剂,后者为阴离子交换剂。

离子交换层析中,基质是由带有电荷的树脂或纤维素组成。带有正电荷的称之阴离子交换树脂;而带有负电荷的称之阳离子树脂。离子交换层析同样可以用于蛋白质的分离纯化。由于蛋白质也有等电点,当蛋白质处于不同的pH条件下,其带电状况也不同。阴离子交换基质结合带有负电荷的蛋白质,所以这类蛋白质被留在柱子上,然后通过提高洗脱液中的盐浓度等措施,将吸附在柱子上的蛋白质洗脱下来。结合较弱的蛋白质首先被洗脱下来。反之阳离子交换基质结合带有正电荷的蛋白质,结合的蛋白可以通过逐步增加洗脱液中的盐浓度或是提高洗脱液的pH值洗脱下来

2、凝胶过滤法:

一定型号的凝胶网孔大小一定,只允许相应大小的分子进入凝胶颗粒内部,大分子则被排阻在外。洗脱时,大分子随洗脱液从颗粒间隙流下来,洗脱液体积小,小分子则在颗粒网状结构中穿来穿去,历程长,后洗脱下来,洗脱体积大。

缺点:从凝胶过滤的原理可知,蛋白质分子通过凝胶柱的速度(即洗脱体积的大小)并不直接取决于分子的质量,而是它的斯笃克半径,利用凝胶过滤法测定蛋白质分子量时,标准蛋白质(已知分子量和斯笃克半径)和待测蛋白质必须具有相同的分子形状(接近球体),否则不能得到比较准确的分子量。分子形状为线形的或与凝胶能发生吸附作用的蛋白质,则不能用此方法测定分子量。而且柱子成本比较高,整个实验过程耗时很长。

3、免疫亲和层析法:

是利用生物体内存在的抗原、抗体之间高度特异性的亲和力进行分离的方法。亲和层析的应用主要是生物大分子的分离、纯化。利用抗原、抗体之间高特异的亲和力而进行分离的方法又称为免疫亲和层析。例如将抗原结合于亲和层析基质上,就可以从血清中分离其对应的抗体。在蛋白质工程菌发酵液中所需蛋白质的浓度通常较低。

用离子交换、凝胶过滤等方法都难于进行分离,而亲和层析法则是一种非常有效的方法。将所需蛋白质作为抗原,经动物免疫后制备抗体,将抗体与适当基质偶联形成亲和吸附剂,就可以对发酵液中的所需蛋白质进行分离纯化。

⑷ 生物药物分离提取技术的特点与原理以及生化药物的特点请知道的大侠说一下,先多谢了。

原理如下:
(1)根据分子形状和大小,在外加的作用力进行分离,如差速离心、超速离心、膜分离(透析、电透析)、超滤和凝胶过滤等。
(2)根据分子电离性质(带电性)的差异进行分离,如离子交换法、电泳法、等电聚焦法。它们将混合物中不同的组分分配不同的区域。
(3)根据分子极性大小及溶解度不同进行分离,如盐析法、等电点沉淀法、溶剂提取法及有机溶剂分级沉淀法,可将混合物中各组分分配在不同的物相中。
(4)根据物质吸附性性质的不同进行分离,如吸附层析法。
(5)根据配体特异性进行分离,如亲和层析法。

⑸ 曲妥珠单抗的药理作用

曲妥珠单抗是抗体依赖的细胞介导的细胞毒反应(ADCC)的潜在介质。
在体外研究中,曲妥珠单抗介导的ADCC被证明在HER2过度表达的癌细胞中比HER2非过度表达的癌细胞中更优先产生。有需要的可以连系/盛康合医疗/ 即可~

⑹ 糖化血红蛋白分析仪的检测方法

临床实验室中应用的GHB测定方法主要分为两类:
一是基于GHB与非GHB的电荷不同,如离子交换层析、电泳和等电聚集方法
二是基于血红蛋白上糖化基团的结构特点,如亲和层析和免疫实验
(1)亲和层析法:该方法特异性强,不受异常血畿蛋白的干扰。适合于临床科室使用,尤其对小儿患者而言更有优势。其检测结果也完全达到并超过临床要求,CV值5%以内。以中兴科仪(北京)贸易公司的挪威小旋风糖化血红蛋白仪NycoCard READER II为代表。
(2)高压液相方法(HPLC),可全自动分离测定糖化血红蛋白及血蛋白的变异体和亚型,但仪器的操作保养要求较高,CV值1%以内。以北京执信医疗公司的HLC-723 G7为代表。
(3)免疫凝集法:原理是糖化血红蛋白与相应的单抗结合进而发生凝集反应,通过测定吸光度来表示凝集量,可用于全自动生化分析仪上进行测定。每次试验均应使用一个新试剂盒,操作前应注意混匀试剂。指出的是免疫凝集法测定糖化血红蛋白,精密度较差,CV值一般不大小5%。以中仪康辉(北京)贸易有限公司的DCA Vantage为代表。
(4)离子捕获法,其原理是糖化血红蛋白与相应抗体结合后,联以荧光标记物,而在IMX反应孔中的玻璃纤维预先包被了高分子的四胺合物,使纤维表面带正电,使前述的反应复合物吸附在纤维表面,经过一系列的清洗后测定其荧光强度,从而得到糖化血红蛋白的浓度,该方法适用于成批糖化血红蛋白标本的检测。以北京东南化学的IMX为代表
(5)电泳方法:毛细管电泳也能分离检测糖化血红蛋白和血红蛋白质的变异体,但目前尚无商品化,具有批量样本通过能力的仪器面世,相当程度地限制了该方法的临床应用。

阅读全文

与离子交换层析分离单抗相关的资料

热点内容
半透膜活塞 浏览:946
长沙哪里能买到家用净水器 浏览:918
土豆烧水能除水垢吗 浏览:684
过滤井水水垢的净水机 浏览:369
德克西超滤型净水器怎么样 浏览:606
氨基uv树脂做地板 浏览:275
净水器矿物滤芯多少钱一个 浏览:216
污水处理余氯测定记录表 浏览:891
09款汉兰达空气滤芯怎么换 浏览:381
洋泉污水处理工程什么时候开工 浏览:822
电镀废水总氮去除率 浏览:646
钢笔吧不同年代豆腐树脂 浏览:136
平面伸缩缝防水处理 浏览:292
宁夏污水收集及处理方案 浏览:95
净饮机废水箱需要加水吗 浏览:366
2011款江铃6座全顺空调滤芯怎么拆 浏览:280
除垢器阳极 浏览:964
污水管什么型号 浏览:447
梦到污水从高处往下流 浏览:526
欧普特净水器滤芯多少钱1个 浏览:657