对于一般的反渗透膜,脱盐率是膜分离性能的重要指标,但对于纳滤膜,仅用脱盐率还不能说明其分离性能。有时,纳滤膜对分子量较大的物质的截留率反而低于分子量较小的物质。纳滤膜的过滤机理十分复杂。由于纳德膜技术为新兴技术,因此对纳滤的机理研究还处于探索阶段,有关文献还很少。但鉴于纳滤是反渗透的一个分支,因此很多现象可以用反渗透的机理模型进行解释。
纳滤膜过滤性能还与膜的荷电性、膜制造的工艺过程等有关。不同的纳滤膜对溶质有不同的选择透过性,如一般的纳滤膜对二价离子的截留率要比一价离子高,在多组混合体系中,对一价离子的截留率还可能有所降低。纳滤膜技术实际分离性能还与纳滤过程的操作压力、溶液浓度、温度等条件有关。如透过通量随操作压力的升高而增大,截留率随溶液浓度的增大而降低等。
『贰』 导致复合纳滤膜脱盐率低的原因有哪些
这个原因还是有很多的,那你一定要理解他的一个化学反应才是可以的。
纳滤膜和RO膜的区别:
1. NF膜分离需要的跨膜压差一般为0.5~2.0MPa,比用反渗透膜达版到同样的渗透能量所权必须施加的压差低0.5~3MPa。在同等的外加压力下,纳滤的通量要比反渗透大得多,而在通量一定时,纳滤所需的压力则比反渗透的低很多。所以用纳滤代替反渗透时,“浓缩”过程可更有效、快速地进行,并达到较大的“浓缩”倍数。
2.纳滤膜与其他膜分离过程比较,纳滤的一个优点是能透析反渗透膜所截留的部分无机盐——也就是能使“浓缩”与脱盐同步进行。
3.纳滤膜介于反渗透和超滤膜之间,其膜表面分离皮层可能具有纳米级微孔结构。
4.相对于反渗透膜NaCI的脱除率均在95%以上,一般将NaCI脱除率为90%以下的膜均可称之为纳滤膜。
5.反渗透膜几乎对所有溶质都有很高的脱除率,而纳滤膜只对特定的溶质具有脱除率。
6.反渗透膜几乎均为聚酰胺材质,而纳滤膜材料可采用多种材质,如醋酸纤维素、醋酸-三醋酸纤维素、磺化聚砜、磺化聚醚砜、芳香聚酰胺复合材料和无机材料等。
其实这几种滤膜区别不大,主要的区别就是精度大小不一样,还有就是应用领域也有些不一样。如果对这几种滤膜的区别还是不是很清楚详细的可以看网页链接
『肆』 纳滤膜的基本信息
纳滤膜基本原理
在一张半透膜隔开水溶液时,加在溶液上并使其能刚好阻止纯溶内剂进入溶液容的额外压力称为渗透压,在一般情况下水溶液中的溶质浓度越高渗透压就越大。当溶液一端没有加压时,纯溶剂会通过半透膜向溶液中扩散,这种现象叫做渗透。相反在加溶液端所外加的压力超过了渗透压,则反而使得溶液中的溶剂向纯溶剂一侧流动,这个过程称为反渗透。纳滤膜分离技术正是运用了反渗透原理。
纳滤膜元件在以前称作疏松反渗透,其截留特性介于中空纤维超滤膜和反渗透膜之间,孔径大约在100-1000道尔顿。所以,纳滤膜元件对于水溶液中溶解的小分子有机物具有很高的脱除率。同时也对水溶液中的各种离子有一定的脱除率。纳滤水处理膜的性能主要由水通量和脱盐率来决定的。纳滤膜的水通量和脱盐率受压力、温度、浓度、流量、PH值、回收率等等因素说影响。
『伍』 如何延长陶氏脱盐型纳滤膜使用时间及寿命
延长陶氏纳滤膜的使用时间及寿命,不仅要做好日常维护保养,在使用过程中的操作规范也同样不可忽视。
主要有以下几个方面:
1.系统的正确开启及停止
注意正确的开启即停止系统操作,纳滤膜在第一次启动前,需打开设备顶盖,将油箱的无孔封盖的运行改变为有孔封盖的运行。在打开纳滤膜的运行开关前,先要确定全部的阀门开关的位置,开启进料之前,确认纳滤膜体内已充满液体,不至于使纳滤膜空转。
2.系统运行中阀门的开启与关闭
运行过程中的纳滤膜需要更加注意,在系统处于正在运行的状态时,调节阀门应该注意此时的的压力变化,在调节时要使用较慢的速度。不管在什么时候,在系统的运行过程期间,膜的出口阀、进口阀都不能完全地关闭起来,否则将会引起电机或纳滤膜头的损坏。
3.系统待机中阀门的开启和关闭
注意系统待机时阀门的开启和关闭,防止膜放在膜管内部没有取出来,定期检查膜体上的螺栓有没有松动掉落的情况,检查非正常噪音,禁止纳滤膜反转或者空转。在系统运行的时注意把油箱盖上的密封垫取下来。
纳滤膜开机前要做好检查工作,检查设备管路连接,阀门是否处于正在生产的状态,液体材料的性质是不是符合系统运行的要求。在清洗时要将纳滤膜转换到清洗的阀门状态,等待去离子水运行稳定,再打开高压泵,调节调压阀,使流量达到预设的工作流量。按照纳滤膜操作规程操作能够延长纳滤膜的使用寿命,从而保证纳滤膜系统运行的效果和质量。
纳滤膜使用需要注意事项:
1.pH值大于10时,连续运行的最高温度为35℃,当进水中含有游离氯或其它氧化性物质时,由于其氧化性能会严重损环膜的性能能,因此建议用户在预处理中除去游离氯或其它氧化性物质。 2.陶氏膜元件在出厂前都经过通水测试,并真空封装于1.0%(重量)浓度的亚硫酸氢钠和20ppm浓度的异噻唑啉酮保护液中。在严寒地区,保护液中添有10%(重量)浓度的甘油作为防冻液。为防止在短期储藏、运输及系统停机时微生物的滋长,建议用1.0%(重量)的亚硫酸氢钠(食品级)保护液(用RO产水配制)对膜元件进行浸泡处理。
3.膜元件在未投入使用前尽量不要拆封,一旦拆封应始终维持湿润状态。
4.膜元件进水应逐渐加压,到正常运行状态的时间应不少于30-60秒,膜元件进水流速应逐渐增加,到规定值的时间应不少于15-20秒。
5.初次使用应先将系统产水进行排放,排放时间至少达到一小时。
6.膜元件至少需使用六小时后方可用甲醛进行消毒。如在六小时内使用甲醛,可能会导致通量损失。
7.任何时候产水背压不得超过0.03MPa。每支压力容器的最大允许压降为50psi(0.34MPa)。
8.请用户使用与膜元件不兼容的化学药剂、润滑剂或保护液等。
『陆』 纳滤膜的脱盐率一般是多少
纳滤膜孔径在1nm以上,一般1-2nm。是允许溶剂分子或某些低分子量溶质或低价离子内透过的一种功能性的半透容膜。它是一种特殊而又很有前途的分离膜品种,它因能截留物质的大小约为纳米而得名,它截留有机物的分子量大约为150-500左右,截留溶解性盐的能力为2-98%之间,对单价阴离子盐溶液的脱盐低于高价阴离子盐溶液。被用于去除地表水的有机物和色度,脱除地下水的硬度,部分去除溶解性盐,浓缩果汁以及分离药品中的有用物质等。
『柒』 纳滤膜与RO膜有何区别
1、净化的水分子不同
纳滤膜:截留有机物的分子量大约为150-500左右,截留溶解性盐的回能力为2-98%之间,对单价阴离子盐答溶液的脱盐低于高价阴离子盐溶液。
RO膜:可阻挡所有溶解的无机分子以及任何相对分子质量大于100的有机物,水分子可通过薄膜成为纯水,对水中二价离子的脱除率可达99.5%,对一价离子的脱除率也在95%以上。
2、应用范围不同
纳滤膜:可应用于水质的软化、降低TDS浓度、去除色度和有机物,它的大部分应用领域是饮用水的软化和有机物的脱除。
RO膜:广泛应用于太空水、纯净水、超纯水的制备;化工工艺中水的浓缩、分离、提纯及纯水制备;海水、苦咸水淡化;造纸、电镀、印染等行业用水、中水及工业废水的回用。
3、工作原理不同
纳滤膜:纳滤是在压力差推动力作用下,盐及小分子物质透过纳滤膜而截留大分子物质,介于超滤和反渗透之间。
RO膜:采用反渗透方式,以压力差为推动力,从溶液中分离出溶剂。
『捌』 纳滤能否有效去除水中的COD BOD5和TOC
首先,纳滤膜(Nanofiltration Membranes)是80年代末期问世的一种新型分离膜,其截留分子量介于反渗透膜和超滤膜之间,约为-2000Da,由此推测纳滤膜可能拥有lnm左右的微孔结构,故称之为“纳滤”。纳滤膜大多是复合膜,其表而分离层由聚电解质构成,因而对无机盐具有一定的截留率。国外已经商品化的纳滤膜大多是通过界面缩聚及缩合法在微孔基膜上复合一层具有纳米级孔径的超薄分离层。
纳滤膜能截留纳米级(0.001微米)的物质。纳滤膜的操作区间介于超滤和反渗透之间,截留溶解盐类的能力为20%-98%之间,对可溶性单价离子的去除率低于高价离子,纳滤一般用于去除地表水中的有机物和色素、地下水中的硬度及镭,且部分去除溶解盐,在食品和医药生产中有用物质的提取、浓缩。纳滤膜的运行压力一般3.5-30bar。
纳滤过程的关键是纳滤膜。对膜材料的要求是:具有良好的成膜性、热稳定性、化学稳定性、机械强度高、耐酸碱及微生物侵蚀、耐氯和其它氧化性物质、有高水通量及高盐截留率、抗胶体及悬浮物污染,价格便宜且采用的纳滤膜多为芳香族及聚酸氢类复合纳滤膜。复合膜为非对称膜,由两部分结构组成:一部分为起支撑作用的多孔膜,其机理为筛分作用;另一部分为起分离作用的一层较薄的致密膜,其分离机理可用溶解扩散理论进行解释。对于复合膜,可以对起分离作用的表皮层和支撑层分别进行材料和结构的优化,可获得性能优良的复合膜。膜组件的形式有中空纤维、卷式、板框式和管式等。其中,中空纤维和卷式膜组件的填充密度高,造价低,组件内流体力学条件好;但是这两种膜组件的制造技术要求高,密封困难,使用中抗污染能力差,对料液预处理要求高。而板框式和管式膜组件虽然清洗方便、耐污染,但膜的填充密度低、造价高。因此,在纳滤系统中多使用中空纤维式或卷式膜组件。
在我国,对纳滤过程的理论研究比较早,但对纳滤膜的开发尚处于初步阶段。在美国、日本等国家,纳滤膜的开发已经取得了很大的进展,达到了商品化的程度,如美国Filmtec公司的NF系列纳滤膜、日本日东电工的NTR-7400系列纳滤膜及东丽公司的UTC系列纳滤膜等都是在水处理领域中应用比较广泛的商品化复合纳滤膜。
对于一般的反渗透膜,脱盐率是膜分离性能的重要指标,但对于纳滤膜,仅用脱盐率还不能说明其分离性能。有时,纳滤膜对分子量较大的物质的截留率反而低于分子量较小的物质。纳滤膜的过滤机理十分复杂。由于纳滤膜技术为新兴技术,因此对纳滤的机理研究还处于探索阶段,有关文献还很少。但鉴于纳滤是反渗透的一个分支,因此很多现象可以用反渗透的机理模型进行解释。关于反渗透的膜透过理论[2]有朗斯代尔、默顿等的溶解扩散理论;里德、布雷顿等的氢键理论;舍伍德的扩散细孔流动理论;洛布和索里拉金提出的选择吸附细孔流动理论和格卢考夫的细孔理论等。
纳滤膜的过滤性能还与膜的荷电性、膜制造的工艺过程等有关。不同的纳滤膜对溶质有不同的选择透过性,如一般的纳滤膜对二价离子的截留率要比一价离子高,在多组分混合体系中,对一价离子的截留率还可能有所降低。纳滤膜的实际分离性能还与纳滤过程的操作压力、溶液浓度、温度等条件有关。如透过通量随操作压力的升高而增大,截留率随溶液浓度的增大而降低等。
所以,纳滤膜可以去除大部分COD及BOD和TOC
『玖』 纳滤膜为什么可以在较低的操作压力条件下实现较高的脱盐率
应用纳滤膜对溶液中的溶质进行分离时,它的截留率会受到一些因素回的影响,从而呈现出不同的变化答规律,对这个规律进行详细的了解有利于更好的应用纳滤膜的分离性能。
这里我们将主要针对纳滤膜在对溶液进行分离的过程中,其根据处理溶质的不同所呈现的一些变化规律做以下详细介绍:
一、若保持系统的压力恒定,那么纳滤膜的截留率将会随着溶液浓度的增加而降低。
二、这种膜的截留率与溶质的摩尔质量变化成正比,当摩尔质量减少时,那么截留率也将随之降低。
三、如果溶液的浓度保持恒定时,那么膜的截留率将同其两侧压差变化形成正比,压差降低将导致截留率也随之下降。
四、对于溶液中一些常见的阴离子,膜的截留率将按照硝酸根离子、氯离子、氢氧离子、硫酸离子的顺序依次升高。
五、对于溶液中一些常见的阳离子,膜的截留率将按照氢离子、钠离子、钾离子、钙离子、镁离子、铜离子的顺序依次升高。
『拾』 纳滤膜的优点
纳滤膜的优点:
它因能截留物质的大小约为纳米而得名,它截留有机物的分子量大约专为150-500左右,截留属溶解性盐的能力为2-98%之间,对单价阴离子盐溶液的脱盐低于高价阴离子盐溶液。被用于去除地表水的有机物和色度,脱除地下水的硬度,部分去除溶解性盐,浓缩果汁以及分离药品中的有用物质等。对于液体中分子量为数百的有机小分子具有分离性能对于不同价态的阴离子存在道南效应。物料的荷电性,离子价数和浓度对膜的分离效应有很大影响.