A. 污水处理中。。电导率与含盐量之间是什么关系
污水处理中,含盐量(TDS)与电导率(EC25)之间的关系:
TDS=K×EC25
式中
TDS——溶液总盐量,pp;
K——溶液对应的转换系数;
EC25——经温度校正到25度的电导率,μS/cm。
B. 表征反渗透膜性能的指标有哪些
山东科宇水处理专业从事水处理20年,专业帮您解答。
表征反渗透膜的指标主要有脱盐率,专回收率和水通属量。
① 脱盐率 =(1 - 产品水含盐量 / 给水含盐量)×100%
通常用电导率近似表示含盐量,一般系统的脱盐率大于98%。
② 回收率 = 产品水流量 / 给水流量
常见的反渗透系统回收率为75%。但是单支膜的回收率通常不超过18%。
系统没有浓水循环时,膜元件与系统回收率的一般规定为:
膜元件串联数量(支)
1
2
4
6
8
12
18
最大系统回收率(%)
<18
<32
<50
<58
<68
<80
<90
③ 水通量——单位膜面积的产品水量,m3/m2·h。
当反渗透膜污堵时,其脱盐率会下降,产品水流量降低,回收率降低,水通量下降。
C. 反渗透进水电导率与出水电导率倍数比
不是倍数比。
是反渗透的脱盐率,就是进水电导率减去出水电导率后再除以进水版电导率就权等于脱盐率。假如你的进水电导率1000us/cm,出水是15us/cm,那你的脱盐率就是
(1000-15)/1000×100= 98.5 就是你反渗透的脱盐率。
压力的影响
进水压力影响RO和NF膜的产水通量和脱盐率,我们知道渗透是指水分子从稀溶液侧透过膜进入浓溶液侧的流动,反渗透和纳滤技术即在进水水流侧施加操作压力以克服自然渗透压。当高于渗透压的操作压力施加在浓溶液侧时,水分子自然渗透的流动方向就会被逆转,部分进水(浓溶液)通过膜成为稀溶液侧的净化产水。透过膜的水通量增加与进水压力的增加存在直线关系,增加进水压力也增加了脱盐率,但是两者间的变化关系没有线性关系,而且达到一定程度后脱盐率将不再增加。
由于RO和NF膜对进水中的溶解性盐类不可能绝对完美地截留,总有一定量的透过量,随着压力的增加,因为膜透过水的速率比传递盐分的速率快,这种透盐率的增加得到迅速地克服。但是,通过增加进水压力提高盐分的排除率有上限限制,正如图1脱盐率曲线的平坦部分所示那样,超过一定的压力值,脱盐率不再增加,某些盐分还会与水分子耦合一同透过膜。
温度的影响
膜系统产水电导对进水温度的变化非常敏感,随着水温的增加,水通量几乎线性地增大,这主要归功于透过膜的水分子的粘度下降、扩散能力增加。增加水温会导致脱盐率降低或透盐率增加,这主要是因为盐分透过膜的扩散速率会因温度的提高而加快所致。膜元件能够承受高温的能力增加了其操作范围,这对清洗操作也很重要,因为可以采用更强烈和更快的清洗程序。
盐浓度的影响
渗透压是水中所含盐分或有机物浓度和种类的函数,盐浓度增加,渗透压也增加,因此需要逆转自然渗透流动方向的进水驱动压力大小主要取决于进水中的含盐量。如果压力保持恒定,含盐量越高,通量就越低,渗透压的增加抵消了进水推动力,水通量降低,增加了透过膜的盐通量(降低了脱盐率)。
回收率的影响
通过对进水施加压力当浓溶液和稀溶液间的自然渗透流动方向被逆转时,实现反渗透过程。如果回收率增加(进水压力恒定),残留在原水中的含盐量更高,自然渗透压将不断增加直至与施加的压力相同,这将抵销进水压力的推动作用,减慢或停止反渗透过程,使渗透通量降低或甚至停止。RO
系统最大可能回收率并不一定取决于渗透压的限制,往往取决于原水中的含盐量和它们在膜面上要发生沉淀的倾向,最常见的微溶盐类是碳酸钙、硫酸钙和硅,应该采用原水化学处理方法阻止盐类因膜的浓缩过程引发的结垢。
pH 值的影响
各种反渗透和纳滤膜元件适用的pH值范围相差很大,像这样的超薄复合反渗透和纳滤膜与醋酸纤维素反渗透和纳滤膜相比,在更宽广的 pH
值范围内更稳定,因而,具有更宽的操作范围。膜脱盐率特性取决于pH值,水通量也会受到影响。
E. 如何降低纳滤出水的电导率
首先,检查来纳滤设备的前后自压差是否正常。(检查原水电导率)判断纳滤的有效性。
其次,检查纳滤管程是否有漏水情况。(可能性较大)
最后,在纳滤处理后段增加一树脂混床处理可有效保证出水电导率合格。
降低纳滤出水的电导率方法:
1、浅层地下水受季节影响或者外界污染的影响。根据水温来看你们属于这个范围。
2、深层地下水岩层的变化。
解决这种的情况就是增加预除盐装置,比如软水器,预先处理下钙镁离子。
F. 影响高压纳滤膜性能的因素有哪些
纳滤膜性能受哪些因素影响?
1、操作压力
纳滤过程中存在阻力,当NF膜在相同的操作条件下,过滤不同料液时效果也不同。当施加在膜上的驱动力压力增大时,膜会被压实,且膜自身阻力将增加。随着膜两侧压力的增大,膜两侧溶液浓度会构成浓差极化现象,形成反向渗透压。因此当操作压力增大时,透过膜的通量不一定单调递增。许多研究人员指出,在一定操作压力范围内,增加操作压力可以提高纳滤膜的产水通量,当升至一定压力时便趋于稳定。
2、进水盐浓度
当进水盐浓度较低时,浓差极化作用和膜污染程度很小,溶剂易于透过纳滤膜,而溶质则被截留,浓水浓度明显高于进水盐浓度,由此计算得到高截留率。而当进水盐浓度提高,会加大膜两侧的浓差极化并会加快膜污染,导致膜分离性能明显降低,膜孔被堵塞,溶剂透过膜阻力增大,产水量减少,浓水盐浓度相对降低,截留率下降。同时,进水离子浓度增加,会影响膜表面荷电,影响膜对离子的排斥作用,也可导致截留率下降。
3、PH值
大部分的纳滤膜表面都具有电荷,pH值会影响纳滤膜表面的电荷,进而影响膜表面电荷与溶液离子间的静电排斥作用,从而影响溶质是否可以通过膜孔,即改变膜对溶质的分离性能。
4、温度
当温度升高,会增大溶液中部分组分的溶解度,形成大颗粒,膜污染增加,导致膜通透量下降。若温度过高,会使蛋白质变性并被破坏,从而加重膜污染,使得溶液通透量降低。
G. 简述反渗透压力流量电导温度回收率脱盐率之间的相互关系
摘要 产品对应PH范围一般是2-11,ph对加仑膜性能本身影响很小。
H. 透析,微滤,超滤,纳滤,反渗透,电渗析,渗透气化等膜分离技术各自的特点
1.透析(dialysis)是通过小分来子经过半源透膜扩散到水(或缓冲液)的原理;
2.微滤适用于细胞、细菌和微粒子的分离,在生物分离中,广泛用于菌体的分离和浓缩,目标物质的大小范围为0.01-10 μm,一般用于预处理;
3.超滤技术的优点是没有相的转变,无需添加任何强烈的化学物质,可以在低温下操作,过滤速度较快,便于无菌处理等,一般用于预处理;
4.纳滤 特点是能截留小分子的有机物并可同时透析出盐,集浓缩与透析于一体;
操作压力低,因为无机盐能通过纳米滤膜而透析,使得纳米过滤的渗透压远比反渗透为低,所以纳米过滤所需的外加压力比反渗透低得多;
5.反渗透法具有设备构型紧凑,占地面积小、单位体积产水量及能量消耗少等优点;
6.电渗析的特点时可以同时对电解质水溶液起淡化、浓缩、分离、提纯作用、可以用于蔗糖等非电解质的提纯,以除去其中的电解质、在原理上,电渗析器是一个带有隔膜的电解池,可以利用电极上的氧化还原效率高;
7.渗透气化对共沸物系和近沸物系等难分物系的分离, 显示特有的优越性。
I. 电导率与含盐量的关系
水中的电导和水中盐的关系,准确的脱盐率要通过对产水和进水进行化学分析,测定相应的TDS含量才能计算出来的,但是这样会比较麻烦,一般采用电导率转换为TDS来计算脱盐率。转换公式如下:TDS=K*EC25 ,其中TDS单位是ppm,EC25是经温度校正到25度的电导率,单位为微西/厘米,EC25所有盐类均当成氯化钠且不考虑CO2的影响。
水中的电导和水中盐的关系,电导率与含盐量的换算关系表格如下:
电导率与含盐量换算关系表
J. 耐酸工业纳滤膜出现出水量减少的情况是什么原因造成的
耐酸工业纳滤膜出水量减少可能是以下原因造成
1.进水压力对纳滤膜的影响进水压力本身并不会影响盐透过量,但是进水压力升高使得驱动反渗透的净压力升高,使得产水量加大,同时盐透过量几乎不变,增加的产水量稀释了透过膜的盐分,降低了透盐率,提高脱盐率。当进水压力超过一定值时,由于过高的回收率,加大了浓差极化,又会导致盐透过量增加,抵消了增加的产水量,使得脱盐率不再增加。
2.进水温度对纳滤膜的影响纳滤膜产水电导对进水水温的变化十分敏感,随着水温的增加水对通量也线性的增加,进水水温每升高1℃,产水量就增加2.5%-3.0%;(以25℃为标准)。
3.进水PH值对纳滤膜的影响进水PH值对产水量几乎没有影响,而对脱盐率有较大影响。PH值在7.5-8.5之间,脱盐率达到最高。
4.进水盐浓度对纳滤膜的影响渗透压是水中所含盐分或有机物浓度的函数,进水含盐量越高,浓度差也越大,透盐率上升,从而导致脱盐率下降。
了解纳滤膜元件的标准脱盐率、纳滤膜实际脱盐率与反渗透系统脱盐率之间的关系后,在设计反渗透装置,给用户提供系统性能担保、验收反渗透装置或者评定膜元件性能时,一定要根据系统实际脱盐率来进行,而不能以膜元件标准脱盐率来进行。反渗透系统脱盐率为整套反渗透装置所表现出来的脱盐率,同样由于使用条件与标准条件不同,系统脱盐率有别于标准脱盐率,同时由于反渗透装置一般均串联多根膜元件,而装置中每根膜元件的实际使用条件均不同,故系统脱盐率也有别于膜元件实际脱盐率,对于只有1支膜元件的装置,系统脱盐率才等于膜元件实际脱盐率。