㈠ 怎么去除蛋白质中的金属离子
1化学沉淀
化学沉淀法是使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物的方法,包括中和沉法和硫化物沉淀法等.
中和沉淀法
在含重金属的废水中加入碱进行中和反应,使重金属生成不溶于水的氢氧化物沉淀形式加以分离.中和沉淀法操作简单,是常用的处理废水方法.实践证明在操作中需要注意以下几点:
(1)中和沉淀后,废水中若pH值高,需要中和处理后才可排放;
(2)废水中常常有多种重金属共存,当废水中含有Zn、Pb、Sn、Al等两性金属时,pH值偏高,可能有再溶解倾向,因此要严格控制pH值,实行分段沉淀;
(3)废水中有些阴离子如:卤素、氰根、腐植质等有可能与重金属形成络合物,因此要在中和之前需经过预处理;
(4)有些颗粒小,不易沉淀,则需加入絮凝剂辅助沉淀生成.
硫化物沉淀法
加入硫化物沉淀剂使废水中重金属离子生成硫化物沉淀后从废水中去除的方法.
与中和沉淀法相比,硫化物沉淀法的优点是:重金属硫化物溶解度比其氢氧化物的溶解度更低,反应时最佳pH值在7—9之间,处理后的废水不用中和.硫化物沉淀法的缺点是:硫化物沉淀物颗粒小,易形成胶体;硫化物沉淀剂本身在水中残留,遇酸生成硫化氢气体,产生二次污染.为了防止二次污染问题,英国学者研究出了改进的硫化物沉淀法,即在需处理的废水中有选择性的加入硫化物离子和另一重金属离子(该重金属的硫化物离子平衡浓度比需要除去的重金属污染物质的硫化物的平衡浓度高).由于加进去的重金属的硫化物比废水中的重金属的硫化物更易溶解,这样废水中原有的重金属离子就比添加进去的重金属离子先分离出来,同时能够有效地避免硫化氢的生成和硫化物离子残留的问题.
2氧化还原处理
化学还原法
电镀废水中的Cr主要以Cr6+离子形态存在,因此向废水中投加还原剂将Cr6+还原成微毒的Cr3+后,投加石灰或NaOH产生Cr(OH)3沉淀分离去除.化学还原法治理电镀废水是最早应用的治理技术之一,在我国有着广泛的应用,其治理原理简单、操作易于掌握、能承受大水量和高浓度废水冲击.根据投加还原剂的不同,可分为FeSO4法、NaHSO3法、铁屑法、SO2法等.
应用化学还原法处理含Cr废水,碱化时一般用石灰,但废渣多;用NaOH或Na2CO3,则污泥少,但药剂费用高,处理成本大,这是化学还原法的缺点.
铁氧体法
铁氧体技术是根据生产铁氧体的原理发展起来的.在含Cr废水中加入过量的FeSO4,使Cr6+还原成Cr3+,Fe2+氧化成Fe3+,调节pH值至8左右,使Fe离子和Cr离子产生氢氧化物沉淀.通入空气搅拌并加入氢氧化物不断反应,形成铬铁氧体.其典型工艺有间歇式和连续式.铁氧体法形成的污泥化学稳定性高,易于固液分离和脱水.铁氧体法除能处理含Cr废水外,特别适用于含重金属离子种类较多的电镀混合废水.我国应用铁氧体法已经有几十年历史,处理后的废水能达到排放标准,在国内电镀工业中应用较多.
铁氧体法具有设备简单、投资少、操作简便、不产生二次污染等优点.但在形成铁氧体过程中需要加热(约70oC),能耗较高,处理后盐度高,而且有不能处理含Hg和络合物废水的缺点.
电解法
电解法处理含Cr废水在我国已经有二十多年的历史,具有去除率高、无二次污染、所沉淀的重金属可回收利用等优点.大约有30多种废水溶液中的金属离子可进行电沉积.电解法是一种比较成熟的处理技术,能减少污泥的生成量,且能回收Cu、Ag、Cd等金属,已应用于废水的治理.不过电解法成本比较高,一般经浓缩后再电解经济效益较好.
近年来,电解法迅速发展,并对铁屑内电解进行了深入研究,利用铁屑内电解原理研制的动态废水处理装置对重金属离子有很好的去除效果.
另外,高压脉冲电凝系统()为当今世界新一代电化学水处理设备,对表面处理、涂装废水以及电镀混合废水中的Cr、Zn、Ni、Cu、Cd、CN-等污染物有显著的治理效果.高压脉冲电凝法比传统电解法电流效率提高20%—30%;电解时间缩短30%—40%;节省电能达到30%—40%;污泥产生量少;对重金属去除率可达96%一99%.
3溶剂萃取分离
溶剂萃取法是分离和净化物质常用的方法.由于液一液接触,可连续操作,分离效果较好.使用这种方法时,要选择有较高选择性的萃取剂,废水中重金属一般以阳离子或阴离子形式存在,例如在酸性条件下,与萃取剂发生络合反应,从水相被萃取到有机相,然后在碱性条件下被反萃取到水相,使溶剂再生以循环利用.这就要求在萃取操作时注意选择水相酸度.尽管萃取法有较大优越性,然而溶剂在萃取过程中的流失和再生过程中能源消耗大,使这种方法存在一定局限性,应用受到很大的限制.
4吸附法
吸附法是利用吸附剂的独特结构去除重金属离子的一种有效方法.利用吸附法处理电镀重金属废水的吸附剂有活性炭、腐植酸、海泡石、聚糖树脂等.活性炭装备简单,在废水治理中应用广泛,但活性炭再生效率低,处理水质很难达到回用要求,一般用于电镀废水的预处理.腐植酸类物质是比较廉价的吸附剂,把腐植酸做成腐植酸树脂用以处理含Cr、含Ni废水已有成功经验.有相关研究表明,壳聚糖及其衍生物是重金属离子的良好吸附剂,壳聚糖树脂交联后,可重复使用10次,吸附容量没有明显降低.利用改性的海泡石治理重金属废水对Pb2+、Hg2+、Cd2+有很好的吸附能力,处理后废水中重金属含量显著低于污水综合排放标准.另有文献报道蒙脱石也是一种性能良好的粘土矿物吸附剂,铝锆柱撑蒙脱石在酸性条件下对Cr6+的去除率达到99%,出水中Cr6+含量低于国家排放标准,具有实际应用前暑.
5膜分离法
膜分离法是利用高分子所具有的选择性来进行物质分离的技术,包括电渗析、反渗透、膜萃取、超过滤等.用电渗析法处理电镀工业废水,处理后废水组成不变,有利于回槽使用.含Cu2+、Ni2+、Zn2+、Cr6+等金属离子废水都适宜用电渗析处理,已有成套设备.反渗透法已大规模用于镀Zn、Ni、Cr漂洗水和混合重金属废水处理.采用反渗透法处理电镀废水,已处理水可以回用,实现闭路循环.液膜法治理电镀废水的研究报道很多,有些领域液膜法已由基础理论研究进入到初步工业应用阶段,如我国和奥地利均用乳状液膜技术处理含Zn废水,此外也应用于镀Au废液处理中.膜萃取技术是一种高效、无二次污染的分离技术,该项技术在金属萃取方面有很大进展.
6离子交换法
离子交换处理法是利用离子交换剂分离废水中有害物质的方法,应用的离子交换剂有离子交换树脂、沸石等等,离子交换树脂有凝胶型和大孔型.前者有选择性,后者制造复杂、成本高、再生剂耗量大,因而在应用上受到很大限制.离子交换是靠交换剂自身所带的能自由移动的离子与被处理的溶液中的离子通过离子交换来实现的.推动离子交换的动力是离子间浓度差和交换剂上的功能基对离子的亲和能力,多数情况下离子是先被吸附,再被交换,离子交换剂具有吸附、交换双重作用.这种材料的应用越来越多,如膨润土,它是以蒙脱石为主要成分的粘土,具有吸水膨胀性好、比表面积大、较强的吸附能力和离子交换能力,若经改良后其吸附及离子交换的能力更强.但是却较难再生,天然沸石在对重金属废水的处理方面比膨润土具有更大的优点:沸石是含网架结构的铝硅酸盐矿物,其内部多孔,比表面积大,具有独特的吸附和离子交换能力.研究表明,沸石从废水中去除重金属离子的机理,多数情况下是吸附和离子交换双重作用,随流速增加,离子交换将取代吸附作用占主要地位.若用NaCl对天然沸石进行预处理可提高吸附和离子交换能力.通过吸附和离子交换再生过程,废水中重金属离子浓度可浓缩提高30倍.沸石去除铜,在NaCl再生过程中,去除率达97%以上,可多次吸附交换,再生循环,而且对铜的去除率并不降低.
三、生物处理技术
由于传统治理方法有成本高、操作复杂、对于大流量低浓度的有害污染难处理等缺点,经过多年的探索和研究,生物治理技术日益受到人们的重视.随着耐重金属毒性微生物的研究进展,采用生物技术处理电镀重金属废水呈现蓬勃发展势头,根据生物去除重金属离子的机理不同可分为生物絮凝法、生物吸附法、生物化学法以及植物修复法.
1生物絮凝法
生物絮凝法是利用微生物或微生物产生的代谢物进行絮凝沉淀的一种除污方法.微生物絮凝剂是一类由微生物产生并分泌到细胞外,具有絮凝活性的代谢物.一般由多糖、蛋白质、DNA、纤维素、糖蛋白、聚氨基酸等高分子物质构成,分子中含有多种官能团,能使水中胶体悬浮物相互凝聚沉淀.至目前为止,对重金属有絮凝作用的约有十几个品种,生物絮凝剂中的氨基和羟基可与Cu2+、Hg2+、Ag+、Au2+等重金属离子形成稳定的鳌合物而沉淀下来.应用微生物絮凝法处理废水安全方便无毒、不产生二次污染、絮凝效果好,且生长快、易于实现工业化等特点.此外,微生物可以通过遗传工程、驯化或构造出具有特殊功能的菌株.因而微生物絮凝法具有广阔的应用前景.
2生物吸附法
生物吸附法是利用生物体本身的化学结构及成分特性来吸附溶于水中的金属离子,再通过固液两相分离去除水溶液中的金属离子的方法.利用胞外聚合物分离金属离子,有些细菌在生长过程中释放的蛋白质,能使溶液中可溶性的重金属离子转化为沉淀物而去除.生物吸附剂具有来源广、价格低、吸附能力强、易于分离回收重金属等特点,已经被广泛应用.
3生物化学法
生物化学法指通过微生物处理含重金属废水,将可溶性离子转化为不溶性化合物而去除.硫酸盐生物还原法是一种典型生物化学法.该法是在厌氧条件下硫酸盐还原菌通过异化的硫酸盐还原作用,将硫酸盐还原成H2S,废水中的重金属离子可以和所产生的H2S反应生成溶解度很低的金属硫化物沉淀而被去除,同时H2SO4的还原作用可将SO42-转化为S2-而使废水的pH值升高.因许多重金属离子氢氧化物的离子积很小而沉淀.有关研究表明,生物化学法处理含Cr6+浓度为30—40mg/L的废水去除率可达99.67%—99.97%.有人还利用家畜粪便厌氧消化污泥进行矿山酸性废水重金属离子的处理,结果表明该方法能有效去除废水中的重金属.赵晓红等人用脱硫肠杆菌(SRV)去除电镀废水中的铜离子,在铜质量浓度为246.8mg/L的溶液,当pH为4.0时,去除率达99.12%.
4植物修复法
植物修复法是指利用高等植物通过吸收、沉淀、富集等作用降低已有污染的土壤或地表水的重金属含量,以达到治理污染、修复环境的目的.植物修复法是利用生态工程治理环境的一种有效方法,它是生物技术处理企业废水的一种延伸.利用植物处理重金属,主要有三部分组成:
(1)利用金属积累植物或超积累植物从废水中吸取、沉淀或富集有毒金属;
(2)利用金属积累植物或超积累植物降低有毒金属活性,从而可减少重金属被淋滤到地下或通过空气载体扩散:
(3)利用金属积累植物或超积累植物将土壤中或水中的重金属萃取出来,富集并输送到植物根部可收割部分和植物地上枝条部分.通过收获或移去已积累和富集了重金属植物的枝条,降低土壤或水体中的重金属浓度.在植物修复技术中能利用的植物有藻类、草本植物、木本植物等.
藻类净化重金属废水的能力,主要表现在对重金属具有很强的吸附力,利用藻类去除重金属离子的研究已有大量报道.褐藻对Au的吸收量达400mg/g,在一定条件下绿藻对Cu、Pb、La、Cd、Hg等重金属离子的去除率达80%—90%,马尾藻、鼠尾藻对重金属的吸附虽然不及绿海藻,但仍具有较好的去除能力.
草本植物净化重金属废水的应用已有很多报道.凤眼莲是国际上公认和常用的一种治理污染的水生漂浮植物,它具有生长迅速,既能耐低温、又能耐高温的特点,能迅速、大量地富集废水中Cd、Pb、Hg、Ni、Ag、Co、Cr等多种重金属.有关研究发现凤眼莲对钴和锌的吸收率分别高达97%和80%.此外,还有很多草本植物具有净化作用,如喜莲子草、水龙、刺苦草、浮萍、印度芥菜等.
木本植物具有处理量大、净化效果好、受气候影响小、不易造成二次污染等等优点,受到人们广泛关注.同时对土壤中Cd、Hg等有较强的吸附积累作用,由胡焕斌等试验结果表明:芦苇和池杉对重金属Pb和Cd都有较强富集能力.
㈡ 高中化学选修2知识点
化学选修2《化学与技术》
第一单元 走进化学工业
教学重点(难点):
1、化工生产过程中的基本问题。
2、工业制硫酸的生产原理。平衡移动原理及其对化工生产中条件控制的意义和作用。
3、合成氨的反应原理。合成氨生产的适宜条件。
4、氨碱法的生产原理。复杂盐溶液中固体物质的结晶、分离和提纯。
知识归纳:
1
制硫酸
反应原理
造气:S+O2==SO2 (条件 加热)
催化氧化:2SO2+O22SO3
吸收:SO3+H2O==H2SO4 98.3%的硫酸吸收。
原料选择
黄铁矿:FeS2 硫磺:S
反应条件
2SO2+O22SO3 放热 可逆反应(低温、高压会提升转化率)
转化率、控制条件的成本、实际可能性。400℃~500℃,常压。
钒触媒:V2O5
三废处理
废气:SO2+Ca(OH)2==CaSO3+H2O CaSO3+H2SO4=CaSO4+SO2↑+H2O
废水:酸性,用碱中和
废渣:黄铁矿废渣――炼铁、有色金属;制水泥、制砖。
局部循环:充分利用原料
能量利用
热交换:用反应放出的热预热反应物。
2
制氨气
反应原理
N2+3H22NH3 放热、可逆反应(低温、高压会提升转化率)
反应条件:铁触媒 400~500℃,10MPa~30MPa
生产过程
1、造气:N2:空气(两种方法,(1)液化后蒸发分离出氮气和液氧,沸点N2-196℃,H2-183℃;(2)将氧气燃烧为CO2再除去)。
H2:水合碳氢化合物(生成H2和CO或CO2)
2、净化:避免催化剂中毒。
除H2S:NH3H2O+H2S==NH4HS+H2O
除CO:CO+H2O==CO2+H2 K2CO3+CO2+H2O==2KHCO3
3、氨的合成与分离:混合气在合成塔内合成氨。出来的混合气体中15%为氨气,再进入冷凝器液化氨气,剩余原料气体再送入合成塔。
工业发展
1、原料及原料气的净化。2、催化剂的改进(磁铁矿)3、环境保护
三废处理
废气:H2S-直接氧化法(选择性催化氧化)、循环。
CO2-生产尿素、碳铵。
废液:含氰化物污水-生化、加压水解、氧化分解、化学沉淀、反吹回炉等。
含氨污水-蒸馏法回收氨,浓度较低可用离子交换法。
废渣:造气阶段产生氢气原料的废渣。煤渣(用煤),炭黑(重油)。
3
制纯碱
氨碱法
(索尔维)
1、CO2通入含NH3的饱和NaCl溶液中
NH3+CO2+H2O==NH4HCO3 NaCl+NH4HCO3==NaHCO3↓+NH4Cl
2、2NaHCO3Na2CO3+CO2↑+H2O↑
缺点:CO2来自CaCO3,CaO-Ca(OH)2-2NH3+CaCl2+2H2O
CaCl2的处理成为问题。和NaCl中的Cl-没有充分利用,只有70%。CaCO3的利用不够充分。
联合法
(侯德榜)
与氨气生产联合起来:
NH3、CO2都来自于合成氨工艺;这样NH4Cl就成为另一产品化肥。综合利用原料、降低成本、减少环境污染,NaCl利用率达96%。
资料:
一、硫酸的用途肥料的生产。
硫酸铵(俗称硫铵或肥田粉):2NH3 + H2SO4=(NH4)2SO4;
和过磷酸钙(俗称过磷酸石灰或普钙):Ca3(PO4)2 + 2H2SO4=Ca(H2PO4)2 + 2CaSO4; 浓硫酸的氧化性。
( 1) 2Fe + 6H2SO4 (浓) Fe2 (SO4)3 + 3SO2 + 6H2O (铝一样)
(2)C + 2H2SO4 ( 浓) 2SO2 + CO2 + 2H2O
S + 2H2SO4 (浓) 3SO2 + 2H2O
2P + 5H2SO4(浓) 2H3PO4 + 5SO2 + 2H2O
(3)H2S + H2SO4 (浓) = S + SO2 + 2H2O
2HBr + H2SO4 (浓) = Br2 + SO2 + 2H2O
8HI + H2SO4(浓) = 4I2 + H2S + 4H2O
(4)2NaBr + 3H2SO4 (浓) = 2NaHSO4 + Br2 + SO2 + 2H2O
2FeS + 6H2SO4(浓) = Fe2(SO4)3 + 2S ¯ + 3SO2 + 6H2O
(5)当浓硫酸加入胆矾时,浓硫酸吸水,胆矾脱水,产生白色沉淀。
二、氨气
1、氮肥工业原料 与酸反应生成铵盐
2、硝酸工业原料 能被催化氧化成为NO 4NH3+5O2=4NO+6H2O (Pt-Rh 高温)
3、用作制冷剂 易液化,汽化时吸收大量的热
三、纯碱
烧碱(学名氢氧化钠)是可溶性的强碱。它与烧碱并列,在工业上叫做“两碱”。烧碱和纯碱都易溶于水,呈强碱性,都能提供Na+离子。1、普通肥皂。
高级脂肪酸的钠盐,一般用油脂在略为过量的烧碱作用下进行皂化而制得的。
如果直接用脂肪酸作原料,也可以用纯碱来代替烧碱制肥皂。
第二单元 化学与资源开发利用
教学重点(难点):
1、 天然水净化和污水处理的化学原理,化学再水处理中的应用和意义。
硬水的软化。中和法和沉淀法在污水处理中的应用。
2、 海水晒盐。海水提镁和海水提溴的原理和简单过程。氯碱工业的基本反应原理。
从海水中获取有用物质的不同方法和流程。
3、 石油、煤和天然气综合利用的新进展。
知识归纳:
方法
原理
天然水的净化
混凝法
混凝剂:明矾、绿矾、硫酸铝、聚合铝、硫酸亚铁、硫酸铁等
Al3++3H2O3H++Al(OH)3
絮状胶体(吸附悬浮物);带正电(使胶体杂质聚沉)。
生活用水净化过程:混凝沉淀-过滤-杀菌
化学软化法
硬水:含有较多的Ca2+,Mg2+的水,较少或不含的为软水。
不利于洗涤,易形成锅垢,降低导热性,局部过热、爆炸。
暂时硬度:Ca(HCO3)2或Mg(HCO3)2引起的硬度。1、加热法
永久硬度:钙和镁的硫酸盐或氯化物引起的硬度。
2、药剂法:纯碱、生石灰、磷酸盐
3、离子交换法:离子交换树脂,不溶于水但能与同电性离子交换
2NaR+Ca2+==CaR2+2Na+再生:CaR2+2Na+==2NaR+Ca2+
污水处理
物理法
一级处理:格栅间、沉淀池等出去不溶解的污染物。预处理。
(微)生物法
二级处理:除去水中的可降解有机物和部分胶体污染物。
化学法
三级处理:中和法-酸性废水(熟石灰),碱性废水(硫酸、CO2)
沉淀法-含重金属离子的工业废水(沉淀剂,如S2-)
氧化还原法。(实验:电浮选凝聚法)
方法
原理
盐的利用
海水制盐
蒸发法(盐田法)
太阳照射,海水中的水分蒸发,盐析出。
盐田条件:地点(海滩、远离江河入海口)、气候。
盐田划分:贮水池、蒸发池、结晶池。
苦卤:分离出食盐的母液。
食盐利用
电解(氯碱工业)
2NaCl+2H2O2NaOH+H2↑+Cl2↑
阳极:2Cl--2e-=Cl2↑ 阴极:2H++2e-=H2↑
海水提溴
吹出法
1、氯化:Cl2+2Br-=2Cl-+Br2
2、吹出:空气(或水蒸气)吹出Br2
3、吸收:Br2+SO2+2H2O=2HBr+H2SO4 再用氯气氧化氢溴酸。
海水提镁
具体过程
海水―――Mg(OH)2―――MgCl2―――Mg
碱(贝壳)/过滤 盐酸 干燥/电解
海水提取重水
蒸馏法、电解法、化学交换法、吸附法
了解化学交换法
化工
目的
石油
分馏(常压、减压)(物理)
把石油分成不同沸点范围的蒸馏产物,得到汽油(C5~11)、煤油(C11~16)、柴油(C15~18)等轻质油,但产量较低。
裂化(化学)
获得更多轻质油,特别是汽油。断链。
列解(化学)
获得重要有机化工原料:乙烯、丙稀、丁烯等。
煤
关注问题
提高燃烧热效率,解决燃烧时的污染,分离提取化学原料。
干馏
隔绝空气加热。得焦炉气(H2、CH4、乙烯、CO等,燃料)、煤焦油(苯等芳香族化合物,进一步提取)、焦炭(金属冶炼)等。
气化
利用空气或氧气将煤中的有机物转化为可燃性气体。C+水
液化
把煤转化为液体燃料的过程。
直接液化:与溶剂混合,高温、高压、催化剂与氢气作用,得到汽油、柴油、芳香烃等。煤制油(内蒙古)。
间接液化:先转变为CO和氢气,再催化合成为烃类、醇类燃料。
一碳化学
以分子中只含一个碳原子的化合物(甲烷、甲醇等)为原料合成一系列化工原料和燃料的化学。
CO:煤 CH4:天然气。
电解饱和食盐水中。
正阳失,负阴得。
阳极:活性电极,放电顺序:S2->SO32->I->Br->Cl->OH->NO3->SO42->F-
阴极: Ag+>Fe3+>Cu2+>H+(酸性溶液)>Pb2+>Sn2+>Fe2+>Zn2+>(H+)>Al3+>Mg2+>Na+>Ca2+>K+
(1)在电解饱和食盐水中, 阳极有气泡产生,有刺激性味道的气体,湿润的KI-淀粉试纸变蓝。阴极有气泡,可燃气体。
(2)如果交换电极:如果用的都是惰性电极(石墨或铂),那么可以互换(反应不变);但如果原来阴极用的是铁棒,那么不能互换,若互换,铁作阳极:Fe-2e-=Fe2+,阴极:2H++2e-=H2;阴极产生的氢氧根离子会和阳极产生的亚铁离子在溶液中反应,生成氢氧化亚铁(白色沉淀,不稳定马上变成灰绿色,最终变成红褐色)。
(3)阳离子交换膜有一种特殊的性质,即它只允许阳离子通过,而阻止阴离子和气体通过,也就是说只允许Na+通过,而Cl-、OH-和气体则不能通过。这样既能防止阴极产生的H2和阳极产生的Cl2相混合而引起爆炸,又能避免Cl2和NaOH溶液作用生成NaClO而影响烧碱的质量。
(4)阳极接在电源正极上,电源正极会不断地吸电子,所以只能挂惰性电极,如炭棒和Pt等,若挂其他,如铁棒,那么电子被电源正极吸收,Fe会变成铁离子,从而进入电解液中,你会很快看到铁棒不见了。那至于为什么用炭棒而不用Pt,则是价格关系。炭棒便宜。
而阴极接在电源负极上,电源负极在不断产生电子,所以挂什么并没有什么大的关系,挂铁的话,反而保护了铁不变为铁离子。其实负极挂炭棒什么的,也可。在工业生产中一般阴极不用铁棒而做成铁网,增大反应接触面。而炭不易做成网状,所以选用炭棒。
第三单元 化学与材料的发展
教学重点(难点):
1、硅氧四面体的特殊性,一些无机非金属材料生产的化学原理。
形成对化学与材料发展关系比较全面的认识。
2、金属冶炼的原理,金属腐蚀的原理和防腐方法。
电解、电镀的原理。
3、常见高分子材料的生产原理。
知识归纳:
一、 无机非金属材料
原料
成分
生产原理
性能、用途
传统硅酸盐材料
陶瓷
黏土
高温烧制
抗氧化、抗酸碱腐蚀、耐高温、绝缘、易成型。盛放物品、艺术品
玻璃
石英砂、石灰石、纯碱
Na2SiO3CaSiO3
Na2CO3+SiO2Na2SiO3+CO2 CaCO3类似
光学玻璃、耐腐蚀玻璃,不同颜色玻璃。
水泥
石灰石、黏土
硅酸二三钙铝酸三钙、铁铝酸钙
磨成粉-煅烧-加石膏等-粉磨
水硬性,用作建筑材料。
混凝土:水泥、砂子、碎石
新材料
碳化硅
SiO2,C
SiC
SiO2+CSiC+CO↑
结构与金刚石相似,硬度大,优质磨料,性质稳定,航天器涂层材料。
氮化硅
高纯Si、N2
Si3N4
3Si+2N2Si3N4
3SiCl4+2N2+6H2= Si3N4+12HCl
熔点高、硬度大、化学性质稳定,制造轴承、气轮机叶片、发动机受热面。
单质硅
高纯焦炭、石英砂
Si
SiO2+2CSi+2CO↑
=SiHCl3+H2
SiHCl3+H2Si+3HCl
半导体工业
金刚石
CH4
C
CH4=====C(金刚石)+2H2
研磨材料
其余新材料
C60(新型贮氢材料)、超导材料等
二、 金属材料
金属活动顺序表:
标出金属冶炼的方法及范围:
原料
装置
原理
炼铁
铁矿石、焦炭、石灰石、空气
高炉
还原剂CO的生成:C+O2==CO2 CO2+C==2CO
生铁形成:Fe2O3+3CO==2Fe+3CO
炼钢
生铁
氧气顶吹转炉
降低C%:2C+O2=2CO 2Fe+O2=2FeO FeO+C=CO+Fe
除杂质:FeS+CaO=CaS+FeO 脱硫
添加合金元素:Cr、Mn、Ni
炼铝
铝土矿、纯碱、石灰、煤、燃料油
电解槽
铝土矿溶解:Al2O3+2NaOH=2NaAlO2+H2O
氢氧化铝析出:NaAlO2+CO2+2H2O=Al(OH)3↓+NaHCO3
氢氧化铝脱水:2Al(OH)3=Al2O3+3H2O
电解氧化铝:2Al2O34Al+3O2↑
冰晶石(Na3AlF6)-氧化铝熔融液,少量CaF2
阳极:6O2—12e-=3O2↑阴极:4Al3++12e-=4Al
金属腐蚀及防护:
分类
实例
金属腐蚀原理
化学腐蚀
氧气、氯气等,温度影响较大。钢材高温容易氧化一层氧化皮
电化学腐蚀
原电池反应,例如钢材
吸氧腐蚀(大多):阴极1/2O2+H2O+2e-=2OH- 阳极Fe-2e-=Fe2+
析氢腐蚀(酸性):阴极2H++2e-=H2 阳极Fe-2e-=Fe2+
金属防腐方法
氧化膜
用化学方法在钢铁、铝的表面形成致密氧化膜
电镀
镀铬、锌、镍(在空气中不容易发生化学变化的金属,原理)
其余
改善环境、牺牲阳极(原电池的负极)、外加电流等
三、 高分子材料
分类:天然高分子:淀粉、纤维素、蛋白质
合成高分子:聚×××
合成方法
举例
基本概念
加成聚合反应
聚氯乙稀:
聚苯乙烯:
单体:
链节:
聚合度:
缩合聚合反应
涤纶:
塑料分类
结构
性质
举例
热塑性
线型
溶解于一些有机溶剂,一定温度范围会软化、熔融,加工成形
聚乙烯
热固性
体型
不易溶于有机溶剂,加热不会熔融
酚醛树脂
高分子材料降解分类:生物降解、光降解、化学降解
废旧高分子材料的再利用途径:(1)再生、改性重新做成有用材料和制品;(2)热裂解或化学处理的方法制备多种化工原料;(3)作为燃料回收利用。
化学肥料
实例
生产原理
氮肥
尿素
2NH3+CO2H2NCOONH4 H2NCOONH4H2NCONH2+H2O
硝酸铵
4NH3+5O24NO+6H2O 2NO+O2=2NO23NO2+H2O=2HNO3+NO NH3+HNO3=NH4NO3
其余:碳酸氢铵、硫酸铵、氯化铵、氨水、硝酸钙、硝酸钾等
磷肥
过磷酸钙/普钙
硫酸处理。成分:Ca(H2PO4)2·H2O和CaSO4
其余:重过磷酸钙 Ca(H2PO4)2,钙镁磷肥、KH2PO4等
钾肥
草木灰K2CO3,氯化钾,硫酸钾、硝酸钾等
复合肥料
铵磷复合肥、硝磷复合肥、硝酸铵、 KH2PO4等
农药
实例
作用、影响
杀虫剂
有机氯(DDT 、六六六 、DDE)有机磷、氨基甲酸酯类、拟除虫菊酯类等。
防治有害生物,提高农作物产量。影响生物群落、土壤、大气、水等。
杀菌剂
波尔多液(硫酸铜、石灰)、石灰硫磺合剂等、除草剂等
植物生长调节剂
乙烯利、矮壮素等
肥皂
通式
肥皂成分
高级脂肪酸钠(钾)
RCOONa或RCOOK
生产原理
油脂水解/碱性条件
去污原理
水中电离
RCOONa=RCOO-+Na+
亲油基(憎水基)
RCOO-
亲水基
Na+
主要作用
使肥皂、油污、水之间发生润湿、乳化、起泡
简单图示
第四单元 化学与技术的发展教学重点(难点):1、化肥为农作物补充必要的营养元素,主要化肥的生产原理;了解农药的组成、结构和性 质是决定其防治病虫害效果的关键因素。化肥、农药的使用及其对环境的影响。2、了解肥皂、合成洗涤剂的组成、特点、性质及其生产原理。3、通过典型实例了解精细化学品的生产特点,体会化学与技术发展在满足生产和生活需要中的不可替代作用。知识归纳:
合成洗涤剂
故态:洗衣粉 液态:洗洁净
主要成分
烷基苯磺酸钠
生产原理
结构优化
1、确定合适的碳链长度(12~18)。(过长水溶性降低,过短水溶性过强)2、不含支链的烃基。(容易生物降解)3、合理配方。(提高综合性能,环境污染、增白、香味等)
工业味精:表面活性剂。用量少,能显著降低水与空气或其他物质的界面张力(表面张力), 提高工业生产效率,提高产品质量和性能。
㈢ 电解法再生得硫酸
【答案】 B 【解析】 试题分析: A 、 Pt ( I) 有氢气产生,所以 Pt(I) 发生还原反应,所以 Pt ( I )是电解池的阴极,则 X 是电的负极, Y 是电的正极,正确; B 、由图可知,阳极区即 Pt ( II) 是阴离子交换膜,只允许阴离子通过,所以开始加入的亚硫酸氢根离子、亚氯酸根离子移向阳极区,在阳极区发生氧化反应,与未移动的氢离子结合生成硫酸,所以溶液的 pH 减小,错误; C 、由 B 的分析可知,进入电解池的硫酸的浓度小于出的硫酸的浓度,所以 b>a ,正确; D 、由以上分析可知,该过程的产品主要是氢气与硫酸,正确,答案选 B 。 考点:考查原电池的反应原理的判断
㈣ 常用的工业催化剂的制备方法有哪些各自的有缺点及适用场合是什么
制造催化剂的每一种方法,实际上都是由一系列的操作单元组合而成。为了方便,人们把其中关键而具特色的操作单元的名称定为制造方法的名称。传统的方法有机械混合法、沉淀法、浸渍法、溶液蒸干法、热熔融法、浸溶法(沥滤法)、离子交换法等,近十年来发展的新方法有化学键合法、纤维化法等。
1.机械混合法
将两种以上的物质加入混合设备内混合。此法简单易行,例如转化-吸收型脱硫剂的制造,是将活性组分(如二氧化锰、氧化锌、碳酸锌)与少量粘结剂(如氧化镁、氧化钙)的粉料计量连续加入一个可调节转速和倾斜度的转盘中,同时喷入计量的水。粉料滚动混合粘结,形成均匀直径的球体,此球体再经干燥、焙烧即为成品。乙苯脱氢制苯乙烯的Fe-Cr-K-O催化剂,是由氧化铁、铬酸钾等固体粉末混合压片成型、焙烧制成的。利用此法时应重视粉料的粒度和物理性质。
2.沉淀法
此法用于制造要求分散度高并含有一种或多种金属氧化物的催化剂。在制造多组分催化剂时,适宜的沉淀条件对于保证产物组成的均匀性和制造优质催化剂非常重要。通常的方法是在一种或多种金属盐溶液中加入沉淀剂(如碳酸钠、氢氧化钙),经沉淀、洗涤、过滤、干燥、成型、焙烧(或活化),即得最终产品。如果在沉淀桶内放入不溶物质(如硅藻土),使金属氧化物或碳酸盐附着在此不溶物质上沉淀,则称为附着沉淀法。沉淀法需要高效的过滤洗涤设备,以节约水,避免漏料损失。
3.浸渍法
将具有高孔隙率的载体(如硅藻土、氧化铝、活性炭等)浸入含有一种或多种金属离子的溶液中,保持一定的温度,溶液进入载体的孔隙中。将载体沥干,经干燥、煅烧,载体内表面上即附着一层所需的固态金属氧化物或其盐类(图1)。浸渍法可使催化活性组分高度分散,并均匀分布在载体表面上,在催化过程中得到充分利用。制备含贵金属(如铂、金、锇、铱等)的催化剂常用此法,其金属含量通常在 1%以下。制备价格较贵的镍系、钴系催化剂也常用此法,其所用载体多数已成型,故载体的形状即催化剂的形状。另有一种方法是将球状载体装入可调速的转鼓(图2)内,然后喷入含活性组分的溶液或浆料,使之浸入载体中,或涂覆于载体表面。
4.喷雾蒸干法
用于制颗粒直径为数十微米至数百微米的流化床用催化剂。如间二甲苯流化床氨化氧化制间二甲腈催化剂的制造,先将给定浓度和体积的偏钒酸盐和铬盐水溶液充分混合,再与定量新制的硅凝胶混合,泵入喷雾干燥器内,经喷头雾化后,水分在热气流作用下蒸干,物料形成微球催化剂,从喷雾干燥器底部连续引出。
5.热熔融法
热熔融法是制备某些催化剂的特殊方法,适用于少数不得不经过熔炼过程的催化剂,为的是借助高温条件将各个组分熔炼称为均匀分布的混合物,配合必要的后续加工,可制得性能优异的催化剂。这类催化剂常有高的强度、活性、热稳定性和很长的使用寿命。主要用于制造氨合成所用的铁催化剂。将精选磁铁矿与有关的原料在高温下熔融、冷却、破碎、筛分,然后在反应器中还原。
6.浸溶法
从多组分体系中,用适当的液态药剂(或水)抽去部分物质,制成具有多孔结构的催化剂。例如骨架镍催化剂的制造,将定量的镍和铝在电炉内熔融,熔料冷却后成为合金。将合金破碎成小颗粒,用氢氧化钠水溶液浸泡,大部分铝被溶出(生成偏铝酸钠),即形成多孔的高活性骨架镍。
7.离子交换法
某些晶体物质(如合成沸石分子筛)的金属阳离子(如Na)可与其他阳离子交换。 将其投入含有其他金属(如稀土族元素和某些贵金属)离子的溶液中,在控制的浓度、温度、pH条件下,使其他金属离子与 Na进行交换。由于离子交换反应发生在交换剂表面,可使贵金属铂、钯等以原子状态分散在有限的交换基团上,从而得到充分利用。此法常用于制备裂化催化剂,如稀土-分子筛催化剂。
8.发展中的新方法
①化学键合法。近十年来此法大量用于制造聚合催化剂。其目的是使均相催化剂固态化。能与过渡金属络合物化学键合的载体,表面有某些官能团(或经化学处理后接上官能团),如-X、-CH2X、-OH基团。将这类载体与膦、胂或胺反应,使之膦化、胂化或胺化,然后利用表面上磷、砷或氮原子的孤电子对与过渡金属络合物中心金属离子进行配位络合,即可制得化学键合的固相催化剂,如丙烯本体液相聚合用的载体——齐格勒-纳塔催化剂的制造。②纤维化法。用于含贵金属的载体催化剂的制造。如将硼硅酸盐拉制成玻璃纤维丝,用浓盐酸溶液腐蚀,变成多孔玻璃纤维载体,再用氯铂酸溶液浸渍,使其载以铂组分。根据实用情况,将纤维催化剂压制成各种形状和所需的紧密程度,如用于汽车排气氧化的催化剂,可压紧在一个短的圆管内。如果不是氧化过程,也可用碳纤维。纤维催化剂的制造工艺较复杂,成本高。
㈤ 化工操作问题,胺液溶剂再生塔顶温下降,顶压上升,维持一段时间后顶压突然下降至几乎为零
我没干过这方面塔,斗胆猜测一下:
液泛淹塔的可能性大,塔不够稳定。刚开车还没有摸索到,不顺利的话,开车到运行稳定要一段时间的。
一。进出料不平衡,塔盘物料过多,塔釜温度上不去。顶压力降,顶温降。
二。热量控制不好,蒸发量大,冷凝在塔盘上物料多,也是这个结果。
解决方法,暂停进料,或者停热量再加回来,或者出一回料就好了。
不一定都是雾沫的作用。也或者防泡剂作用不够?设计和操作差距还是很大的,要多摸索。
看你这塔釜液位变化这么大,热交换变化大可定的
㈥ 二氧化碳再生需要脱硫吗
脱碳主要是为了出去沼气中大部分二氧化碳,提高沼气中甲烷的纯度,减少沼气体积。脱硫,用化学方法比较多,不过也有用生物脱硫的,管理不好的话,就是摆设,脱碳主要使用胺液来吸收再生循环使用,这个使用范围比较广
感觉这样的提问没有意义
建议自己下去查查资料
㈦ 关于电镀含镍废水处理
电镀废水的处理与回用对节约水资源以及保护环境起着至关重要的作用。本文综述了各种电镀废水处理技术的优缺点,以及一些新材料在电镀废水处理上的应用。
01 化学沉淀法
化学沉淀法是通过向废水中投入药剂,使溶解态的重金属转化成不溶于水的化合物沉淀,再将其从水中分离出来,从而达到去除重金属的目的。
化学沉淀法因为操作简单,技术成熟,成本低,可以同时去除废水中的多种重金属等优点,在电镀废水处理中得到广泛应用。
1.碱性沉淀法
碱性沉淀法是向废水中投加NaOH、石灰、碳酸钠等碱性物质,使重金属形成溶解度较小的氢氧化物或碳酸盐沉淀而被去除。该法具有成本低、操作简单等优点,目前被广泛使用。
但是碱性沉淀法的污泥产量大,会产生二次污染,而且出水pH偏高,需要回调pH。NaOH由于产生污泥量相对较少且易回收利用,在工程上得到广泛应用。
2.硫化物沉淀法
硫化物沉淀法是通过投加硫化物(如Na2S、NariS等)使废水中的重金属形成溶度积比氢氧化物更小的沉淀,出水pH在7~9,无需回调pH即可排放。
但是硫化物沉淀颗粒细小,需要添加絮凝剂辅助沉淀,使处理费用增大。硫化物在酸性溶液中还会产生有毒的HS气体,实际操作起来存在局限性。
3.铁氧体法
铁氧体法是根据生产铁氧体的原理发展起来的,令废水中的各种重金属离子形成铁氧体晶体一起沉淀析出,从而净化废水。该法主要是通过向废水中投加硫酸亚铁,经过还原、沉淀絮凝,最终生成铁氧体,因其设备简单、成本低、沉降快、处理效果好等特点而被广泛应用。
pH和硫酸亚铁投加量对铁氧体法去除重金属离子的影响,确定镍、锌、铜离子的最佳絮凝pH分别为8.00~9.80、8.00~10.50和10.00,投加的亚铁离子与它们摩尔比均为2~8,而六价铬的最佳还原pH为4.00~5.50,最佳絮凝pH则为8.00~10.50,最佳投料比为20。出水的镍含量小于0.5mg/L,总铬含量小于1.0mg/L,锌含量小于1.0mg/L,铜含量小于0.5mg/L,达到《电镀污染物排放标准》(GB21900—2008)中“表2”的要求。
化学沉淀法的局限性
随着污水排放标准的提高,传统单一的化学沉淀法很难经济有效地处理电镀废水,常常与其他工艺组合使用。
采用铁氧体-CARBONITE(一种具有物理吸附与离子交换功能的材料)联合工艺处理Ni含量约为4000mg/L的高浓度含镍电镀废水:先以铁氧体法控制pH为11.0,在Fe/Fe。摩尔比O.55,FeSO4·7H2O/Ni质量比21,反应温度35℃的条件下搅拌反应15min,出水Ni平均浓度从4212.5mg/L降至6.8mg/L,去除率达99.84%;然后采用CARBONITE处理,在CARBONITE投加量1.5g/L,pH=6.5,温度35℃的条件下反应6h,Ni去除率可达96.48%,出水Ni浓度为0.24mg/L,达到GB21900-2008中的“表2”标准。
采用高级Fenton一化学沉淀法处理含螯合重金属的废水,使用零价铁和过氧化氢降解螯合物,然后加碱沉淀重金属离子,不仅可以去除镍离子(去除率最高达98.4%),而且可以降低COD化学需氧量。
02 氧化还原法
1.化学氧化法
化学氧化法在处理含氰电镀废水上的效果尤为明显。该方法把废水中的氰根离子(CN一)氧化成氰酸盐(CNO-),再将氰酸盐(CNO-)氧化成二氧化碳和氮气,可以彻底解决氰化物污染问题。
常用的氧化剂包括氯系氧化剂、氧气、臭氧、过氧化氢等,其中碱性氯化法应用最广。采用Fenton法处理初始总氰浓度为2.0mg/L的低浓度含氰电镀废水,在反应初始pH为3.5,H202/FeSO4摩尔比为3.5:1,H202投加量5.0g/L,反应时间60min的最佳条件下,氰化物的去除率可达93%,总氰浓度可降至0_3mg/L。
2.化学还原法
化学还原法在电镀废水处理中主要针对含六价铬废水。该方法是在废水中加入还原剂(如FeSO、NaHSO3、Na2SO3、SO2、铁粉等)把六价铬还原为三价铬,再加入石灰或氢氧化钠进行沉淀分离。上述铁氧体法也可归为化学还原法。
该方法的主要优点是技术成熟,操作简单,处理量大,投资少,在工程应用中有良好的效果,但是污泥量大,会产生二次污染。采用硫酸亚铁作为还原剂,处理80t/d的含总铬7O~80mg/L的电镀废水,出水总铬小于1.5mg/L,处理费用为3.1元/t,具有很高的经济效益。
以焦亚硫酸钠为还原剂处理含80mg/L六价铬、pH为6~7的电镀废水,出水六价铬浓度小于0.2mg/L。
03 电化学法
电化学法是指在电流的作用下,废水中的重金属离子和有机污染物经过氧化还原、分解、沉淀、气浮等一系列反应而得到去除。
该方法的主要优点是去除速率快,可以完全打断配合态金属链接,易于回收利用重金属,占地面积小,污泥量少,但是其极板消耗快,耗电量大,对低浓度电镀废水的去除效果不佳,只适合中小规模的电镀废水处理。
电化学法主要有电凝聚法、磁电解法、内电解法等。
电凝聚法是通过铁板或者铝板作为阳极,电解时产生Fe2+、Fe或Al,随着电解的进行,溶液碱性增大,形成Fe(OH)2、Fe(OH)3或AI(OH)3,通过絮凝沉淀去除污染物。
由于传统的电凝聚法经过长时间的操作,会使电极板发生钝化,近年来高压脉冲电凝聚法逐渐替代传统的电混凝法,它不仅克服了极板钝化的问题,而且电流效率提高20%~30%,电解时间缩短30%~40%,节省电能30%~40%,污泥产生量少,对重金属的去除率可达96%~99%。
采用高压脉冲电絮凝技术处理某电镀厂的电镀废水,Cu2十、Ni2、CN一和COD的去除率分别达到99.80%、99.70%、99.68%和67.45%。
电混凝法通常也与其他方法结合使用,利用电凝聚法和臭氧氧化法联合处理电镀废水,以铁和铝做极板,出水六价铬、铁、镍、铜、锌、铅、TOC(总有机碳)、COD的去除率分别为99.94%、100.00%、95.86%、98.66%、99.97%、96.81%、93.24%和93.43%。
近年来内电解法受到广泛关注。内电解法利用了原电池原理,一般向废水中投加铁粉和炭粒,以废水作为电解质媒介,通过氧化还原、置换、絮凝、吸附、共沉淀等多种反应的综合作用,可以一次性去除多种重金属离子。
该方法不需要电能,处理成本低,污泥量少。通过静态试验研究了铁碳微电解法对模拟电镀废水的COD及铜离子的去除效果,去除率分别达到了59.01%和95.49%。然而,采用微电解反应柱研究连续流的运行结果显示,14d后微电解出水的COD去除率仅为10%~15%,铜的去除率降低至45%~50%之间,可见需要定期更换填料或对填料进行再生。
04 膜分离技术
膜分离技术主要包括微滤(MF)、超滤(UF)、纳滤(NF)、反渗透(RO)、电渗析(ED)、液膜(Lv)等,利用膜的选择透过性来对污染物进行分离去除。
该方法去除效果好,可实现重金属回收利用和出水回用,占地面积小,无二次污染,是一种很有发展前景的技术,但是膜的造价高,易受污染。
对膜技术在电镀废水处理中的应用和效果进行了分析,结果表明:结合常规废水处理工艺与膜生物反应器(MBR)组合工艺,电镀废水被处理后的水质达到排放标准;电镀综合废水经UF净化、RO和NF两段脱盐膜的集成工艺处理后,水质达到回用水标准,RO和NF产水的电导率分别低于100gS/cm和1000gS/cm,COD分别约为5mg/L和10mg/L;镀镍漂洗废水通过RO膜后,镍的浓缩高达25倍以上,实现了镍的回收,RO产水水质达到回用标准。
投资与运行费用分析表明:工程运行1年多即可收回RO浓缩镍的设备费用。
液膜法并不是采用传统的固相膜,而是悬浮于液体中很薄的一层乳液颗粒,是一种类似溶剂萃取的新型分离技术,包括制膜、分离、净化及破乳过程。
美籍华人黎念之(NormanN.Li)博士发明了乳状液膜分离技术,该技术同时具有萃取和渗透的优点,把萃取和反萃取两个步骤结合在一起。乳化液膜法还具有传质效率高、选择性好、二次污染小、节约能源和基建投资少的特点,对电镀废水中重金属的处理及回收利用有着良好的效果。
05 离子交换法
离子交换法是利用离子交换剂对废水中的有害物质进行交换分离,常用的离子交换剂有腐殖酸物质、沸石、离子交换树脂、离子交换纤维等。离子交换的运行操作包括交换、反洗、再生、清洗四个步骤。
此方法具有操作简单、可回收利用重金属、二次污染小等特点,但离子交换剂成本高,再生剂耗量大。
研究强酸性离子交换树脂对含镍废水的处理工艺条件及镍回收方法。结果表明:pH为6~7有利于强酸性阳离子交换树脂对镍离子的去除。离子交换除镍的适宜温度为30℃,适宜流速为15BV/h(即每小时l5倍树脂床体积)。适宜的脱附剂为10%盐酸,脱附液流速为2BV/h。前4.6BV脱附液可回用于配制电镀槽液,平均镍离子质量浓度达18.8g/L。
Mei.1ingKong等研究了CHS—l树脂对cr(VI)的吸附能力,发现Cr(VI)在低浓度时,树脂的交换吸附率是由液膜扩散和化学反应控制的。CHS一1树脂对Cr(VI)的最佳吸附pH为2~3,在298K下其饱和吸附能力为347.22mg/g。CHS一1树脂可以用5%的氢氧化钠溶液和5%氯化钠溶液来洗脱,再生后吸附能力没有明显的下降。
使用钛酸酯偶联剂将1一Fe203与丙烯酸甲酯共聚,在碱性条件下进行水解,制备出磁性弱酸阳离子交换树脂NDMC一1。
通过对重金属Cu的吸附研究发现,NDMC—l树脂粒径较小、外表面积大,因而具有较快的动力学性能。具体联系污水宝或参见http://www.dowater.com更多相关技术文档。
06 蒸发浓缩法
蒸发浓缩法是通过加热对电镀废水进行蒸发,使液体浓缩达到回用的效果。一般适用于处理含铬、铜、银、镍等重金属浓度高的废水,用其处理浓度低的重金属废水时耗能大,不经济。
在处理电镀废水中,蒸发浓缩法常常与其他方法一起使用,可实现闭路循环,效果不错,比如常压蒸发器与逆流漂洗系统联合使用。蒸发浓缩法操作简单,技术成熟,可实现循环利用,但是浓缩后的干固体处置费用大,制约了它的应用,目前一般只作为辅助处理手段。
07 生物处理技术
生物处理法是利用微生物或者植物对污染物进行净化,该方法运行成本低,污泥量少,无二次污染,对于水量大的低浓度电镀废水来说是不二之选。生物法主要包括生物絮凝法、生物吸附法、生物化学法和植物修复法。
1.生物絮凝法
生物絮凝法是一种利用微生物或微生物产生的代谢物进行絮凝沉淀来净化水质的方法。微生物絮凝剂是一类由微生物产生并分泌到细胞外、具有絮凝活性的代谢物,能使水中胶体悬浮物相互凝聚、沉淀。
生物絮凝剂与无机絮凝剂和合成有机絮凝剂相比,具有处理废水安全无毒、絮凝效果好、不产生二次污染等优点,但其存在活体生物絮凝剂不易保存,生产成本高等问题,限制了它的实际应用。目前大部分生物絮凝剂还处在探索研究阶段。
生物絮凝剂可以分为以下三类:
(1) 直接利用微生物细胞作为絮凝剂,如一些细菌、放线菌、真菌、酵母等。
(2) 利用微生物细胞壁提取物作为絮凝剂。微生物产生的絮凝物质为糖蛋白、黏多糖、蛋白质等高分子物质,如酵母细胞壁的葡聚糖、Ⅳ-乙酰葡萄糖胺、丝状真菌细胞壁多糖等都可作为良好的生物絮凝剂。
(3) 利用微生物细胞代谢产物的絮凝剂。代谢产物主要有多糖、蛋白质、脂类及其复合物等。
近年来报道的生物絮凝剂主要为多糖类和蛋白质类,前者有ZS一7、ZL—P、H12、DP。152等,后者有MBF—W6、NOC—l等。陶颖等]利用假单胞菌Gx4—1胞外高聚物制得的絮凝剂对cr(Ⅳ)进行了絮凝吸附研究。
其研究结果表明,在适宜条件下Or(Ⅳ)的去除率可达51%。研究枯草芽孢杆菌NX一2制备的生物絮凝剂v一聚谷氨酸(T-PGA)对电镀废水的处理效果,实验证明,T-PGA能有效地去除Cr3+、Ni等重金属离子。
2.生物吸附法
生物吸附法是利用生物体自身的化学结构或成分特性来吸附水中的重金属,然后通过固液分离,从水中分离出重金属。
可以从溶液中分离出重金属的生物体及其衍生物都叫做生物吸附剂。生物吸附剂主要有生物质、细菌、酵母、霉菌、藻类等。该方法成本低,吸附和解析速率快,易于回收重金属,具有选择性,前景广阔。
研究各种因素对枯草芽胞杆菌吸附电镀废水中Cd效果的影响,结果表明:pH为8、吸附剂用量为10g/L(湿重)、搅拌转数为800r/min、吸附时间为10min的条件下,废水中镉的去除率达93%以上。
吸附镉后的枯草芽胞杆菌细胞膨大,色泽变亮,细胞之间相互粘连。Cd2+与细胞表面的钠进行了离子交换吸附。
壳聚糖是一种碱性天然高分子多糖,由海洋生物中甲壳动物提取的甲壳素经过脱乙酰基处理而得到,可以有效地去除电镀废水中的重金属离子。
通过乳化交联法制备了磁性二氧化硅纳米颗粒组成的壳聚糖微球,然后用乙二胺和缩水甘油基三甲基氯化反应的季铵基团改性,所得生物吸附剂具有很高的耐酸性和磁响应。
用它来去除酸性废水中的cr(VI),在pH为2.5、温度为25℃的条件下,最大吸附能力为233.1mg/g,平衡时间为40~120min[取决于初始Cr(VI)的浓度。使用0.3mol/LNaOH和0.3mol/LNaC1的混合液进行吸附剂再生,解吸率达到95.6%,因此该生物吸附剂具有很高的重复使用性。
3.生物化学法
生物化学法是指微生物直接与废水中的重金属进行化学反应,使重金属离子转化为不溶性的物质而被去除。
从电镀废水中筛选分离出3株可以高效降解自由氰根的菌种,在最佳条件下可以将80mg/L的CN一去除到0.22mg/L。研究发现,有许多可以将cr(VI)还原成低毒cr(III)的微生物,如无色杆菌、土壤细菌、芽孢杆菌、脱硫弧菌、肠杆菌、微球菌、硫杆菌、假单胞菌等,其中除了大肠杆菌、芽孢杆菌、硫杆菌、假单胞菌等可以在好氧条件下还原Cr(VI),其余大部分菌种只能在厌氧条件下还原cr(VI)。
R.S.Laxman等发现灰色链霉菌能在24~48h内把cr(VI)还原成cr(III),并能够将cr(III)显著地吸收去除。中科院成都生物研究所的李福、吴乾菁等从电镀污泥、废水及下水道铁管内分离筛选出35株菌种,并获得了SR系列复合功能菌,该功能菌具有高效去除Cr(VI)和其他重金属的功效,并在此基础上进行了工程应用,取得较好的效果。
4.植物修复法
植物修复法是利用植物的吸收、沉淀、富集等作用来处理电镀废水中的重金属和有机物,达到治理污水、修复生态的目的。
该方法对环境的扰动较少,有利于环境的改善,而且处理成本低。人工湿地在这方面起着重要的作用,是一种发展前景广阔的处理方法。
李氏禾是一种可富集金属的水生植物,在去除水中重金属方面具有很大的潜力。在人工湿地种植了李氏禾,用以处理含铬、铜、镍的电镀废水,使它们的含量分别降低了84.4%、97.1%和94_3%。当水力负荷小于0.3m/(m2·d1时,出水中的重金属浓度符合电镀污染物排放标准的要求;当进水铬、铜和镍的浓度为5、10和8mg/L时,仍能达标排放。
可见用李氏禾处理中低浓度的电镀废水是可行的。质量平衡表明,铬、铜和镍大部分保留在人工湿地系统的沉积物中。
08 吸附法
吸附法是利用比表面积大的多孔性材料来吸附电镀废水中的重金属和有机污染物,从而达到污水处理的效果。
活性炭是使用最早、最广的吸附剂,可以吸附多种重金属,吸附容量大,但是活性炭价格昂贵,使用寿命短,需要再生且再生费用不低。一些天然廉价材料,如沸石、橄榄石、高岭土、硅藻土等,也具有较好的吸附能力,但由于各种原因,几乎没有得到工程应用。
以沸石作为吸附剂处理电镀废水,发现在静态条件下,沸石对镍、铜和锌的吸附容量分别达到5.9、4.8和2.7mg/g.先以磁性生物炭去除电镀废水中的Cr(vI),
然后通过外部磁场分离,使得cr(VI)的去除率达到97.11%。而在10rain的磁选后,浊度由4075NTU降至21.8NTU。其研究还证实了吸附过程后,磁性生物炭仍保留原来的磁分离性能。近年来又研制开发了一些新型吸附材料,如文中提到的生物吸附剂以及纳米材料吸附剂。
纳米技术是指在1~100nm尺度上研究和应用原子、分子现象,由此发展起来的多学科交叉、基础研究与应用紧密联系的科学技术。纳米颗粒由于具有常规颗粒所不具备的纳米效应,因而具有更高的催化活性。
纳米材料的表面效应使其具有高的表面活性、高表面能和高的比表面积,所以纳米材料在制备高性能吸附剂方面表现出巨大的潜力。雷立等l采用温和水热法一步快速合成了钛酸盐纳米管(TNTs),并应用于对水中重金属离子Pb(II)、cd(II)和Cr(III)的吸附。
结果表明:pH=5时,初始浓度分别为200、100和50mg/L的Pb(II)、Cd(II)和Cr(III)在TNTs上的平衡吸附量分别为513.04、212.46和66.35mg/L,吸附性能优于传统吸附材料。纳米技术作为一种高效、节能环保的新型处理技术,得到人们的广泛认同,具有很大的发展潜力。
09 光催化技术
光催化处理技术具有选择性小、处理效率高、降解产物彻底、无二次污染等特点。
光催化的核心是光催化剂,常用的有TiO2、ZnO、WO3、SrTiO3、SnO2和Fe2O3。其中TiO2具有化学稳定性好、无毒、兼具氧化和还原作用等诸多特点。TiO:在受到一定能量的光照时会发生电子跃迁,产生电子一空穴对。
光生电子可以直接还原电镀废水中的金属离子,而空穴能将水分子氧化成具有强氧化性的OH自由基,从而把很多难降解的有机物氧化成为COz、H:0等无机物,被认为是最有前途、最有效的水处理方法之一。
以悬浮态的TiO2为催化剂,在紫外光的作用下对络合铜废水进行光催化反应。结果表明:当TiO2投加量为2g/L,废水pH=4时,在300W高压汞灯照射下,载入60mL/min的空气反应40rain,对120mg/LEDTA络合铜废水中Cu(II)与COD的去除率分别达到96.56%和57.67%。实施了“物化一光催化一膜”处理电镀废水的工程实例,出水COD去除率达到70%以上,同时TiO2光催化剂可重复使用。
膜法的引入可大大提高水质,使处理后水质达到中水回用标准,提高了电镀废水的资源化利用率,回用率达到85%以上,大大节约了成本。然而光催化技术在实际应用中受到了很多的限制,如重金属离子在光催化剂表面的吸附率低,催化剂的载体不成熟,遇到色度大的废水时处理效果大幅下降,等等。不过光催化技术作为高效、节能、清洁的处理技术,将会有很大的应用前景。
10 重金属捕集剂
重金属捕集剂又叫重金属螯合剂,它能与废水中的绝大部分重金属离子产生强烈的螯合作用,生成的高分子螯合盐不溶于水,通过分离就可以去除废水中的重金属离子。
重金属捕集剂处理后的重金属废水中剩余的重金属离子浓度大部分都能达到国家排放标准。以二硫代氨基甲酸盐重金属离子捕集剂XMT探讨了不同因素对Cu的捕集效果,对Cu去除率在99%以上,出水Cu浓度小于0.05mg/L,出水远低于GB21900-2008的“表3”标准。
选取3种市售重金属捕集剂对实际电镀废水中的Cu2+、Zn2+、Ni进行同步深度处理,发现三聚硫氰酸三钠(简称TMT)对Cu的去除效果最为显著,投加量少且效果稳定,但对Ni的去除效果较差。甲基取代的二硫代氨基甲酸钠(以Me2DTC表示)的适用性最强,对3种重金属离子均具有良好的去除效果,可达到GB21900-2008中的“表3”排放标准,且在DH=9.70时处理效果最佳。至于乙基取代的二硫代氨基甲酸钠(Et2DTC),对Ni的去除效果不佳。
重金属捕集剂因高效、低能、处理费用相对较低等特点而有很大的实用性。
结语
电镀废水成分复杂,应尽量分工段处理。在选择处理方法时,应充分考虑各种方法的优缺点,加强各种水处理技术的综合应用,形成组合工艺,扬长避短。
重金属具有很大的回收价值且毒性大,在电镀废水处理过程中应多使用重金属回收利用的工艺,尽可能地减少排放。
基于化学沉淀法污泥产量大,电化学法能耗高,膜分离技术的膜组件造价高且易受污染等诸多问题,就现有电镀废水处理技术而言,应向着节能、高效、无二次污染的方向改进。
同时可与计算机技术相结合,实现智能化控制。还可结合材料学、生物学等学科,开发出更适合处理电镀废水的新型材料。
㈧ 电镀废水处理工艺
电镀工艺是将金属通过电解方法镀到制品表面的过程,常用的镀种有镀镍、镀铜、镀铬、镀锌、镀镉、镀铅、镀银、镀锡、镀金。
物理法
一般使用下述方法处理电镀废水,可高效去除COD、色度的同时,脱除重金属、六价铬、氰化物等特有物质,物理法包括:
催化微电解处理技术
微电解技术是处理高浓度有机废水的一种理想工艺,该工艺用于高盐、难降解、高色度废水的处理不但能大幅度地降低cod和色度,还可大大提高废水的可生化性。
该技术是在不通电的情况下,利用微电解设备中填充的微电解填料产生“原电池”效应对废水进行处理。当通水后,在设备内会形成无数的电位差达1.2V 的“原电池”。“原电池”以废水做电解质,通过放电形成电流对废水进行电解氧化和还原处理,以达到降解有机污染物的目的。在处理过程中产生的新生态[?O H] 、[H] 、[O]、Fe2+ 、Fe3+等能与废水中的许多组分发生氧化还原反应,比如能破坏有色废水中的有色物质的发色基团或助色基团,甚至断链,达到降解脱色的作用;生成的Fe2+ 进一步氧化成Fe3 +,它们的水合物具有较强的吸附-絮凝活性,特别是在加碱调pH 值后生成氢氧化亚铁和氢氧化铁胶体絮凝剂,它们的絮凝能力远远高于一般药剂水解得到的氢氧化铁胶体,能大量絮凝水体中分散的微小颗粒、金属粒子及有机大分子.其工作原理基于电化学、氧化- 还原、物理以及絮凝沉淀的共同作用。该工艺具有适用范围广、处理效果好、成本低廉、处理时间短、操作维护方便、电力消耗低等优点,可广泛应用于工业废水的预处理和深度处理中。
阳极: Fe - 2e →Fe2+ E(Fe / Fe2+)=0.44V阴极: 2H﹢ + 2e →H2 E(H﹢/ H2)=0.00V
当有氧存在时,阴极反应如下:
O2 + 4H﹢ + 4e → 2H2O E (O2)=1.23V
O2 + 2H2O + 4e → 4OH﹣ E(O2/OH﹣)=0.41V
新型微电解填料是针对当前有机废水难降解难生化的特点而研发的一种多元催化氧化填料。它由多元金属合金融合催化剂并采用高温微孔活化技术生产而成,属新型投加式无板结微电解填料。作用于废水,可高效去除COD、降低色度、提高可生化性,处理效果稳定持久,同时可避免运行过程中的填料钝化、板结等现象。本填料是微电解反应持续作用的重要保证,为当前化工废水的处理带来了新的生机。
吸附法
活性炭具有非常多的微孔结构和巨大的同比表面积,通常1g活性炭的表面积达700~1700m2,因而具有极强的物理吸附力,能有效地吸附废水中的六价铬离子(Cr6+)等重金属离子。当活性炭达到吸附平衡后,还可以采用加热、酸浸泡、碱浸泡等方式除去吸附物,使活性炭再生。
生物法
生物法是处理电镀废水的高新生物技术。利用人工培养的脱硫孤菌、生枝动胶菌、铬酸盐还原菌、硫酸盐还原菌等功能菌,对电镀废水产生静电吸附作用、酶的催化转化作用、络合作用、絮凝作用、包藏共沉淀作用和对pH值的缓冲作用。有害金属沉淀于污泥中回收利用,排放水用于培菌及其他使用。生物法处理电镀废水成本低、效益高、容易管理、不给环境造成二次污染、有利于生态环境的改善,是未来电镀废水处理的主流方向。
化学法
一般用下述方法处理电镀废水:向废水中投加药剂,使其中的有毒物质转化成为无毒物质或毒性大为降低的沉淀物。化学法包括:
中和沉淀法
如酸性废水用碱性废水或投加碱性物质进行中和,形成沉淀物。
中和混凝沉淀法
例如在离子交换法除铬工艺中,阳离子交换柱再生废液是含有重金属离子 (Zn2+、Cr3+、Fe3+等)的强酸性废液,可用去除酸根后阴离子交换柱的再生废碱液或加碱中和,使之以氢氧化物形式沉淀。如投加高分子絮凝剂可改变这种沉淀物的沉降性能和分离性能。
氧化法
如处理含氰废水时,常用次氯酸盐在碱性条件下氧化其中的氰离子,使之分解成低毒的氰酸盐,然后再进一步降解为无毒的二氧化碳和氮。
还原法
如含铬废水用亚硫酸氢钠或硫酸亚铁加石灰处理,使Cr6+还原成毒性低的Cr3+,并形成氢氧化铬沉淀。
钡盐法
如含铬废水用钡盐处理,使铬酸根成为铬酸钡沉淀。
铁氧体法
电镀废水经过处理产生氢氧化铁或其他重金属氢氧化物沉淀,通过氧化反应使重金属转入强磁性的铁氧体结晶中。此法可用于含铬废水的处理。 化学法设备简单,投资较少,应用较广。但常留下污泥需要进一步处理,而且电镀废水分散,污泥不易集中处理和利用。
物理法
主要包括电解法、离子交换法和膜分离法,提银机处理法。
提银机处理法
guowei型本设备特点:
1、使用纯物理方法的双电解方式,只使用少量电力,无二次污染之忧。
2、提银深度在99%以上,提取银纯度高达 98%以上。
3、可以处理离子交换法、气浮法处理不了的药品浓度很高的废定影液。
4、可以处理目前国内外电解法都无法处理的含有很高漂白液成分的彩扩漂定液。
5、残留废液银含量可达到0.02克/升,经过后续环保处理后,可以将废液银含量降
至0.2ppm以下,满足最为严格的欧洲排放标准。
6、运行实现微机全自动化控制,无需专人看管,耗能低。
7、设备体积小巧紧凑,占地面积少,处理量大,可达1500-1800升/月。
8、本设备不需任何耗材和电解促进剂,运营及维护成本低。
技术参数:
1.提银后残留废液含银量低于0.01克\升
2.提银纯度:99.5%
3.尺寸360*280*800mm
4.工作电压:交流电220V
5.功率20w
6.处理量(月)30升—30,000升
-
电解法
以处理含铬废水为例,利用可溶性铁阳极,在直流电场作用下,产生亚铁离子,在酸性条件下使废水中以CrO厈和Cr2O崼存在的Cr6+离子还原成为Cr3+离子,随着电解过程中废水pH值升高,形成Cr(OH)3沉淀。采用不同材料的阳极可处理含有其他各种金属离子的废水。电解法操作管理简单,除能够处理镀铬漂洗水外,还可以处理钝化、阳极化、磷化等漂洗水,并有成套设备;但消耗钢材、电能较多,对产生的污泥还没有妥善的处理方法。
离子交换法
利用离子交换树脂活性基团上的可交换离子(H+、Na+、OH-等),去除废水中的阳、阴离子。此法处理电镀废水不仅可回用水,还可回收金属离子溶液。这种方法已用于处理含有金、镍、铜、镉、铬等废水。人工合成的专门用于处理电镀废水的弱酸、弱碱大孔树脂,可分别用于去除铬、镍和铜,以及一些金属的氰化络合阴离子(见废水离子交换处理法)。一般说来,离子交换法初次投资较大,操作管理水平要求较高,但处理效果稳定,由于能回用金属和水,是当前电镀废水实现闭路循环的主要治理方法之一。存在的主要问题是再生废液会有钠、铁、氯根等杂质离子不能直接回用于镀槽中,排入环境会造成污染。
膜分离法
利用半透膜或离子交换膜等膜材料,在外加推动力下,使废水中的溶解物和水分离浓缩,以净化废水。在膜分离法中,反渗透法用于含镍、含镉废水的浓缩处理已应用于生产。隔膜电解法用于再生镀铬废液。扩散渗析法可用于酸液回收。膜分离方法成本较高。
蒸发浓缩法 利用热源和蒸发器在常压或负压下直接浓缩废水。用这种方法处理高浓度废水比较经济,常同三级逆流漂洗、气-水喷淋,或同离子交换法联合使用。生产中广泛采用钛管薄膜蒸发器和蒸发釜来浓缩含铬废水、含氰废水等,也是闭路循环的主要处理流程之一。
展望电镀废水处理技术的发展前景,首先是压缩水量,普遍推广逆流漂洗和喷淋技术;其次,对化学法产生的污泥和离子交换再生废液进行综合利用,以及研制适用于处理电镀废水的各种优质树脂和膜,以及进一步研究和完善闭路循环系统,以实现资源的充分利用。
㈨ 电渗析法制水原理
莱特.莱德 电渗析器由隔板、离子交换膜、电极、夹紧装置等主要部件组成。离子交换膜对不同电荷的离子具有选择透过性。阳膜只允许通过阳离子,阻止阴离子通过,阴膜只允许通过阴离子,阻止阳离子通过。在外加直流电场的作用下,水中离子作定向迁移。由于电渗析器是由多层隔室组成,故淡室中阴阳离子迁移到相邻的浓室中去,从而使含盐水淡化。在食品及医药工业,电渗析可用于从有机溶液中去除电解质离子,在乳清脱盐、糖类脱盐和氨基酸精制中应用得都比较成功。
电渗析水处理方法1倒极电渗析(EDR)
倒极电渗析就是根据ED原理,每隔一定时间(一般为15~20min),正负电极极性相互倒换,能自动清洗离子交换膜和电极表面形成的污垢,以确保离子交换膜工作效率的长期稳定及淡水的水质水量。在20世纪80年代后期,倒极电渗析器的使用,大大提高了电渗析操作电流和水回收率,延长了运行周期。EDR在废水处理方面尤其有独到之处,其浓水循环、水回收率最高可达95%。
电渗析水处理方法2液膜电渗析(EDLM)
液膜电渗析是用具有相同功能的液态膜代替固态离子交换膜,其实验模型就是用半透玻璃纸将液膜溶液包制成薄层状的隔板,然后装入电渗析器中运行。利用萃取剂作液膜电渗析的液态膜,可能为浓缩和提取贵金属、重金属、稀有金属等找到高效的分离方法,因为寻找对某种形式离子具有特殊选择性的膜与提高电渗析的提取效率有关。提高电渗析的分离效率,直接与液膜结合起来是很有发展前途的。例如,固体离子交换膜对铂族金属(锇、钌等)的盐溶液进行电渗析时,会在膜上形成金属二氧化物沉淀,这将引起膜的过早损耗,并破坏整个工艺过程,应用液膜则无此弊端。
电渗析水处理方法3填充床电渗析(EDI)
填充床电渗析(EDI)是将电渗析与离子交换法结合起来的一种新型水处理方法,它的最大特点是利用水解离产生的H+和OH-自动再生填充在电渗析器淡水室中的混床离子交换树脂,从而实现了持续深度脱盐。
电渗析水处理方法4双极性膜电渗析
双极膜是一种新型离子交换复合膜,它一般由层压在一起的阳离子交换膜组成,通过膜的水分子即刻分解成H+和OH-,可作为H+和OH-的供应源。双极性膜电渗析突出的优点是过程简单,能效高,废物排放少。目前双极性膜电渗析工艺的主要应用领域在酸碱制备。例如,用双极性膜和阳膜配成的二室膜可以实现有机酸盐(葡萄糖酸钠、古龙酸钠等)的转化,同时得到碱(NaOH),但浓度(酸最大浓度2mol•L-1,碱最大浓度6mol•L-1)和纯度两方面都受到限制。现在开发的应用领域还有废气脱硫、离子交换树脂再生、钾钠的无机过程等。
电渗析水处理方法5无极水电渗析
无极水电渗析是传统电渗析的一种改进形式,它的主要特点是除去了传统电渗析的极室和极水。例如在装置的电极紧贴一层或多层离子交换膜,它们在电气上都是相互联接的,这样既可以防止金属离子进入离子交换膜,同时又防止极板结垢,延长电极的使用寿命。
㈩ 脱硫废水处理方式有哪些
(1)离子交换法处理脱硫废水
用大孔巯基离子交换树脂吸附汞离子,达到去除水中汞离子的内目的;吸附法,利容用活性炭吸附原理,由于活性炭具有极大的表面积,在活化过程中形成一些含氧官能团,使活性炭具有化学吸附和催化氧化、还原的性能,能有效去除重金属。
(2)电絮凝法处理脱硫废水
电絮凝技术也被运用到湿法脱硫的废水处理中。电絮凝是利用电化学的原理,在电流的作用下溶解可溶性电极,使其成为带有电荷的离子并释放出电子。产生有絮凝作用的化合物。另外释放出的电子还原带有正电的污染物,从而达到去除液体中污染物的目的。
(3)蒸发处理脱硫废水
将废水通过传统的加药方式进行预处理。处理后的废水经预热器加热后进入蒸发系统。蒸发系统主要分为四个部分:热输入部分,热回收部分、结晶转运部分、附属系统部分。