导航:首页 > 净水问答 > 土壤阳离子交换量的顺序

土壤阳离子交换量的顺序

发布时间:2025-05-09 10:41:19

㈠ 土壤阳离子交换量怎么算

在一定的pH值条件下(一般pH为7),每千克干土所吸收的全部交换性阳离子(K+、Na+、Ca2+、Mg2+、NH4+、H+、Al3+等)总量。

常用单位:每千克厘摩尔数cmol(+)/kg土

国际单位:mmol/kg土

(1)土壤阳离子交换量的顺序扩展阅读:

土壤阳离子交换量(CEC)的大小,基本上代表了土壤可能保持的养分数量,即保肥性的高低。阳离子交换量的大小,可作为评价土壤保肥能力的指标。阳离子交换量是土壤缓冲性能的主要来源,是改良土壤和合理施肥的重要依据。

b、土壤质地越细,其阳离子交换量越高。

c、对于实际的土壤而言,土壤黏土矿物的SiO2/R2O3比率越高,其交换量就越大。

d、土壤溶液pH值,因为土壤胶体微粒表面的羟基(OH)的解离受介质pH值的影响,当介质pH值降低时,土壤胶体微粒表面所负电荷也减少,其阳离子交换量也降低;反之就增大。

㈡ 吸附-解吸作用

吸附-解吸是水-岩(土)系统调节氟浓度的一种重要作用。除了由母岩和风化壳转移而进入土壤的氟化物大部分作为土壤的原生矿物而存在外,土壤中其余的氟多以胶体吸附态的离子(简单阴离子或复杂配离子)和分子(主要是氟化物)形式存在于土壤。

关于吸附解吸的机理相当复杂,基本包括机械吸附、物理化学吸附和生物吸附。土壤是多孔体系,有大孔隙,也有小孔隙,孔隙的状况极其复杂,如大小孔隙相互连接,孔径弯曲多种多样,因而可以对进入其中的氟化物起机械阻留作用。机械吸附对可溶性的分子和离子,如水溶性养分等不起保存作用。物理化学吸附是发生在土壤溶液和土壤胶体界面上的一种物理化学反应,土壤胶体借助于极大的表面积和电性,把土壤溶液中的离子吸附在胶体的表面上而保存下来。

在氟迁移和转化过程中,由于氟与一些金属离子的配合作用以及含氟矿物或氟化物沉淀和溶解作用,使土壤中一些束缚态的氟以氟阴离子或氟配合物的形式游离于水-岩(土)系统,而水-岩(土)系统是一个非常复杂的多相复合系统,土壤中存在大量的黏土矿物和沉淀的氢氧化铁、无定形硅酸以及有机物和腐殖质,它们在水-岩(土)系统中会发生不同程度的电离,而使它们带电,根据吸附作用的本质,游离于土壤溶液中的氟阴离子或氟配合物在它们随淋滤液迁移时会与水-岩(土)系统中的黏土矿物和沉淀的氢氧化铁、无定形硅酸、有机物以及腐殖质等发生不同程度的物理、化学或物理化学吸附作用。

土壤中黏土矿物和沉淀的氢氧化铁、无定形硅酸以及有机物等是F-主要吸附剂。在岩土中,由于氟离子和羟基离子的大小相近,电性相同,所以氟可以和金属氧化物中与金属离子配位的羟基、水合基以及腐殖质含有的—COOH和—OH等官能团发生离子交换,把这种作用过程称为离子交换吸附,并且这种反应过程是可逆的,其反应式如下:

河南省地下水中氟的分布及形成机理研究

以氧化铁为例,其交换方式可用下式表示。

(1)与配位羟基交换:

河南省地下水中氟的分布及形成机理研究

(2)与配位水合基交换:

河南省地下水中氟的分布及形成机理研究

土壤腐殖质也是土壤中氟的重要吸附剂。土壤腐殖质主要是由在分子的三维方向上带有很多活性基团的芳烃所组成,故具有较强的吸附表面。土壤腐殖质与氟的吸附,主要通过与腐殖质中的—COOH和—OH等功能团的离子交换反应进行。反应式如下:

河南省地下水中氟的分布及形成机理研究

研究表明,被吸附离子半径越接近OH-的离子半径(r=1.32~1.40×10-10m),其交换吸附能力愈大。由于氟的离子半径与OH-非常接近,所以土壤对F-交换吸附能力与其他一些阴离子相比,确实要大得多。下面是土壤中阴离子吸附能力大小的排列顺序:

河南省地下水中氟的分布及形成机理研究

除沉淀等因素的影响,一般来说,岩土中氟与相应阴离子或水分子的交换能力与岩土中羟基等可交换离子的物质的量有关,而岩土中的羟基等可交换离子的物质的量又与迁移液的pH、岩土本身的酸碱性、岩土中铁铝氧化物胶体、腐殖质以及氟的阳离子配合物的物质的量密切相关,所以,单位质量的岩土颗粒所含的羟基越多,对氟的吸附量就越大;岩土中腐殖质越多,岩土的pH越大,对氟的吸附量也愈大。

从以上分析可以看出,溶液中F-取代了土壤胶体上的OH-,由于土壤溶液中增加了OH-,势必导致土壤pH值的增高,从而使土壤向碱性反应发展。有研究表明,土壤氟的数量即氟离子吸附量随OH-的释放而明显增加。不过,土壤溶液中OH-的增加量与土壤胶体上F的吸附量之间并不存在简单的数量关系,这可能是因为土壤中形成一定量的酸碱使土壤具有较大的缓冲能力。

在土壤中,被胶体静电吸附的阳离子,一般都可以被溶液中另一种阳离子交换而从胶体表面解吸。对这种能相互交换的阳离子称为交换性阳离子,把发生在土壤胶体表面的交换反应称为阳离子交换作用。而土壤对于金属-氟配合物的吸附就是通过这一作用来实现的。通常高价阳离子的交换能力大于低价阳离子,就同价离子而言,水化半径较小的阳离子的交换能力较强。土壤中常见的几种交换性阳离子的交换能力顺序如下:

Fe3+、Al3+>H+>Ca2+>Mg2+>K+>Na+

衡量土壤阳离子交换能力的指标为阳离子交换容量(CEC),它指土壤所能吸附和交换的阳离子的容量。它与土壤胶体的比表面积和表面电荷有关。按照土壤的交换能力,一般将土壤划分为三个等级:一般认为阳离子交换容量为20cmol/kg以上的为交换能力强的土壤;20~10cmol/kg为交换能力中等的土壤;小于10cmol/kg的为交换能力弱的土壤。对周口开封地区取样坑的土壤测定其阳离子交换容量,结果见表7-3。

表7-3中显示,本区域土壤的阳离子交换容量均在20cmol/kg以上,属于交换性比较强的土壤,为吸附金属-氟配合物提供了有利条件。

总之,土壤吸附性氟包括对氟阴离子(F-)和金属-氟配合物阳离子(如 AlF2+

、FeF2+

、CoF2+

等)的吸附。其中,对F-吸附主要是通过与黏土矿物和土壤腐殖质上OH-的交换实现吸附,对金属-氟配合物阳离子的吸附则主要通过与黏土矿物或土壤腐殖质上的阳离子交换实现吸附。在红壤和黄壤等酸性、富铁铝土壤上吸附态氟主要是氟配合离子,而在石灰性土壤和盐碱土上的吸附态氟主要是F。

表7-3 周口开封地区取样坑阳离子交换量统计表

㈢ 阳离子交换量试验步骤

首先,准备四只100毫升的离心管,每只精确称重至0.0001克。将其中两只离心管分别加入1.0克表层风干土壤样品,另外两只则加入1.0克深层风干土壤样品,并进行标记。然后,向每只管中注入20毫升氯化钡溶液,用玻棒充分搅拌4分钟后,以3000转/分钟的转速离心,直到下层土样紧实。将上层的清液弃去,重复此步骤,再次加入20毫升氯化钡溶液。

接下来,往每只离心管内加入20毫升蒸馏水,搅拌1分钟后离心,弃去上清液。接着,再次称量离心管连同土样的总重量。随后,从每只离心管中移取25.00毫升0.1摩尔/升的硫酸溶液,充分搅拌10分钟后静置20分钟,然后离心分离。将上清液分别倒入四只试管中。同时,从0.1摩尔/升的硫酸溶液中各取10.00毫升,分别加入另外两只锥形瓶中。

在这六个锥形瓶中,各加入10毫升蒸馏水和一滴酚酞指示剂。然后用标准氢氧化钠溶液进行滴定,当溶液变为红色且保持数分钟不褪色时,即为滴定终点。完成上述步骤后,实验数据便已收集完毕。

㈣ 什么是土壤的阳离子交换量

土壤阳离子交换量是指土壤所吸附的能够被交换性的各种阳别离子总量,主要是H+、Al3+、K+、Na+、Ca2+、Mg2+、NH4+,用每 千克土壤一价阳离子的厘摩尔数表示,英文简写为CEC。其中H+ 和Al3+使土壤呈酸性,故称为致酸离子;其他离子使土壤呈碱性, 故称为盐基离子。不同土壤的阳离子交换量不同,主要影响因素有土壤胶体类型、土壤质地、黏土矿物的Si02/R203和土壤pH。例如,不同胶体 的阳离子交换量为:有机胶体>蒙脱石>水化云母>高岭石>含水氧 化铁、铝。土壤质地越细,其阳离子交换量越高。土壤黏土矿物的Si02/R203比率越高,其交换量就越大。土壤胶体微粒表面的轻 基(一0H)的解离受介质pH的影响,当介质pH降低时,土壤胶 体微粒表面负电荷也减少,其阳离子交换量也降低;反之就增 大。

㈤ 关于土壤阳离子交换量正确的是

阳离子电荷数越高,阳离子交换能力越强 同价离子中,离子半径越大,阳离子交换能力越强 土壤质地越细,阳离子交换量越高

㈥ 阳离子交换量的测定

阳离子交换量的测定:是指土壤阳离子交换量(CEc是指土壤胶体所能吸附的各种阳离子)的总量。酸性、中性土壤多用传统的乙酸铵交换法测定,使用乙酸铵溶液反复处理土壤,使土壤成为铵离子饱和土;用乙醇洗去多余的乙酸铵后。

蒸馏法测定铵离子的量并换算为土壤阳离子交换量。此法的优点是交换液中可同时测定各种交换性盐基离子。石灰性土壤用氯化铵-乙酸铵作交换剂,盐碱土用乙酸钠作交换剂进行测定。不同的交换剂与测定操作对实验结果影响较大,报告实验结果时应标出。

方法

氯化钡-硫酸强迫交换法。将土壤用氯化钡饱和,然后用相当于土壤溶液中离子强度那样浓度的氯化钡溶液平衡土壤,继而用硫酸溶液交换钡离子,生成硫酸钡沉淀。通过测定交换反应前后的硫酸含量的变化,可以计算出硫酸消耗量,进而计算出阳离子交换量。

㈦ 阳离子交换量的试验步骤

取4只100 mL离心管,分别称出其重量(准确至0.0001 g,下同)。在其中2只加入专1.0 g污灌区表层属风干土壤样品,其余2只加入1.0 g深层风干土壤样品,并作标记。向各管中加入20 mL氯化钡溶液,用玻棒搅拌4 min后,以3000r/min转速离心至下层土样紧实为止。弃去上清液,再加20 mL氯化钡溶液,重复上述操作。
在各离心管内加20 mL蒸馏水,用玻棒搅拌1 min后,离心沉降,弃去上清液。称出离心管连同土样的重量。移取25.00 mL 0.1 mol/L硫酸溶液至各离心管中,搅拌10 min后,放置20 min,离心沉降,将上清液分别倒入4只试管中。再从各试管中分别移取10.00 mL上清液至4只100 mL锥形瓶中。同时,分别移取10.00 mL 0.1 mol/L硫酸溶液至另外2只锥形瓶中。在这6只锥形瓶中分别加入10 mL蒸馏水、1滴酚酞指示剂,用标准氢氧化钠滴定,溶液转为红色并数分钟不褪色为终点。

阅读全文

与土壤阳离子交换量的顺序相关的资料

热点内容
外面污水泵排水坡度多少 浏览:362
污水处理年消耗能耗 浏览:81
广东印染污水处理器多少钱 浏览:463
广州市污水处理厂养护 浏览:906
陶瓷滤水器和超滤 浏览:552
史密斯电热水器水垢清除 浏览:684
污水管网建设议题 浏览:602
怎样过滤果汁中的果渣 浏览:575
水族过滤器哪个超静音品牌 浏览:889
厕所地面垫高排水处理 浏览:668
在新疆回哈尔滨用隔离吗 浏览:678
养龟用过滤桶吗 浏览:552
空气净化器一天能开多少电 浏览:709
3m活性炭滤芯多少钱 浏览:515
反渗透浓水管道用什么材料 浏览:578
麦凯隆滤芯上面的数字是干什么的 浏览:121
露天污水管道使用什么材料 浏览:256
静电油烟净化器怎么接电场组 浏览:593
空气净化器风阻大是什么原因 浏览:681
污水处理费退税 浏览:804