① 净水机里的美国陶氏膜和GE膜哪个好点呢另外超滤,纳滤,反渗透哪个好啊
陶氏膜和GE膜都是一种起分子级分离过滤作用的介质,当溶液或混合气体与膜接触时,在压力下,或电场作用下,或温差作用下,某些物质可以透过膜,而另些物质则被选择性的拦截,从而使溶液中不同组分,或混合气体的不同组分被分离,这种分离是分子级的分离。
陶氏反渗透膜比GE反渗透膜脱盐率高0.2个点,压力低50PSI,价格高10%左右。
一般来说肯定是反渗透膜会好很多,下面就是超滤膜、纳滤膜以及反渗透膜的介绍。
超滤:以孔径为0.01微米至0.1微米的滤膜为介质对水进行过滤处理,除了能截留水中如胶体、铁锈、悬浮物、泥沙和大分子有机物等污染物,也能去除部分大直径细菌、病毒。但是,对于直径小于10nm的微生物、重金属离子等有害物质,超滤膜无能为力。
纳滤:纳滤膜孔径约1nm,介于超滤膜和反渗透膜之间,更接近于反渗透膜。纳滤脱盐率在百分之90以上(反渗透脱盐率达99%以上),其本质上是一种低压反渗透,用于处理对产水纯度要求不是特别严格的场合,现主要用于水厂或工业脱盐。
反渗透:反渗透膜的孔径约为0.1nm,是四种过滤膜中过滤精度最高的,其过滤孔径是头发丝的一百万分之一,细菌、病毒的五千分之一,能有效拦截水中的各类有害物质。经反渗透净水器净化后的水是纯净水,可以直接饮用。
② 影响纳滤膜,超滤膜,RO膜的性能因素有哪些
压力的影响
进水压力影响RO和NF膜的产水通量和脱盐率,我们知道渗透是指水分子从稀溶液侧透过膜进入浓溶液侧的流动,反渗透和纳滤技术即在进水水流侧施加操作压力以克服自然渗透压。当高于渗透压的操作压力施加在浓溶液侧时,水分子自然渗透的流动方向就会被逆转,部分进水(浓溶液)通过膜成为稀溶液侧的净化产水。透过膜的水通量增加与进水压力的增加存在直线关系,增加进水压力也增加了脱盐率,但是两者间的变化关系没有线性关系,而且达到一定程度后脱盐率将不再增加。
由于RO和NF膜对进水中的溶解性盐类不可能绝对完美地截留,总有一定量的透过量,随着压力的增加,因为膜透过水的速率比传递盐分的速率快,这种透盐率的增加得到迅速地克服。但是,通过增加进水压力提高盐分的排除率有上限限制,正如图1脱盐率曲线的平坦部分所示那样,超过一定的压力值,脱盐率不再增加,某些盐分还会与水分子耦合一同透过膜。
温度的影响
膜系统产水电导对进水温度的变化非常敏感,随着水温的增加,水通量几乎线性地增大,这主要归功于透过膜的水分子的粘度下降、扩散能力增加。增加水温会导致脱盐率降低或透盐率增加,这主要是因为盐分透过膜的扩散速率会因温度的提高而加快所致。膜元件能够承受高温的能力增加了其操作范围,这对清洗操作也很重要,因为可以采用更强烈和更快的清洗程序。
盐浓度的影响
渗透压是水中所含盐分或有机物浓度和种类的函数,盐浓度增加,渗透压也增加,因此需要逆转自然渗透流动方向的进水驱动压力大小主要取决于进水中的含盐量。如果压力保持恒定,含盐量越高,通量就越低,渗透压的增加抵消了进水推动力,水通量降低,增加了透过膜的盐通量(降低了脱盐率)。
回收率的影响
通过对进水施加压力当浓溶液和稀溶液间的自然渗透流动方向被逆转时,实现反渗透过程。如果回收率增加(进水压力恒定),残留在原水中的含盐量更高,自然渗透压将不断增加直至与施加的压力相同,这将抵销进水压力的推动作用,减慢或停止反渗透过程,使渗透通量降低或甚至停止。RO
系统最大可能回收率并不一定取决于渗透压的限制,往往取决于原水中的含盐量和它们在膜面上要发生沉淀的倾向,最常见的微溶盐类是碳酸钙、硫酸钙和硅,应该采用原水化学处理方法阻止盐类因膜的浓缩过程引发的结垢。
pH 值的影响
各种反渗透和纳滤膜元件适用的pH值范围相差很大,像这样的超薄复合反渗透和纳滤膜与醋酸纤维素反渗透和纳滤膜相比,在更宽广的 pH
值范围内更稳定,因而,具有更宽的操作范围。膜脱盐率特性取决于pH值,水通量也会受到影响。
③ 如何降低纳滤出水的电导率
首先,检查来纳滤设备的前后自压差是否正常。(检查原水电导率)判断纳滤的有效性。
其次,检查纳滤管程是否有漏水情况。(可能性较大)
最后,在纳滤处理后段增加一树脂混床处理可有效保证出水电导率合格。
降低纳滤出水的电导率方法:
1、浅层地下水受季节影响或者外界污染的影响。根据水温来看你们属于这个范围。
2、深层地下水岩层的变化。
解决这种的情况就是增加预除盐装置,比如软水器,预先处理下钙镁离子。
④ 纳滤膜为什么可以在较低的操作压力条件下实现较高的脱盐率
应用纳滤膜对溶液中的溶质进行分离时,它的截留率会受到一些因素回的影响,从而呈现出不同的变化答规律,对这个规律进行详细的了解有利于更好的应用纳滤膜的分离性能。
这里我们将主要针对纳滤膜在对溶液进行分离的过程中,其根据处理溶质的不同所呈现的一些变化规律做以下详细介绍:
一、若保持系统的压力恒定,那么纳滤膜的截留率将会随着溶液浓度的增加而降低。
二、这种膜的截留率与溶质的摩尔质量变化成正比,当摩尔质量减少时,那么截留率也将随之降低。
三、如果溶液的浓度保持恒定时,那么膜的截留率将同其两侧压差变化形成正比,压差降低将导致截留率也随之下降。
四、对于溶液中一些常见的阴离子,膜的截留率将按照硝酸根离子、氯离子、氢氧离子、硫酸离子的顺序依次升高。
五、对于溶液中一些常见的阳离子,膜的截留率将按照氢离子、钠离子、钾离子、钙离子、镁离子、铜离子的顺序依次升高。
⑤ 纳滤膜的脱盐率一般是多少
纳滤膜孔径在1nm以上,一般1-2nm。是允许溶剂分子或某些低分子量溶质或低价离子内透过的一种功能性的半透容膜。它是一种特殊而又很有前途的分离膜品种,它因能截留物质的大小约为纳米而得名,它截留有机物的分子量大约为150-500左右,截留溶解性盐的能力为2-98%之间,对单价阴离子盐溶液的脱盐低于高价阴离子盐溶液。被用于去除地表水的有机物和色度,脱除地下水的硬度,部分去除溶解性盐,浓缩果汁以及分离药品中的有用物质等。
⑥ 反渗透和纳滤的区别是什么
反渗透(RO)和纳滤(NF)技术都是净水设备进行水处理方式,净水设备一般以这两个技术做出的反渗透膜和纳滤膜进行区分,两者有以下区别:
1、过滤精度不同
反渗透可以脱除最小的溶质,分子量小于0.0001微米,由于高的过滤精度,可以滤除水中的细菌和各种杂质,一般用于家庭纯净水、工业超纯水和医疗超纯水的制造。纳滤可脱除分子量在0.001微米左右的溶质,用于过滤精度要求稍低的环境,一般用于水软化、微污染脱盐和工业纯水的制造。
2、脱盐率不同
反渗透技术的脱盐率在99.5% ,能有效截流所有溶解盐份及各种分子量大于>100的有机物,同时允许小分子团通过。纳滤系统采用的是错流过滤的方式,脱盐率在80到90%之间,主要应用于大分子物质的浓缩和纯化。
3、产生的“废水”比例不同
反渗透和纳滤都是通过加压、加电的方式净化水,但反渗透技术由于膜的构成不同,反渗透产生的废水在1:2—1:3,纳滤的废水比在1:1,以省水和环保方面来说,反渗透技术更加耗费资源,纳滤技术相比具有部分去除单价离子、过程渗透压低、操作压力低、省能等优点。
(6)纳滤和反渗透的脱盐率扩展阅读
超滤(UF)和微滤(MF)
超滤和微滤也是净水设备进行水处理的方式。
1、超滤的过滤精度在0.001—0.1微米,用压差的膜法分离技术,可滤除水中的铁锈、泥沙、悬浮物、胶体等,过滤流量大,使用成本低,但无法消除水中的部分杂质和病菌,常用于制药工业、食品工业、电子工业。
2、微滤的过滤精度在0.1—50微米,只能过滤水中的泥沙、铁锈等大颗粒杂质,是简单的粗过滤,常用于微电子行业超纯水的终端过滤,各种工业给水的预处理。
⑦ 透析,微滤,超滤,纳滤,反渗透,电渗析,渗透气化等膜分离技术各自的特点
1.透析(dialysis)是通过小分来子经过半源透膜扩散到水(或缓冲液)的原理;
2.微滤适用于细胞、细菌和微粒子的分离,在生物分离中,广泛用于菌体的分离和浓缩,目标物质的大小范围为0.01-10 μm,一般用于预处理;
3.超滤技术的优点是没有相的转变,无需添加任何强烈的化学物质,可以在低温下操作,过滤速度较快,便于无菌处理等,一般用于预处理;
4.纳滤 特点是能截留小分子的有机物并可同时透析出盐,集浓缩与透析于一体;
操作压力低,因为无机盐能通过纳米滤膜而透析,使得纳米过滤的渗透压远比反渗透为低,所以纳米过滤所需的外加压力比反渗透低得多;
5.反渗透法具有设备构型紧凑,占地面积小、单位体积产水量及能量消耗少等优点;
6.电渗析的特点时可以同时对电解质水溶液起淡化、浓缩、分离、提纯作用、可以用于蔗糖等非电解质的提纯,以除去其中的电解质、在原理上,电渗析器是一个带有隔膜的电解池,可以利用电极上的氧化还原效率高;
7.渗透气化对共沸物系和近沸物系等难分物系的分离, 显示特有的优越性。
⑧ 纳透膜是什么膜,和反渗透膜和超滤膜的区别是什么
纳滤和反渗透都是复合膜,超滤是聚烯烃,聚砜类。纳滤主要去除二价离子。钠版透膜:孔径在权1nm以上,一般1-2nm。是允许溶剂分子或某些低分子量溶质或低价离子透过的一种功能性的半透膜。 最明显的区别就是,孔径很小,一般用来做离子过滤的。 反渗透膜 实现反渗透的核心元件,是一种模拟生物半透膜制成的具有一定特性的人工半透膜。一般用高分子材料制成。如醋酸纤维素膜、芳香族聚酰肼膜、芳香族聚酰胺膜。表面微孔的直径一般在0.5~10nm之间,透过性的大小与膜本身的化学结构有关。有的高分子材料对盐的排斥性好,而水的透过速度并不好。有的高分子材料化学结构具有较多亲水基团,因而水的透过速度相对较快。因此一种满意的反渗透膜应具有适当的渗透量或脱盐率。
⑨ 纳滤能否有效去除水中的COD BOD5和TOC
首先,纳滤膜(Nanofiltration Membranes)是80年代末期问世的一种新型分离膜,其截留分子量介于反渗透膜和超滤膜之间,约为-2000Da,由此推测纳滤膜可能拥有lnm左右的微孔结构,故称之为“纳滤”。纳滤膜大多是复合膜,其表而分离层由聚电解质构成,因而对无机盐具有一定的截留率。国外已经商品化的纳滤膜大多是通过界面缩聚及缩合法在微孔基膜上复合一层具有纳米级孔径的超薄分离层。
纳滤膜能截留纳米级(0.001微米)的物质。纳滤膜的操作区间介于超滤和反渗透之间,截留溶解盐类的能力为20%-98%之间,对可溶性单价离子的去除率低于高价离子,纳滤一般用于去除地表水中的有机物和色素、地下水中的硬度及镭,且部分去除溶解盐,在食品和医药生产中有用物质的提取、浓缩。纳滤膜的运行压力一般3.5-30bar。
纳滤过程的关键是纳滤膜。对膜材料的要求是:具有良好的成膜性、热稳定性、化学稳定性、机械强度高、耐酸碱及微生物侵蚀、耐氯和其它氧化性物质、有高水通量及高盐截留率、抗胶体及悬浮物污染,价格便宜且采用的纳滤膜多为芳香族及聚酸氢类复合纳滤膜。复合膜为非对称膜,由两部分结构组成:一部分为起支撑作用的多孔膜,其机理为筛分作用;另一部分为起分离作用的一层较薄的致密膜,其分离机理可用溶解扩散理论进行解释。对于复合膜,可以对起分离作用的表皮层和支撑层分别进行材料和结构的优化,可获得性能优良的复合膜。膜组件的形式有中空纤维、卷式、板框式和管式等。其中,中空纤维和卷式膜组件的填充密度高,造价低,组件内流体力学条件好;但是这两种膜组件的制造技术要求高,密封困难,使用中抗污染能力差,对料液预处理要求高。而板框式和管式膜组件虽然清洗方便、耐污染,但膜的填充密度低、造价高。因此,在纳滤系统中多使用中空纤维式或卷式膜组件。
在我国,对纳滤过程的理论研究比较早,但对纳滤膜的开发尚处于初步阶段。在美国、日本等国家,纳滤膜的开发已经取得了很大的进展,达到了商品化的程度,如美国Filmtec公司的NF系列纳滤膜、日本日东电工的NTR-7400系列纳滤膜及东丽公司的UTC系列纳滤膜等都是在水处理领域中应用比较广泛的商品化复合纳滤膜。
对于一般的反渗透膜,脱盐率是膜分离性能的重要指标,但对于纳滤膜,仅用脱盐率还不能说明其分离性能。有时,纳滤膜对分子量较大的物质的截留率反而低于分子量较小的物质。纳滤膜的过滤机理十分复杂。由于纳滤膜技术为新兴技术,因此对纳滤的机理研究还处于探索阶段,有关文献还很少。但鉴于纳滤是反渗透的一个分支,因此很多现象可以用反渗透的机理模型进行解释。关于反渗透的膜透过理论[2]有朗斯代尔、默顿等的溶解扩散理论;里德、布雷顿等的氢键理论;舍伍德的扩散细孔流动理论;洛布和索里拉金提出的选择吸附细孔流动理论和格卢考夫的细孔理论等。
纳滤膜的过滤性能还与膜的荷电性、膜制造的工艺过程等有关。不同的纳滤膜对溶质有不同的选择透过性,如一般的纳滤膜对二价离子的截留率要比一价离子高,在多组分混合体系中,对一价离子的截留率还可能有所降低。纳滤膜的实际分离性能还与纳滤过程的操作压力、溶液浓度、温度等条件有关。如透过通量随操作压力的升高而增大,截留率随溶液浓度的增大而降低等。
所以,纳滤膜可以去除大部分COD及BOD和TOC
⑩ 纳滤膜 产水量多少一般选 陶氏,海德能的
应用纳滤膜对溶液来中的自溶质进行分离时,它的截留率会受到一些因素的影响,从而呈现出不同的变化规律,对这个规律进行详细的了解有利于更好的应用纳滤膜的分离性能。
这里我们将主要针对纳滤膜在对溶液进行分离的过程中,其根据处理溶质的不同所呈现的一些变化规律做以下详细介绍:
一、若保持系统的压力恒定,那么纳滤膜的截留率将会随着溶液浓度的增加而降低。
二、这种膜的截留率与溶质的摩尔质量变化成正比,当摩尔质量减少时,那么截留率也将随之降低。
三、如果溶液的浓度保持恒定时,那么膜的截留率将同其两侧压差变化形成正比,压差降低将导致截留率也随之下降。
四、对于溶液中一些常见的阴离子,膜的截留率将按照硝酸根离子、氯离子、氢氧离子、硫酸离子的顺序依次升高。
五、对于溶液中一些常见的阳离子,膜的截留率将按照氢离子、钠离子、钾离子、钙离子、镁离子、铜离子的顺序依次升高。