导航:首页 > 净水问答 > 离子交换分离富集法的文献

离子交换分离富集法的文献

发布时间:2021-03-17 15:24:08

1. 阴离子交换分离-氨性底液极谱法

方法提要

试样经灼烧、酸溶分解,在2mol/LHCl介质中,锌以配阴离子形式吸附于阴离子交换树脂上,与镍、钴、锰、钒、砷等分离。铅、铁部分被吸附,镉同时被吸附。经1mol/LHCl淋洗交换柱,可分离绝大部分铜、铁,再用热水淋洗交换柱,锌先被淋洗,而镉仍吸附在树脂上而不影响锌的测定。在此条件下,用717型阴离子交换树脂分离富集锌,当溶液中存在100mgCu2+、Fe2+,5mgW6+、Mo6+、Sb5+、Bi3+,10mgSn2+,400μgIn3+,200μgCd2+、Tl3+,50μgSe4+、Au时,均可与锌分离。然后在氢氧化铵-氯化铵-亚硫酸钠底液中,用示波极谱仪导数部分进行锌的测定,峰电位约-1.20V(对银片电极)。如试样中铅量大于10mg,可在溶解试样时,加入2mL(1+1)H2SO4使铅呈硫酸铅沉淀而与锌分离。本法适用于0.001%以上锌的测定。

仪器

示波极谱仪。

银片作参比电极。

试剂

盐酸。

硝酸。

氢氟酸。

高氯酸。

氢氧化铵-氯化铵-亚硫酸钠混合底液称取12.5gNa2SO3和67gNH4Cl,用少量水溶解,加入250mLNH4OH,用水稀释至500mL,混匀。

717型阴离子交换树脂将80~100目717型阴离子交换树脂用20g/LNaOH溶液和(1+9)HNO3浸泡,处理杂质,然后用水洗至中性,按分析步骤装柱,进行空白试验检查后方可使用。

阴离子交换柱将717型阴离子交换树脂装入筒形漏斗,下接Φ8mm×100mm的交换柱,树脂床高约9cm,先用200mL水淋洗交换柱,漏斗上叠放滤纸后,再用2mol/LHCl平衡,备用(控制流速约1.5mL/min)。

锌标准储备溶液ρ(Zn)=1.00mg/mL配制方法见本章42.2.1锌的EDTA容量法测定。

锌标准溶液ρ(Zn)=100.0μg/mL由锌标准储备溶液稀释配制。

锌标准溶液ρ(Zn)=10.0μg/mL由锌标准储备溶液稀释配制。

校准曲线

分取0.00mL、0.25mL、0.50mL、1.00mL、2.00mL、4.00mL、6.00mL、8.00mL、10.00mL锌标准溶液(100.0μg/mL),或0.00mL、0.50mL、1.00mL、2.00mL、3.00mL、4.00mL、5.00mL锌标准溶液(10.0μg/mL),分别置于25mL烧杯中,低温蒸至近干。加入5滴(1+1)HCl,盖上表面皿,微热,加入10.0mL氢氧化铵-氯化铵-亚硫酸钠混合底液和15.0mL水,摇匀,放置30min。倾出部分溶液于电解池中,选择适当电流倍率,用示波极谱仪导数部分测定,于起始电位-1.00V处记录峰电流值,绘制校准曲线。

分析步骤

称取0.1~0.5g(精确至0.0001g)试样置于瓷坩埚中,在550℃高温炉中灼烧1h。将试样转入100mL聚四氟乙烯烧杯中,用水润湿,加入10mLHCl,盖上表面皿,置于低温电热板上溶解20min。用少量水洗去表面皿,加入5mLHNO3和3mLHF,再加入1mLHClO4[如试样中铅含量大于10mg,改为加入2mL(1+1)H2SO4,继续加热溶解],加热蒸发至白烟冒尽,取下,冷却。

加入15mL2mol/LHCl,盖上表面皿微热溶解盐类,溶液冷却后倾入交换柱上进行过滤、交换。用1mol/LHCl洗涤烧杯和滤纸至无黄色,弃去滤纸后,继续用1mol/LHCl洗交换柱(洗尽铜、铁等干扰元素,洗液约需30~50mL)。然后用50mL热水淋洗锌(水加热至沸,稍待片刻,分次倒入漏斗),流出液用50mL烧杯承接,溶液在电热板上蒸发至小体积,用水吹洗烧杯壁,继续蒸发至近干。然后按校准曲线分析步骤操作,测得锌量。

锌含量的计算公式同式(42.2),校准曲线上查得锌量(单位为μg),公式中10-3改为10-6

2. 阴离子交换分离-盐酸底液方波极谱法

方法提要

试样经酸溶分解,在稀氢溴酸介质中,铅能形成稳定的配阴离子[PbBr42-,应用717强碱性阴离子交换树脂能分离干扰元素、富集铅。本法采用的上柱液为0.15mol/LHBr-5g/LKBr混合液;淋洗液为热的(1+9)HNO3,淋洗体积为30mL。当测定溶液中存在100mgCu2+,50mgFe3+,20mgZn2+,10mgW、Mo6+,1mgSb5+、Bi3+、Sn2+、As,200μgIn3+、Se4+、Cd2+,50μgAu3+时,经阴离子交换树脂分离,均不影响测定。少量锡经上柱分离后虽影响不太大,但仍有正干扰,可在分解试样时加入盐酸及氢溴酸蒸发,使锡成四溴化锡挥发除去。

试样经预分离、富集后,用方波极谱仪在2mol/LHCl-12.5g/L抗坏血酸底液中测定铅,峰电位约为-0.46V(对银片电极)。本法适用于10×10-6~1000×10-6铅的测定。

仪器

数字极谱仪,方波极谱部分。

银片参比电极。

试剂

盐酸。

硝酸。

氢氟酸。

高氯酸。

氢溴酸。

氢溴酸(0.15mol/L)-溴化钾(5g/L)混合液称取0.5gKBr,加入80mLHBr[c(HBr)=0.15mol/L]溶解,并稀释至100mL,摇匀。用时配制。

抗坏血酸溶液(25g/L)用时配制。

铅标准溶液ρ(Pb)=100.0μg/mL,ρ(Pb)=10.0μg/mL由ρ(Pb)=1.00mg/mL铅标准储备溶液(本章41.3.1铅的EDTA容量法测定)稀释配制。

717型阴离子交换树脂将80~100目717型阴离子交换树脂用40g/LNaOH溶液及(1+9)HNO3浸泡处理,除去杂质,用蒸馏水洗至中性,备用。

离子交换柱将已处理好的717型树脂装入筒形漏斗,下接Ф8mm×100mm的交换柱,装柱高约为9cm左右,控制流速约1.5mL/min,用水淋洗。漏斗上叠放滤纸,用HBr-KBr混合液淋洗平衡。

校准曲线

移取0mL、0.25mL、0.50mL、1.00mL、2.00mL、…、10.00mL铅标准溶液[ρ(Pb)=100.0μg/mL]或0mL、0.50mL、1.00mL、2.00mL、…、20.00mL铅标准溶液[ρ(Pb)=10.0μg/mL],分别置于25mL烧杯中,低温蒸至近干,然后按试样分析步骤操作,测得峰电流值,绘制校准曲线。

分析步骤

称取0.1~0.5g(精确至0.0001g)试样置于100mL聚四氟乙烯烧杯中,用水润湿,加10mLHCl,盖上表面皿,于低温电热板上溶解20~30min。洗去表面皿,再加入5mLHNO3、3mLHF和1mLHClO4,继续加热溶解,蒸发至白烟冒尽。加入2mLHBr和1mLHCl,加热除砷、锑、锡。加入1mLHNO3,蒸干。加入1mLHCl及5滴HClO4,蒸发至白烟冒尽。

加入5滴(1+1)HCl,盖上表面皿,微热溶解干涸物。加入10mLHBr-KBr混合液,微热,用少量水洗去表面皿,冷却后再加入5mLHBr-KBr混合液,摇匀。将此溶液倾入已准备好的交换柱漏斗上,进行过滤交换。用HBr-KBr混合液洗净烧杯及滤纸,弃去滤纸,用30mL热(1+9)HNO3淋洗吸附在树脂上的铅(每次10mL,分3次淋洗),用50mL烧杯承接。加入10滴HClO4,蒸发至白烟冒尽,取下冷却后,再加入5滴(1+1)HCl,水吹洗杯壁,低温蒸发至近干。

准确加入12.5mL4mol/LHCl,盖上表面皿微热,准确加入12.5mL抗坏血酸溶液,摇匀,放置10min。于起始电位-0.3V处,用极谱仪方波部分测定,记录峰电流值,测得铅量。

铅含量的计算公式同式(41.2)。

3. 离子交换法富集分离阳离子和阴离子的原理各是什么

主要利用阴阳离子在树脂上的吸附与解吸附来完成的,比如阴离子树脂用于有机酸的富集,专而阳离子用于属生物碱的富集。当有机酸的阴离子与阴离子上的羟基负离子交换时被吸附,用酸水去洗脱,把有机酸阴离子置换下来,而达到富集效果。生物碱原理也一样,其他成分先区分不同物质的性质来设计富集的方法

4. 吸附法和离子交换法

以各类阴、阳离子交换树脂为固定相的离子交换法,以萃淋树脂为固定专相的萃淋法,以螯合树属脂、螯合纤维、活性炭、聚氨酯泡沫塑料、巯基棉及黄原脂棉等固定相的螯合-吸附法以广泛用于贵金属的分离与富集。

在HCl介质中,贵金属氯配阴离子与阴离子交换树脂相互作用的强度决定于配阴离子的电荷数,其中双电荷的[PtCl42-、[PdCl42-、[PtCl62-、[IrCl62-、[RuCl62-、[OsCl62-牢固地吸附于树脂上,而三电荷的[IrCl63-、[RhCl63-、[RuCl63-仅有很弱的亲和力。铑、钌的配合物。由于其配合物在溶液中电荷的可变性,因此它们的吸附强度也随其电荷数而变化。在实际应用中应考虑这一特性。

5. 分离与富集

铼的分离与富集常采取蒸馏、共沉淀、离子交换与吸附、溶剂萃取、液膜分离等方法进行。

62.5.2.1 蒸馏分离法

利用R2O7(或HReO4)的易挥发性,在200~220℃滴加氢溴酸或盐酸于高沸点酸如高氯酸、硫酸或磷酸溶液中,或滴加硝酸于硫酸溶液中可将铼蒸馏出来。用饱和碳酸钠溶液为吸收液,部分As3+、Se4+、Se6+、Te4+和Hg,及大部分Sb3+、Sb5+、Os、Cr、Sn、Ge、Tl+和少量钼随铼一并进入蒸馏液中。蒸馏时以水蒸汽、二氧化碳、氮气或空气为载气。如利用水蒸汽通入硫酸溶液,在270~290℃下蒸馏铼,仅Se4+、Se6+、As3+及Re-一并进入蒸馏液中,而Hg、Mo、Bi及Te只有很少量被蒸馏出来。

62.5.2.2 共沉淀分离法

(1)以砷(Ⅲ)为聚集剂

在4mol/LHCl或3mol/LH2SO4中,以砷(Ⅲ)为聚集剂,通入硫化氢可使微量铼与之共沉淀,生成的棕褐色Re2S7易溶于含过氧化氢的氢氧化铵或氢氧化钠溶液中。

(2)高铼酸亚铊

在pH4~6的乙酸盐溶液中,高铼酸(ReO-4)与铊(Ⅰ)生成高铼酸亚铊沉淀,可与铜、锌、镉、钴、镍、铝、锰、钙、镁等分离,钼酸与铊(Ⅰ)也生成沉淀,可用柠檬酸掩蔽(10mg柠檬酸可掩蔽16mg钼)。

(3)氯化四苯(TPAC)

在5mol/LHCl至6mol/LNH4OH中均可用TPAC定量地沉淀ReO-4。Hg2+、Bi3+、Pb2+、Ag+、Sn2+、VO2+,以及MnO-4、ClO-4、IO-4、I-、Br-、F-和SCN-等离子干扰测定。VO3-4及WO2-4无干扰。如在含有0.6mol/L酒石酸盐的氨性介质中且调节pH8~9的溶液中进行沉淀,则可与Hg2+、Bi3+、Ni2+、Fe3+、Pb2+、Ag+、Sn2+、VO2+、Zn2+、Cu2+、SO2-4、PO3-4、AsO3-3、VO3-4、MoO2-4、WO2-4、BO3-3等分离,MnO-4与铼同时沉淀。

(4)高氯酸四苯(TPAP)

微克量铼可在酸性、中性或碱性溶液中定量地与TPAP生成沉淀,MoO2-4不沉淀。在碱性溶液中(约2mol/LNaOH)进行沉淀,铼可与大量MoO2-4、WO2-4、AsO3-3、AsO3-4、ZnO2-2、AlO-2、CrO2-4、VO2-3、SeO2-3、NO-3、PO3-4等分离,析出的沉淀溶于热水后用2mol/LHClO4或过量高氯酸处理以交换出高铼酸离子,可用于光度法测定辉钼矿中的铼。

在pH<7.5,以铁(Ⅲ)共沉淀钼,ReO-4留在溶液中。

在pH3.5~7.5的乙酸盐缓冲溶液中,8-羟基喹啉可沉淀钼而铼留于溶液中。

在冷的(1+9)硫酸或盐酸溶液中,在Fe3+存在下,用Th4+、Rb2+或AsO3-4为聚集剂,铜铁试剂可定量地沉淀钼,残余的铜铁试剂用三氯甲烷萃取除去,铼留于水溶液中。

62.5.2.3 离子交换与吸附法

(1)纸色层析分离

以异丙醇-浓硝酸-水(7+2+2)的混合溶液为展开剂,使铼与钨、钼分离。Rf值分别为0.90、0.33和0。此法可分离10倍~100倍钨及钼存在下的1μg的铼。

(2)阳离子交换树脂

在pH1.5~5.0的盐酸中,钼以MoO2-4形式与大多数金属(铁、铜、镍、锰、铝等)一并被树脂吸附,而ReO-4进入淋洗液中,可使铼与钼分离。

(3)阴离子交换树脂

阴离子交换树脂分离富集情况及其他树脂交换分离富集铼,见表62.16、表62.17。

表62.16 阴离子交换树脂分离富集情况

续表

表62.17 其他树脂交换分离富集铼

(4)活性炭吸附

常温下(25℃),活性炭在pH8.2~9.0时,对铼、钼的吸附率分别为E(Re):96.1%~93.0%,E(Mo):0.7%~0.001%。此条件能成功分离铼和钼。

62.5.2.4 溶剂萃取法

(1)萃取分离钼

a.羟基喹啉-氯仿。在pH1.5~5.6的乙酸-乙酸铵缓冲溶液中,1g/L8-羟基喹啉/氯仿可萃取钼及钨,铼不被萃取。

b.铜铁试剂-氯仿。在1mol/LH2SO4中,用10g/L铜铁试剂-氯仿可定量萃取分离钼,铼不被萃取。

c.乙基黄原酸钾-三氯甲烷。在2mol/LHCl或pH9~11的溶液中,钼与乙基黄原酸钾生成配合物定量地被三氯甲烷萃取,铼不被萃取,适用于分离含铜的钼精矿中的铼。

d.N-苯甲酰苯胲-氯仿。在0.752~2mol/LH2SO4或pH3的盐酸介质中,钼定量地被N-苯甲酰苯胲-氯仿萃取,可从微克量的铼中分离毫克量的钼。

e.磷钼杂多酸-乙酸戊酯。在0.52~0.7mol/LHCl中,钼作为磷钼杂多酸定量地被乙酸戊酯萃取,铼不被萃取。

(2)萃取分离铼

a.喹啉。在4mol/LNaOH溶液中,ReO-4定量地被喹啉萃取,可与50mg的Mo6+,100mgW6+、V5+、Se4+、As3+、As5+分离,蒸发除去喹啉或用水和四氯化碳反萃取使铼转入水相。

b.丁酮。在5mol/LNaOH溶液中,ReO-4可被丁酮萃取(3次萃取几乎接近定量)。可与Au、Ag、Bi、Cd、Fe2+、Ga、Mo6+、Pb、Pt4+、Sb3+、W、Zn等分离,用水和氯仿(7+10)反萃取,铼进入水相。

c.甲基异丁酮。在4mol/LH2SO4中,微克量ReO-4定量地被甲基异丁酮萃取,可与Mo(Ⅵ)(<0.18%)等分离,铼可用稀氢氧化钠反萃取。

d.8-巯基喹啉-三氯甲烷。在5~11.5mol/LHCl中,铼的8-巯基喹啉配合物被三氯甲烷萃取。

e.三辛胺/三壬胺-二甲苯/三氯甲烷。在1~6.0mol/LH2SO4中,ReO-4定量地被三辛胺、三壬胺的二甲苯或三氯甲烷萃取,可与Zn、Cd、Co、Ni、Mn2+、Cr3+、Fe、In、Bi、Cu、Al、Ca、Mg、V5+、W5+、Mo6+等分离,被萃取的微量钼可用饱和草酸溶液洗除,加入草酸钠或硫酸钠有利于抑制微量钼的萃取,萃取的铼可用50~100g/L的氢氧化钠、碳酸钠、氢氧化铵溶液反萃取。

f.三丁胺-氯仿。在pH1~6.5HCl介质中,ReO-4定量地被三丁胺-氯仿萃取,可与60倍的Mo6+,600倍的Fe3+,6000倍的Ni,7000倍的Co、Pb,10000倍的Ag、Cu,12000倍的Cd等分离,被共萃取的微量Mo6+,可用饱和草酸钠溶液洗除。

g.N-苄替苯胺-氯仿。在3.5~4.5mol/LH2SO4中,ReO-4定量地被N-苄替苯胺(C6H5CH2NHC6H5)/氯仿萃取,可与Cu、Cd、As3+、Bi、Fe3+、Sb3+、Cr3+、Co、Ni、Ga、In、Ce3+、Ca、Mg、Sr、Se4+、Te4+、Ag、Hg2+、Tl3+等分离,Pd2+、Pt4+、V5+、Fe3+、Cr6+、Os6+、Ru6+、Ti4+、Ce4+与ReO-4同时被萃取,但除Pd2+、Pt4+以外的其他元素加入抗坏血酸后均不被萃取,U6+和Th也部分被共萃取,柠檬酸、酒石酸、草酸、抗坏血酸对萃取ReO-4无影响。有机相中的铼可用反萃取。

h.氯化四苯-三氯甲烷或二氯乙烷。在pH8~9且含用酒石酸或柠檬酸盐的溶液中,ReO-4与氯化四苯离子生成的缔合物可定量地被三氯甲烷或二氯乙烷萃取。当溶液中钼与铼之比为106∶1可定量分离钼。20mg的Se4+、Ni、Fe3+、Pb、Zn、Cu2+、AsO2-3、AsO3-4、WO2-4、SiO2-3、SO2-4、PO3-4不被萃取。有机相中的铼可用浓盐酸反萃取,也可在有机相直接测定铼。或将萃取液蒸干后,用水浸取并通过Dowex-50阴离子交换树脂(H+型),四苯离子被树脂交换吸附,ReO-4进入洗脱液中。

i.其他溶剂萃取。见表62.18。

表62.18 其他溶剂萃取

62.5.2.5 液膜分离法

以二苯并-18-冠-6(DBC)-L113B-(CCl4+n-Hrxance)-NaClO4溶液组成的液膜体系。在下列条件下:膜相,DBC-L113B-(CCl4+n-Hrxance)体积比为7+4+89;内相,0.2mol/LNaClO4溶液,油内比为1+1;外相2mol/LH2SO4介质,乳水比为20+100;室温(15~36℃),搅拌速度250r/min;富集时间8min。200μgRe(Ⅶ)的迁移率(回收率)达99.5%~100.5%。50mgMo6+、W6+、Fe3+、Al3+、Cu2+、Ni2+、Mn2+、Sr2+、Ba2+、Zn2+、Mg2+、Sn4+、La3+、Y3+、Cr3+、Bi3+、K+、Na+、Li+、NH+4、Cd2+、Cs+,20mgCa2+、Pb2+,5mgPt4+、Pd2+等(均为最大限量),大量Cl-、SO2-4、NO-3、SO2-4、PO3-4等,都不被迁移富集或不影响富集铼。K+存在下,对迁移铼极为有利。富集方法用于钼精矿、多金属矿和合金中铼的硫脲光度法测定,效果较佳。

6. 用离子交换法分离和富集水样中的阳离子和阴离子的原理

离子交换树脂是利用被分离离子交换能力的差别而实现分离的,一般情况下价态版高的离子选择系数大权,如铁离子的交换顺序大于钙离子,具体情况如下:对阳离子的吸附
高价离子通常被优先吸附,而低价离子的吸附较弱.在同价的同类离子中,直径较大的离子的被吸附较强.一些阳离子被吸附的顺序如下:Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+
对阴离子的吸附
强碱性阴离子树脂对无机酸根的吸附的一般顺序为:SO42-> NO3- > Cl- > HCO3- > OH-
弱碱性阴离子树脂对阴离子的吸附的一般顺序如下:OH-> 柠檬酸根3- > SO42- > 酒石酸根2- >草酸根2- > PO43- >NO2- > Cl- >醋酸根- > HCO3-

7. 离子交换分离法的特点

1 分离效率高,既能实现相反电荷离子的分离,又能实现相近电荷离子的分离。
2 应用范围广,可以用于分离、富集、纯化。
3 使用方便,处理量大,多数可再生利用。
4 操作比较麻烦,周期长。

8. 用什么方法富集分离铜论文

灵敏度足够高的海水微量元素的直接测定法不多,加上海水中有大量基体盐类存在,不易得到可靠的结果,常先用分离富集方法,消除干扰,并提高待测微量成分的浓度,然后进行测定。 富集分离法 常用的方法有:溶剂萃取法、离子交换法、共沉淀法和冻干法等。 ① 溶剂萃取法。 例如吡咯烷基酸铵-甲基异丁基酮,可用于萃取海水中的镉、铜、镍、铅、锌、银、钴、铁等元素,供原子吸收光度法测定用。 ② 离子交换法。纤维素交换法,可富集海水中的钴、铬、铜、铁、钼、镍、铅、锌、铀等元素,供X射线荧光法和中子活化法测定用;螯合树脂交换法,可富集镉、铬、铜、铁、锰、镍、铅、锌等元素,供原子吸收分光光度法测定用。 ③ 共沉淀法。用分光光度法、原子吸收法或中子活化法测定海水中微量元素之前,可用共沉淀法富集分离。例如用氢氧化铁为沉淀剂,分离海水中的砷、铕、镧、钌、锡、钽等成分之后,再用中子活化法测定它们的含量。 ④ 冻干法。可用于中子活化法测定海水中多种元素之前的富集,但不能分离出干扰元素。

9. 分离和富集

钍和其他伴生元素的分离可用沉淀、萃取、离子交换和萃取色层等方法。

钍的沉淀分离方法很多。苛性碱、氢氧化铵、吡啶、六次甲基四胺都能使钍生成白色氢氧化物沉淀。小量钍可以用铝、铁为聚集剂,沉淀在pH3.5即开始形成,不溶于过量试剂。与钍形成配合物的有机酸如酒石酸等不应存在。此法可将钍与碱金属、碱土金属、锌、镍、铜、银等元素分离,用吡啶或六次甲基四胺还可将钍与稀土分离。在0.5~1.3mol/L硝酸或盐酸介质中,草酸浓度为10~50g/L时,钍成草酸盐沉淀而与铁、铝、锆、钛等元素分离,铀(Ⅵ)、稀土、钙同时沉淀。少量钍可用稀土和钙做聚集剂。草酸钍不溶于水和稀酸,但溶于过量的草酸铵溶液中。在pH≥1.5时,过氧化氢能沉淀钍为过氧化钍而与碱金属、钛、铀、锡、铍、稀土等元素分离,铈部分共沉淀。在6mol/L硝酸溶液中可用碘酸盐沉淀大量钍,在0.5~1mol/L硝酸溶液中,以亚汞为聚集剂,可用碘酸盐沉淀微量钍,铀(Ⅳ)、铈(Ⅲ)及稀土元素等不沉淀,钛、锆、铁、铌、钽、铀(Ⅳ)和铈(Ⅳ)同时被沉淀。碘酸钍不溶于过量试剂及强酸中,能溶于还原性酸中(如盐酸)。在稀盐酸溶液中,氢氟酸能将钍沉淀,成难溶的氟化钍,稀土元素同时被沉淀,与铌、钽、锆、钛、钨等元素分离。大量氟化铵存在时能使钪分离,氟化钍能溶于硼酸和硝酸中。在pH2~2.8的盐酸或硝酸介质中,有机试剂如苯甲酸、间-硝基苯甲酸等都能沉淀钍,与铍、锰、锌、镍、钴、铀、碱土金属等元素分离,严格控制溶液的酸度可与稀土元素定量分离。

萃取分离方法,适用于微量钍的分离。在饱和硝酸铝的1.5mol/L硝酸溶液中,用异丙叉丙酮[即异丙烯基丙酮(CH3)2C=CHCOCH3]萃取钍,除铀,钒及少量锆以外,几乎能与所有伴生元素分离。在pH>1的硝酸溶液中用等体积的0.25mol/LTTA(噻吩甲酰三氟丙酮)的苯溶液萃取钍,钋(Po)同时被萃取。另外在适当的介质中,磷酸三丁酯亦能萃取钍,与铀、镭等分离。在钍的3mol/LHCl溶液中用5g/L苯甲酰苯胲-三氯甲烷萃取钛使与钍分离。

萃取色层分离方法,同样也适用于微量钍的分离和富集。目前胺类萃取剂,N263(氯化三辛基甲基胺)、N235(三正辛胺)、N1023(国产胺型萃取剂);中性配位剂,P350(甲基磷酸二甲庚酯)、TBP(磷酸三丁酯)、CL-TBP萃淋树脂(苯乙烯-二乙烯苯为骨架,含有60%TBP共聚物)、5208萃淋树脂(异烷基磷酸二丁酯);酸性配位剂,P507(2-乙基己基磷酸单2-乙基己酯)等结合载体聚三氟氯乙烯粉、聚四氟乙烯粉、硅烷化硅球、DA201大孔吸附树脂(二乙基苯-丙烯腈共聚物)、X-5型大孔吸附树脂(聚二乙烯苯)、交联聚甲基丙烯酸型树脂和泡沫塑料等组成固定相,均能达到在一定浓度的硝酸溶液中富集钍分离钛、锆、铀、稀土等干扰离子。在分析实践中应用较好的是N263、P350、CL-TBP萃淋树脂和5208萃淋树脂等。N203和X-5型聚二乙烯苯或DA201树脂组成固定相,用2mol/LHNO3(1~7mol/L)上柱液通过色层柱,从而使钍与大量铀、锆、磷、铁和稀土等分离,最后用4~5mol/LHCl淋洗钍。P350与X-5型聚二乙烯苯组成的固定相,以2.5mol/LHNO3(1.5~9.0mol/L)介质上柱可使钍与大量铁、铝、钙、镁、钼、铜,钛、稀土等元素分离,最后以5mol/LHCl解脱钍。CL-TBP萃淋树脂是在4mol/LHNO3(3~8mol/L)中富集钍与稀土、铌、钽等杂质分离,最后用3~5mol/LHCl解脱钍。5208萃淋树脂是在0.1~6mol/LHNO3中富集钍与大量铀、钛、锆、锌、钼(Ⅵ)、砷(Ⅴ)、稀土元素等分离,最后用0.1~6mol/LHCl淋洗解脱钍。

离子交换分离方法,也适用于微量钍的分离。在2~7mol/LHCl介质中,钛、锆、铀、稀土等在743大孔阳离子交换树脂上的分配系数与钍差别较大。因此,适用于钍与许多元素的分离,特别适用于钍与高量钛、锆和稀土元素的分离。根据试样中钛,锆和稀土元素含量的不同,可先用4mol/L或2mol/LHCl淋洗除去这些元素,用氯化铵溶液淋洗,使氢型阳离子交换树脂转变为铵型,最后以草酸铵溶液淋洗钍,用光度法测定钍。也有在8mol/LHNO3介质中,用742大孔阴离子交换树脂富集钍,分离铀和稀土等干扰,最后以水解脱钍,光度法完成测定。

10. 分离富集-电感耦合等离子体发射光谱法测定稀土分量和钪

试样经过氧化钠熔融,水提取,稀土元素形成氢氧化物沉淀,沉淀溶于盐酸,经强酸性阳离子交换树脂分离富集、洗提,电感耦合等离子体发射光谱仪测定。分析步骤详见第76章海洋沉积物分析中76.21.2稀土分量和钪的电感耦合等离子体发射光谱法测定。称取试液量减为0.25g,过氧化钠加入量为3g。

阅读全文

与离子交换分离富集法的文献相关的资料

热点内容
液相用溶剂过滤器 浏览:674
纳滤水导电率 浏览:128
反渗透每小时2吨 浏览:162
做一个纯净水工厂需要多少钱 浏览:381
最终幻想4回忆技能有什么用 浏览:487
污水提升器采通 浏览:397
反渗透和不发渗透净水器有什么区别 浏览:757
提升泵的扬程 浏览:294
泽德提升泵合肥经销商 浏览:929
饮水机后盖漏水了怎么办 浏览:953
小型电动提升器 浏览:246
半透膜和细胞膜区别 浏览:187
废水拖把池 浏览:859
十四五期间城镇污水处理如何提质增效 浏览:915
怎么测试空气净化器的好坏 浏览:519
提升泵是干嘛的 浏览:744
布油做蒸馏起沫咋办 浏览:252
广州工业油烟净化器一般多少钱 浏览:204
喜哆哆空气净化器效果怎么样 浏览:424
油烟净化器油盒在什么位置 浏览:582