① 生活污水磷超标,怎么办
生活污水磷超标可以用以下方法处理:
1、生化池生化处理法
对于生活污水中磷超标,最常见的方法是生化处理的。一些大型的生活污水处理厂都会对于有生化池,可以降解COD、总磷、总氮等指标。总磷来讲,因为生化处理能把部分有机磷转化为正磷,在生化以后,还要进行化学处理,在废水中加入铁系除磷剂进行处理。
2、钙法除磷:
钙法处理高浓度含磷废水,有较好的处理效果,其处理工艺简单、运行费用低,易操作。主要使用的化学沉析剂有铝盐、铁盐、钙盐。其中羟基磷灰石的平衡常数大,磷酸盐在碱性条件下与钙离子反应生成羟基磷酸钙,随着pH值增加反应趋于完全。
3、炉渣吸附除磷:
炉渣是钢铁冶炼过程中产生的固体废弃物,主要由CaO、FeO、MnO、SiO2、Al2O3等氧化物组成,其中所含的每种成分均可以利用。即通过投加炉渣处理磷超标废水。
4、SBR强化生物除磷:
SBR强化生物除磷适合于原水量不大但含有高浓度磷的废水处理,反应器采用厌氧/好氧交替进行。
5、大孔径离子交换法除磷:
大孔径离子交换法除磷的离子交换树脂采用强碱阴树脂,再生用质量分数为8%的食盐溶液,进行磷超标废水处理。
污水中的磷超标,其处理可以使用钙法、炉渣吸附、SBR强化生物、大孔径离子交换法等方法除磷。含磷污水处理过程中,如遇到处理不达标时,可以投加除磷药剂处理。
② 焦化厂污水排放标准
中国对焦化污水中有害物质的最高允许排放浓度为:酚0.5mg/L,氰化物0.5mg/L,硫化物1.0mg/L,氨氮15mg/L,化学需专氧量100mg/L、生化需氧量30mg/L。苯并(a)芘列为第一类污染物,属其最高允许排放浓度为0.03μg/L。
焦化废水中多环芳烃不但难以降解,而且通常还是强致癌物质,对环境造成严重污染的同时也直接威胁到人类健康。
(2)废水铜离子排放27倍犯什么法扩展阅读
废水来源
焦化厂主要生产焦碳、商业煤气、硫铵和轻苯等化工产品。该厂焦油回收系统采用硫铵流程,焦油加工采用管式炉两塔连续蒸馏,工业奈生产工艺为双炉双塔连续蒸馏、洗涤、精制。
在焦炉煤气冷却、洗涤、粗苯加工及焦油加工过程中,产生含有酚、氰、油、氨及大量有机物的工业废水。
③ 屠宰废水的处理概况,排放概况,处理方法(SBR法)
用SBR法处理屠宰废水
http://www.chinaenvironment.com 2008-1-16 中国环保网
吉林柳河华龙集团公司宰鸡厂位于吉林柳河县,屠宰废水排放量为360m3/d,该厂总排口的废水COD为1300~1700mg/L,SS约500mg/L,pH值>9.0。废水中含大量的油血,但鸡毛有回收设施。
柳河华龙公司决定该废水处理工程分两期完成,一期治理规模为120m3/d,达标后再进行二期工程的设计,本工程为一期。
1 工艺流程
采用以SBR为主体的处理工艺,其流程如图1。
1.1 隔油沉淀池
兼具隔油、沉淀、调节三重作用,地下式,钢混结构,废水重力流入,加盖保温且可防止臭味散逸。双廊道式:2×(2.5 m×12.0 m×2.5 m),设计规模兼顾二期工程,于第二廊道中部设挡板隔油,挡板位置:水下0.5 m,水上0.1 m,可有效隔除鸡油。该池盖板设三处人孔,可定期清除表层浮油等杂物。廊道末端设潜水泵,将废水经格栅泵入SBR池,廊道前端下部设潜污泵,将沉淀污泥等泵入污泥浓缩池。
1.2 格栅
尺寸:1.0 m×1.0 m,栅隙:5 mm,用以截留大的颗粒物质,设于处理间内。
1.3 SBR池
尺寸为6.0 m×4.0 m×5.5 m,钢结构,有效水深为4.5 m,最大滗水深度为1.75 m。下部进水,以便于快速混合。滗水器为虹吸式,位于进水口对侧。排泥管位于距底平面0.5 m处,穿孔管排泥。采用罗茨风机曝气,气水比为15:1。曝气头采用膜片式曝气器,服务面积为0.8m2。
1.4 浓缩池
直径为2.0 m,高为3.0 m,钢结构。SBR池的剩余污泥靠重力流入,隔油沉淀池的污泥用潜污泵泵入。静止沉淀后,上清液返回隔油沉淀池,浓缩后污泥重力流入附近煤场,暂掺煤烧掉,待二期工程投产后,再进行脱水处置。不另设置贮泥池。
控制柜可自动和手动控制污水泵、污泥泵、水位控制器、虹吸式滗水器、罗茨鼓风机等的启闭,并可自动或手动控制SBR系统的各个运行时段。
2 处理效果
2.1 工程调试
采用间歇进水、非限制性曝气方式,曝气:6 h,沉淀:1 h,排水:1 h。取吉化公司污水厂回流污泥约4 m3打入SBR池,同时启动污水泵使SBR池达到设计水位,曝气后不断观察SBR池混合液及澄清液现象,3d内澄清液内含细碎悬浮物,5 d后消失,同时混合液由灰色转褐色,7 d后为明显褐色。静沉时出现明显污泥层,上清液澄清,视为培养驯化结束。
2.2 运行效果
本系统从试运行至今,已历时3年多时间,期间泥水分离状况良好,污泥层界面非常清晰,出水清澈,瓶装条件下与市售纯净水比较竟难于区分。整个系统运行也一直非常稳定,未发生过故障。当地环保部门曾进行了若干次测定,其结果如表1所示。
表1 处理系统的进、出水水质监测情况 mg/L 时间 指标 进水 隔油池出水 出水 去除率(%)
1998年7月6日 CODCr 1658 896 58 96.5
BOD5 761.5 416.5 16.5 97.8
SS 570 87 0
NH3-N 15.41 44.14 2.60 83.1
1998年7月10日 CODCr 1300 73 94.4
999年3月27日 CODCr 1420 729 67 65.3
1999年3月28日 CODCr 1352 702 58 95.7
1999年3月29日 CODCr 1463 720 38 97.4
999年3月30日 CODCr 1569 841 62 96.0
1999年4月1日 CODCr 1611 832 62 96.2
1999年4月2日 CODCr 1705 922 75 95.6
2000年1月8日 CODCr 1652 63 96.2
BOD5 990 25 97.5
SS 621 28 95.5
从表中数据可见,宰鸡废水经本系统处理,COD去除率为94.4%~97.5%,大多在95%以上,出水COD均低于75 mg/L;BOD去除率为97.5%以上;SS去除率为95.5%以上;NH3-N去除率为83.1%。运行表明,pH值为9.60的碱性废水进入隔油沉淀池后,其出水pH值降至6.96,产生酸化作用,这可能也是隔油沉淀池去除率高的一个原因。而此过程中,NH3-N明显升高,证实了确已发生生化反应。
3 经验与体会
①对宰鸡废水,以8 h为一周期,藉助本系统就可获得良好且稳定的处理效果。
②将隔油、沉淀、调节三功能集于一池,不仅可节省占地和投资,且可获得良好的运行效果。
③对北方的宰鸡废水,细格栅一定要置于隔油池后。否则,其栅隙将为易凝固的鸡油堵塞,严重时运行10 min就可全部堵死,废水无法通过。
第一章 概述
1.1. 项目概述
1.1.1. 项目名称、地点
项目名称:某县定点屠宰场废水治理项目
项目地点:某县水东
1.1.2. 项目概况
屠宰过程中将产生一定量的废水,废水主要来自屠宰后清洗、解体冲洗、内脏清洗和地面冲洗以及牲畜粪便废水等废水。废水中含有大量的有机物质,主要成分有:动物粪便、血液、动物内脏杂物、畜毛、碎皮肉和油脂等有机物,属于高浓度有机废水。废水呈褐红色,具有较强的腥臭味。这些废水中的脂肪、蛋白质等物质不经过处理,直接排入水体,将对其周围水体造成严重富营养化,严重破坏水体的自尽能力,造成水体发黑变臭,影响环境和农业灌溉。信丰县定点屠宰场为了正常生产和持续发展,保护周围水体环境,非常重视废水污染环境问题,决心对废水进行治理,并委托南昌中冠环境工程有限公司制订治理方案。南昌中冠环境工程有限公司在得知信丰县定点屠宰场废水需要治理信息后到屠宰场了解情况。针对该屠宰场废水性质和排放要求,南昌中冠环境工程有限公司从降低废水处理工程造价和运行成本目标出发,采用先进废水治理技术和设备。本着此原则拟定了本治理方案文件,供企业和有关部门领导审议。
1.1.3. 项目范围
主要包括从治理工程的进水口至出水口的工艺、构筑物、设备、电气、仪表等的设计、图纸、工程报价、运行费用分析等技术文件等。
1.2. 设计依据
1.2.1. 编制依据
信丰县定点屠宰场提供的资料和数据;
《中华人民共和国环境保护法》 (1989年12月)
《中华人民共和国水污染防治法》 (1984年5月)
《中华人民共和国水污染防治实施细则》 (1989年7月)
《肉类加工工业水污染物排放标准》 (GB13457-1992)
《污水综合排放标准》 (GB8978-1996)
《室外排水设计规范》 (GBJ14-87(1997版))
其余各专业规范等
同类行业同规模水质资料;
1.2.2. 设计规范、标准
(1)J14-87《室外排水设计规范》(修订本)
(2)GB8978-2001《污水综合排放标准》
(3)GB50069-2002《给水排水工程结构设计规范》
(4)GB50010-2002《混凝土结构设计规范》
(5)GB50052-95《工业与民用供配电系统设计规范》
(6) GB50062-92《电力装置的继电保护和自动装置设计规范》
(7) GB50054-95《低压配电装置及线路设计规范》
1.2.3. 设计水量、水质
设计水量:根据某县定点屠宰场提供数据,每屠宰一头生猪的用水量为0.4吨左右,现在排放废水量不超过80t/d,为了考虑到废水的波动性以及可持续发展设计废水量为100t/d。
水质:由于甲方未提供水质数据,参照同行业内废水的水质特性做参考,确定设计废水水质如下:
项目 废水水质(mg/L)
CODcr 2500
BOD 1000
SS 1500
NH3-N 30
pH 7--8
油脂 300
总P 18
大肠菌群 36x1012(个/100ml)
表中单位均以mg/l计,PH除外。
1.2.4. 污水排放标准
表二 国家一级排放标准
项目 废水水质(mg/L)
CODcr 100
BOD 20
SS 70
色度 50
pH 6-9
NH3-N 15
动植油 15
大肠菌群数(个/L) 5000
表中单位均以mg/l计,PH除外。
第二章 污水处理设计原则
2.1. 污水处理系统设计原则
认真贯彻国家关于环境保护工作的方针和政策,使设计符合国家的有关法规、规范、标准。
综合考虑废水水质、水量的特征,选用的工艺流程技术先进、稳妥可靠、经济合理、运转灵活、安全适用。
污水处理系统平面布置力求紧凑,减少占地和投资。
妥善处置污水处理过程中产生的污泥和其它栅渣、沉淀物,避免造成二次污染。
污水处理过程中的自动控制,力求管理方便、安全可靠、经济实用。
高程布置上应尽量采用立体布局,充分利用地下空间。平面布置上要紧凑,以节省用地。
严格按照厂方界定条件进行设计,适应项目实际情况要求。
2.2泥处理系统设计原则
系统产生的污泥经浓缩后运输至垃圾填埋场处理。
工艺设计尽量减少系统污泥产生。
第三章 污水处理系统工艺
3.1废水属性分析及工艺路线的确定:
屠宰废水含有大量的污血、油块和油脂、毛、肉屑、骨屑、内脏杂物、未消化的食物和粪便等污染物,带有令人不适的血红色和使人厌恶的血腥味。
屠宰废水是一种高浓度有机污染废水,成分复杂。屠宰废水具有以下特点:
1、具有一定血红色,主要是由猪血造成;
2、具有血腥味,主要是由猪血和蛋白质分解造成;
3、含有大量的悬浮物,主要由猪毛、肉屑、骨屑、内脏杂物、未消化的食化和粪便等形成;
4、含有较高动物油脂;
5、含有大量大肠杆菌。
根据废水特点及处理出水要求,该废水处理工艺采用物化+生化处理工艺是必需的。废水CODcr与色度较高,废水中油脂浓度超过40mg/l时,油脂粘附于生物膜表面,阻断废水与生物膜的接触,使生化去除效率下降;废水中含有的大量猪毛、肉屑、骨屑、内脏杂物、未消化的食化和粪便等也不易生化,因此该废水必需采取必要的预处理及物化处理,尽量降低进入生物处理构筑物的悬浮物和油脂含量,再进行生化处理,确保生化处理的正常运行。南昌中冠环境工程有限公司工程师到信丰县定点屠宰场收集数据,根据现场情况,屠宰场已经具备了前端化粪池,经化粪池出水废水呈现黑色并且带有部分油脂,但所含悬浮物较少。屠宰废水除了浓度高,色度高外,还有胺氮,总磷超标比较难处理,因此在设计过程中应该考虑到它们的去除。因为屠宰场屠宰主要集中在夜间,在废水的排放特点、废水的属性、以及现在有构筑物的前提下,现拟定以下工艺:
拟定污水处理工艺流程:
污水线路
污泥线路
3.2废水工艺流程简介:
由于屠宰废水中含有一定量的大块漂浮物(血污、毛皮、杂物 染
物等),因此先用格栅予以拦截下来,以保证后续设备的正常运行,此设施屠宰场现在已经具有。因为屠宰废水中含有血污、油脂等大分子有机物存在,直接进入好氧将很难降解,因此格栅出水进入化粪池。屠宰场现有化粪池能够起到一定的处理效果,但现有出水浓度依然很高并且夹带部分油脂,为了减轻后续处理设施的负荷,因此考虑在前端加一座隔油池以去除油脂。屠宰场因为工作时间的因素,它的排水周期跟其它废水排放周期不同,它主要集中在夜间排放,因此必须设置一个较大的调节池来调节水质水量以保证整套设施的正常运行,减轻对后续设施带来的冲击负荷,废水经调节池收集然后通过泵泵入后续处理设施。废水经过前端化粪池处理后,废水中依然含有大部分大分子有机污染物,因此需要进一步对其降解为小分子物质,为后续好氧生化做准备,并且考虑到废水中氨氮和总磷的超标,因此必须设施好氧—缺氧的交替运行环境来达到硝化—反硝化的交替运行来达到脱氮除磷的效果,此处通过设置水解酸化池将后续好氧处理出水部分回流至水解酸化池来实现。废水经过水解酸化池后进入好氧池,此处将好氧池分为两段,它的好处在于在不同的好氧段,微生物根据环境不同而呈现空间的分布,具备针对性,有着更好的去除效果。废水经过前端各个生化处理设施处理后,有机污染负荷很大程度得到降解。但废水中色度依然难以达标,为了对色度的去除,并同时考虑对COD的降低和氨氮及总磷的降低,因此此处设置混凝沉淀池并且投加针对性的药剂。沉淀池出水,进入消毒池,然后最终达标排放。
3.3污染物指标去除措施及去除率预测
本方案中主要污染物的去除措施如下:
CODcr/BOD5的去除:主要通化粪池、水解酸化、好氧等生物降解法达到去除CODcr/BOD5的目的。
SS的去除:主要通过前端现有的设施沉淀达到去除SS的目的。
NH3-N的去除:主要通过生化时的消化及反消化作用达到去除NH3-N的目的。但由于本工程NH3-N含量相对较高,在进水水质偏高及温度偏低时出水的NH3-N含量会略高于排放标准,此时超标部分通过化学来去除。因此在生化池后设置混凝沉淀池,剩余的氨氮通过投加MgCl2和NaH2PO4, 生成难溶复盐MgNH4PO4•6HzO(简称MAP)结晶,通过重力沉淀,使之从废水中分离。从而最终保证了出水的氨氮常年达到去除的目的。
动植物油的去除:主要通过隔油池达到去除动植物油的目的,并且部分通过厌氧降解的方法去除。
大肠杆菌群的去除:通过后续消毒池消毒去除。
各单元处理效率预测一览表(单位:mg/L)
项目 进水COD
mg/l 去除效率
% 进水BOD
mg/l 去除效率
% 进水SS
mg/l 去除效率
%
格栅 2500 1000 300
化粪池 2500 35 1000 30 300 80
隔油池 1625 10 700 5 60
调节池 1463 5 665
兼氧池 1390 30 665 25
好氧Ⅰ 973 70 499 85
好氧Ⅱ 292 65 75 80
混沉池 102 20 15
消毒池 82 10
出水 74
标准 100 20 70
第四章 污水处理系统构筑物、设备
4.1格栅、化粪池
为防止毛皮、碎肉、内脏杂物等大颗粒杂质进入后续设施沉积在其后设置粗、细两格栅,以保证后续设备的正常运行。栅渣定期清除,作垃圾处理。化粪池即是简易的厌氧装置,它是在厌氧的条件下通过厌氧菌或者兼性菌的作用将污水或者污泥中的有机物分解成为CH4和CO2,使有机物得到降解,污泥得到稳定的过程,此工程中它能起到降低污染负荷并分解大分子无染物的作用。本工程中利用屠宰场原有设施。
4.2隔油池
虽然前端设置了化粪池,但出水中仍然含有油脂物质,因此此处增设隔油池。隔油池此处采用折流式简易结构,该池的设置主要是强化预处理的作用,其功能主要是隔除水中的浮油、浮渣,减轻后续处理负荷。
因为屠宰废水集中排水主要夜间,按照加工8小时,废水量为总排水量的80%为例,则平均每小时排水为10立方,在晚间最大流量时隔油沉淀池设计停留时间HRT=1.7h,有效容积V有效=18m3(L×W×H=4.0m×1.0m×4.5m,有效水深4.3m),采用钢筋混凝土结构。因为前端具备化粪池,进水中含渣量很少,因此不专门配置排污泵。
4.3调节池
由于排水的周期性与水质的不均匀性,来自各时的水质、水量均不一样,一般高峰流量为平均处理量的2~8倍,并且屠宰场主要在夜间工作,因此为保证后续处理设施的正常运行和达到设计的出水水质,同时调节水量和均化水质,所以设置一座调节池。
调节池设计停留时间HRT=12h,有效容积V有效=50m3(L×W×H=4m×3m×4.5m,有效水深4.2m),采用钢筋混凝土结构,半地埋式结构。污水由一台潜污泵泵入至水解酸化池中。潜污泵型号WQ10-15-1.5,流量Q=10m3/h,扬程H=15mH2O,功率N=1.5kW。
4.4生化处理部分
生化处理采用A2/O/O法处理工艺。由于废水中有机物浓度较高,且含有大量大分子污染物,直接采用好氧处理会使处理效率偏低。生化处理前段采用厌氧处理工艺,利用厌氧反应可使屠宰废水中大分子难降解有机物转化为水分子易降解的有机物,出水的可生化性能得到改善,这使得好氧处理部分的停留时间小于传统处理工艺。与此同时,悬浮物被水解为可溶性物质,使污泥得到稳定处理。结合现场情况以及降低一次性投资成本,因为本工程中化粪池容积较大,因此不专门设置厌氧池,但考虑到硝化反硝化运行的条件,后续增加一个水解酸化池。
调节池出水泵入水解酸化池内,通过无机氧化物中的氧替代分子氧进行生物氧化作用,进一步将有机物分解,并且后续沉淀的污泥及部分好氧出水通过回流进入前端水解酸化池,近一步通过反硝化作用去除氨氮。
利用活性污泥法处理肉类加工废水在技术上很成熟,国内外应用普遍,都取得较理想的效果。
活性污泥法是由曝气池、沉淀池、污泥回流和剩余污泥排除系统所组成,此工程中为了提高处理效果,我们将采用活性污泥和生物接触氧化法组合使用。前端水解酸化池出水进入曝气池,通过曝气设备充入空气,空气中的氧溶解入污水使活性污泥混合液产生好氧代谢反应。曝气设备不仅传递氧气进入混合液,且使混合液得到足够的搅拌而呈悬浮状态。这样,污水中的有机物、氧气同微生物能充分接触反应,在微生物的新陈代谢功能的作用下,污水中有机污染物得到去除,污水得到净化。
由于污水的生化性比较好,采用成熟的活性污泥和生物接触氧化组合的生化方法处理较合理。该工艺具有容积负荷高,耐冲击负荷能力强,不易产生污泥膨胀,运行稳定,操作管理方便,运行费用低等优点。水中呈溶解态、胶体态的有机成份在此能得到最大程度的降解。
★A2/O/O工艺具有如下特点:
(1)、具有多种净化功能,可有效去除有机污染物。
(2)、对冲击负荷有较强的适应能力,出水水质好且稳定,动力消耗相对较低。
(3)、操作简单、运行方便、易于维护管理。
(4)、污泥产生量少,污泥颗粒大,易于沉淀。
好氧池中采用弹性填料,其比表面积大,水流特性优越,不易堵塞,表面易挂膜,有利于提高生物膜的活性与生物量。好氧池采用罗茨曝气机,并且在池底安装微孔曝气头,它能够有较高的氧传递效率,曝气均匀,并且使污水在池内不断循环,确保污水与生物膜充分接触。型号为NSR50,排出压力49KP,进气量为2.43m3/min。
曝气处理后硝化液回流至前端水解酸化池内进一步脱氮,在缺氧菌的作用下,使污水中的硝酸盐和亚硝酸盐还原成N2和H20,曝气池是一种活性污泥法和生物膜法组合的生物处理装置,通过低噪音的罗茨鼓风机提供氧源,通过放置填料,鼓风曝气,设回流系统,对、氮BOD5、磷的去除有显著的效果。
该系统的脱氮原理:
污水中的氨氮(HN3—N)95%以上是以NH4+形色存在,经鼓风曝气,首先有亚硝酸菌将氨氮转化为亚硝酸盐:
(亚硝酸菌)
NH4++1.5O2 NO2-+2H++H2O
然后再由硝酸菌将亚硝酸盐转化为硝酸盐:
硝酸菌
NO2+0.5O2 NO3-
总的反应为:
NH4-+2O2 NO3+2H++H2O
以上反应在好氧段内进行,在水解酸化段,硝酸盐和亚硝酸盐通过兼氧微生物或厌氧微生物(如产碱杆菌、假单胞菌、无色杆菌等)进行反硝化脱氮,反消化菌利用NO3中的氧(又称为化合态氧或硝态氧),继续分解代谢有机污染物,去除BOD5,同时将NO3中的氮转化为氮气N2 ,这个过程可用下式表示:
反消化菌
NO3-+有机物 N2 +N2O+OH
该系统的除磷原理:
厌氧段、水解酸化段占优势的非丝状储磷菌把储存的聚磷酸盐进行分解,并提供能量,大量吸附水中的BOD5,并释放出正磷酸盐,使厌氧段的BOD5下降,含磷量上升。污水进入好氧段后,好氧微生物利用氧化分解获得的能动量,大量吸收状况释放的正磷和原水中的磷,完成磷的过渡积累,从而达到去除BOD5和除磷的目的。
厌氧池:厌氧池用现有的化粪池代替,不增加新的设施。
水解酸化池:设计停留时间HRT=8.0有效容积V有效=33.6m3(L×W×H=4.0m×2.0m×4.5m,有效水深4.0m),采用钢筋混凝土结构。
配套设施: 弹性填料 填料架 布水管
一段好氧池:设计停留时间11.5h,有效容积为V有效=48m3 (L×W×H=4.0m×3.0m×4.5m,有效水深4.0m),采用钢筋混凝土结构。
配套设施: 弹性填料 填料架 曝气头 曝气支架 曝气机
二段好氧池: 设计停留时间11.5h,有效容积为V有效=48m3 (L×W×H=4.0m×3.0m×4.5m,有效水深4.0m),采用钢筋混凝土结构。
配套设施: 弹性填料 填料架 曝气头 曝气支架 曝气机
④ 物化法处理印染废水的研究进展
我国是印染纺织第一大国,而印染行业又是工业废水排放大户,据不完全统计,全国印染废水每天排放量为3.0×106~4.0×106t。印染废水具有水量水质变化大、有机污染物含量高、色度深、pH波动大等特点,过去常采用成本较低的生化法处理即可满足较低的排放标准。
1处理印染废水的物理方法
常用的处理印染废水的物理方法主要包括吸附、混凝、膜处理等。通常地,吸附和膜处理技术作为生物处理的深度处理技术;而混凝技术视具体情况可以放在生物处理工段的前面,也可以放在后面。这些技术都可取得较好的效果。不过一般来说此类技术只是对废水中的污染物进行了相间转移,并没有从根本上消除污染,而且相应材料消耗较大,增加了处理成本,限制了大范围的推广应用。
1.1吸附法
当印染废水与多孔性物质混合或通过由其颗粒组成的滤床时,污染物就会进入多孔物质的孔隙内或者是黏附在表面而被除去。吸附法适用于低浓度印染废水,多用于深度处理。应用最多的吸附剂是活性炭,但单独采用活性炭吸附处理印染废水的成本很高。
近些年来研究的重点主要在于寻找开发新型廉价易得的吸附剂,并对其进行改性来提高吸附性能,其种类和主要性能如表1所示。
1.2混凝法
混凝工艺流程简单,操作管理方便。但由于染料品种繁多,单一混凝剂难以适应成分复杂的印染废水,因此开发新型高效无毒混凝剂,对现有药剂进行改性,争取做到一剂多用是目前该技术发展的趋势。
目前常用的絮凝剂包括无机絮凝剂、有机絮凝剂及生物絮凝剂。无机絮凝剂主要有铝盐、铁盐等低分子混凝剂以及聚合氯化铝(PAC)、聚合硫酸铁等高分子混凝剂。传统的铝盐混凝一直占主导地位,其絮体小、形态稳定,对大部分染料废水处理效果比较理想,但反应较慢,受温度影响较大且有毒性;铁
盐反应快、絮体大、易失稳沉淀,对疏水性染料脱色效率高,但对亲水性染料脱色不理想,投加量不当会使水体呈现黄色,COD去除率低。有人围绕着铁磁性物质展开研究,通过磁种混凝使非磁性污染物获得磁性,实现磁分离来缩短时间。D.Pak等〔1〕将炼钢过程中产生的废渣粉碎(其成分中含有磁性铁氧化物)来处理纺织废水,沉降速度较FeCl3或PAC大10倍,对色度、SS、TOC、COD、总氮和总磷的去除率都较高;贾宏艺等〔2〕利用磁性纳米Fe3O4颗粒的超顺磁特性,在外加磁场的作用下将磁颗粒、亚铁盐及有机物形成的混凝体迅速沉降下来,COD去除率较只投加亚铁盐时高15%。
有机高分子絮凝剂较无机絮凝剂絮凝速度快且稳定,用量少,受共存盐类、pH及温度影响小,产生的残渣也较少,因此应用前景更加广泛。主要品种有聚丙烯酰胺、聚丙烯酸、聚二甲基二烯丙基氯化铵、聚胺等,由于合成高分子有毒性,因而天然无毒的高分子絮凝剂如壳聚糖日益受到重视。但壳聚糖只能溶解于弱酸性溶液,溶解度较小,在壳聚糖分子上引入基团对其进行改性,增强壳聚糖的螯合能力已经成为必然趋势。刘运学等〔3〕对比了羧甲基壳聚糖和壳聚糖对某毛巾厂印染废水的混凝处理效果,在相同工艺条件下前者得到的脱色率和COD去除率都优于后者。
近些年生物絮凝剂发展迅猛,其对水中胶体和悬浮物具有絮凝作用,且无二次污染,具有高效、无毒、絮凝对象广泛、脱色效果独特等优点,但是成本较高,技术上还存在一些问题。
1.3膜分离
膜分离技术由于无相变、设备简单、操作方便等优点,迅速发展日趋成熟并已形成工业化规模,但不适宜直接处理印染废水,否则极容易造成严重的膜污染且难以再生;膜分离技术多用于深度处理,降低和去除残存的有机物、色度并脱除无机盐分,分离前段工艺中形成的微生物、絮凝物或是投加的固体催化剂,与其他技术联用的效果极好,出水可以达到回用标准。丛利泽等〔4〕采用混凝沉淀法对COD高达2500mg/L,色度高达10000倍的印染废水进行预处理,后接膜生物反应器与纳滤膜分离系统组合工艺,处理后COD降到30mg/L,NH3-N降到8mg/L,色度为0,其中纳滤膜主要分离色素等生物难降解小分子物质。浙江某公司〔5〕采用超滤-反渗透联用处理印染废水,超滤可去除部分有机物及色度,更主要是去除可能污堵反渗透膜的胶体、细菌、病毒等杂质,延长了反渗透膜的清洗周期和寿命;反渗透可去除98%的盐分,完全去除硬度,同时对COD、色度也具有极高的去除作用,出水完全达到纯水标准。
2化学氧化方法
化学氧化能够使印染废水中的有机染料发生化学反应而被分解,常用的氧化剂包括O2、O3、ClO2、H2O2、新生态MnO2等。这些氧化剂都能与染料发生氧化还原反应,但由于成本高或效率低导致费用昂贵,于是人们纷纷添加催化剂来提高其氧化性能,通过产生氧化活性更高的˙OH来提高其氧化能力。印染废水中染料的颜色来源于染料分子的共扼体系—含不饱和基团—N=N—、C=C、—N=O、C=O、C=S—、—CH=N—等的发色体〔6〕。˙OH的标准氧化电位高达2.8eV,是除元素氟以外最强的氧化剂,能够有效打破共扼体系结构,使之变成无色的有机分子,无选择地将绝大多数有机物彻底氧化成CO2、H2O和其他无机物。
2.1光化学氧化法
光化学氧化印染废水不受盐离子种类、有机物浓度和pH波动的影响,无二次污染,操作条件温和。利用紫外光照射在TiO2的表面产生˙OH进而氧化有机污染物是当前实验室内最主要的方法,但对于色度较高的印染废水由于光透过性较差而使处理效果不够理想。
于是研究重点正在从利用紫外光的光催化氧化向利用可见光的光敏化氧化转变。因为染料本身就是一种光敏化剂,能够被可见光激发向TiO2转移电子,形成的导带电子被水中的氧捕获,进而形成˙O2-和˙OH,这样协助催化剂被间接激发,从而扩大了可利用光的波长范围,甚至可以直接利用太阳光,极大地降低了处理成本。在实验室内采取的措施有:改变光收集装置透镜聚焦〔7〕、复式抛物线集光器〔8〕、镀发光剂〔9〕、联合类Fenton技术〔8-10〕等,这些都得到了良好的处理效果。在突尼斯占地50m2的光敏化氧化工艺中试装置的运行结果表明,太阳光能够去除难降解有机物和色度〔11〕,甚至较实验室内有更高的效率(量子产率达15%),并提高了废水的可生化性,这在阳光充沛的地区具有极大的意义,只是太阳光的光效率过低,使得处理设施占地面积庞大。
2.2电化学氧化法
关于电化学氧化的研究主要集中在对电极的改进上,以提高电极材料的催化性能,提高电流效率降低能耗。温轶等〔12〕以碳纳米管电催化电极做阳极,不锈钢片为阴极分解处理含活性艳红X-3B的模拟印染废水,在酸性条件下当电流密度为20mA/cm2时可以有效电催化氧化有机染料。A.Sakalis等〔13〕以铌/硼掺杂金刚石为阳极来处理4种偶氮染料,与Pt/Ti相比,电耗更低,效率更高,脱色率高达90%。A.Koparal等〔14〕利用硼掺杂金刚石拉西环形阳极在双极滴流塔反应器中处理碱性红29,其分解率达99%,最优的条件下脱色率和COD去除率分别为97.2%和91%,而电流密度仅1mA/cm2。
实际印染废水往往含有大量无机盐类,导电性较强,无需额外投加电解质。研究表明,当废水中含有卤化物时电解效率会提高,其中NaCl影响最大,不仅能降低电耗,利于絮凝,还能在阳极形成ClO-继续氧化。A.Sakalis等〔15〕还发现Na2SO4也有相似效果可生成S2O32-,但效果没有NaCl明显。
另外通过电解产生的O2或是外界提供的O2还可以在阴极上还原产生H2O2,类似与Fenton试剂联用。JunshuiChen等〔16〕将Fe2+换成Co2+,获得了更强的催化能力,对溴邻苯三酚红的分解更加迅速。
电化学方法处理印染废水快速高效,优点众多,但由于价格昂贵,实际应用并不多,目前着重在对微观机理、中间产物及其毒性的研究。
2.3湿式氧化法
湿式氧化法(WAO)是在高温高压条件下,利用溶解的氧气将废水中有机物氧化的方法。该工艺操作条件苛刻,对反应器要求严格,且停留时间较长。旨在降低反应温度和压力的湿式催化氧化技术(CWAO)近年来受到广泛的重视和研究。
如何使反应条件变得更加温和是湿式催化氧化工艺的关键。有人投加H2O2、O3等氧化性物质来降低操作条件,也有人制备高效催化剂尝试在常压较低温度下处理染料溶液。Sung-ChulKim等〔17〕以10gAl-Cu柱状黏土催化H2O2处理1000mg/L的活性蓝19溶液,常压、80℃下,20min内可完全将其去除,还抑制了Cu的溶出。YanLiu等〔18〕在常温常压下向500mg/L的甲基橙模拟染料废水通入空气2.5h,采用Fe2O3-CeO2-TiO2/γ-Al2O3作为催化剂,脱色率、COD去除率和TOC去除率分别可达98.09%、97.50%和97.08%;HongzhuMa等〔19〕在常压、35℃、pH=5的条件下,用CuO-MoO3-P2O5催化氧气处理300mg/L的甲基橙溶液,脱色率仅有55%,而在相同条件下亚甲基蓝10min的脱色率就可达99.26%。
2.4Fenton法
Fenton试剂是由H2O2与Fe2+混合组成的氧化体系,H2O2在酸性条件下(一般pH<3.5)被Fe2+或Fe3+催化分解产生高活性的˙OH和˙O2H,同时Fe离子还具有絮凝作用。W.Bae等〔20〕采用Fenton法处理印染纺织废水时发现Fe离子絮凝的效果远大于自由基的氧化作用。此技术去除效率高,易操作,但是酸性的反应环境会造成设备腐蚀,因此在排放前须进行中和处理,且出水中Fe2+排放浓度高。李绍锋等〔21〕采用Fenton试剂对9种活性染料所配水样进行处理,pH在3~5之间,Fenton试剂对9种染料的降解效果均较好,色度去除率达90%以上,COD去除率在40%~80%之间。反应后的UV-VIS吸收光谱区已无N=N双键及芳香结构的特征
吸收,说明染料分子中此部分结构已被Fenton试剂彻底破坏。单独采用Fenton试剂氧化印染废水中的有机物时H2O2的消耗量过大,处理成本高,一般需与其他技术联用。近年来有人在Fenton工艺里引入紫外〔20〕、草酸盐等或是固定催化剂〔22-24〕,可进一步增强其氧化能力、扩大适用的pH范围和抑制Fe的溶出。JiyunFeng等〔25〕把Fe涂在斑脱土上作为光Fenton催化剂氧化偶氮染料OrangeⅡ,脱色率100%,TOC去除率达50%~60%。A.Durán等〔8〕对比了光Fenton技术在投加草酸盐与否时处理活性蓝4溶液的效果,发现前者有助于创造低pH氛围,提高了反应速率,且COD、TOC的去除率都优于后者。
2.5微波诱导催化氧化法
微波是指波长为1mm~1m、频率为300~300000MHz的一种电磁波。在液体中微波能使极性分子高速旋转,产生热效应;许多磁性物质如过渡金属及其化合物、活性炭等对微波有很强的吸收能力,常作为诱导化学反应的催化剂,当受微波辐射时不均匀的表面会产生许多“热点”,其能量比其他部位高得多,诱导产生高能电子辐射、臭氧氧化、紫外光解和非平衡态等离子体等多种反应,可以产生高温并形成活性氧化物质,从而使有机物直接分解或将大分子有机物转变成小分子有机物。
张国宇等〔26〕以颗粒活性炭为催化剂微波诱导氧化雅格素红BF-3B150%染料废水,较单独使用微波氧化和活性炭吸附两者时都具有明显的优越性,最优条件下色度和COD去除率分别为99.6%、96.8%。微波辐射能有效解吸活性炭表面的有机物,使活性炭再生并有利于有机物的消解和回收再利用。但是活性炭的机械强度较差,微波、高温及水力扰动都会使其结构受到破坏甚至破碎,从而影响了其催化活性和寿命。近些年来所使用的催化剂逐渐转到金属及其化合物,例如张惠灵等〔27〕用CuO/γ-Al2O3替换活性炭,效果明显,当掺杂CeO2后脱色率又提高30%,还延长了催化剂的使用寿命;洪光等〔28〕以改性氧化铝诱导微波氧化处理雅格素蓝BF-BR染料,催化活性和使用寿命均优于颗粒活性炭。
2.6超声催化氧化法
超声处理效果不受溶液色度影响,并可能实现完全褪色和100%矿化。超声空化能在液体中产生局部高温高压、高剪切力,诱使水分子及染料分子裂解产生˙OH自由基,另外溶解在溶液中的N2和O2也可以发生自由基裂解反应产生˙N和˙O自由基,进一步引发各种反应,使水中有机物矿化成无机物或转换成易生物降解的小分子化合物,还有可能促进絮凝。由于超声波产生的自由基浓度有限,能量转化率低,效果并不理想〔29〕,目前多使用催化剂〔30〕或者与其他氧化技术联用来提高效率。A.Maezawa等〔31〕发现超声提高了光催化分解酸性橙52的效率和TOC的去除率,并且不受Cl-的影响,可能是超声波增加了催化剂的表面积,提高了传质速度,同时在催化剂表面生成的H2O2有利于产生˙OH。Ki-TaekByun等〔32〕在多泡声致发光条件下30min内去除亚甲基蓝,较普通TiO2催化UV快得多,但同时证实了微气泡在崩溃瞬间发出的光对染料的氧化几乎不起作用。JianhuiSun等〔33〕研究表明超声可以显著增加低Fe2+浓度的Fenton试剂氧化酸性黑1的能力,最适条件下30min去除率达到98.83%,避免了普通Fenton含铁污泥的问题。G.Tezcanli-Güyer等〔34〕发现超声对O3和UV有催化作用,可以提高O3的传质,同时在催化剂表面生成的H2O2有利于产生˙OH,当3种方法协同作用时,酸性红7的分解速率大大提高。
符德学等〔35〕采用超声协同钛铁双阳极电解体系氧化含有碱性湖蓝5B的印染度水,集超声空化、阳极催化氧化、电生自由基氧化和电絮凝等技术于一体,COD去除率达到90.2%,脱色率达到98.3%。
3结束语
上述方法用来处理印染废水各有优劣,物理法总体上处理成本较高,其中的吸附法和膜分离技术适合于作为深度处理技术;化学氧化处理效率高、二次污染较少,越来越受到青睐,但直接用于生产则费用昂贵,这限制了这些高效技术的实际应用。比较有效的处理工艺是将化学氧化技术与生化技术结合,充分发挥各自的优势,通过物化处理减少印染废水的生物毒性,提高可生化性,再采用处理成本较低的生化法进一步处理。吸附法和膜分离技术作为出水要求严格的工艺或回用水技术较为合适。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
⑤ 污水处理的意义
污水处理的意义:将污水进行处理之后,可以对其进行循环使用,为我国的生产减少水资源的消耗。水处理技术利用相关的技术手段对污水进行净化,使其可以继续使用,所以污水处理极为重要。
按污水来源分类,污水处理一般分为生产污水处理和生活污水处理。生产污水包括工业污水、农业污水以及医疗污水等,而生活污水就是日常生活产生的污水,是指各种形式的无机物和有机物的复杂混合物,包括:
①漂浮和悬浮的大小固体颗粒;
②胶状和凝胶状扩散物;
③纯溶液。
按水污的质性来分,水的污染有两类:
一类是自然污染;另
一类是人为污染,当前对水体危害较大的是人为污染。
污水处理被广泛应用于建筑、农业、交通、能源、石化、环保、城市景观、医疗、餐饮等各个领域,也越来越多地走进寻常百姓的日常生活。
(5)废水铜离子排放27倍犯什么法扩展阅读
污水处理按照其作用可分为物理法、生物法和化学法三种。
①物理法:主要利用物理作用分离污水中的非溶解性物质,在处理过程中不改变化学性质。常用的有重力分离、离心分离、反渗透、气浮等。物理法处理构筑物较简单、经济,用于村镇水体容量大、自净能力强、污水处理程度要求不高的情况。
②生物法:利用微生物的新陈代谢功能,将污水中呈溶解或胶体状态的有机物分解氧化为稳定的无机物质,使污水得到净化。常用的有活性污泥法和生物膜法。生物法处理程度比物理法要高。
③化学法:是利用化学反应作用来处理或回收污水的溶解物质或胶体物质的方法,多用于工业废水。常用的有混凝法、中和法、氧化还原法、离子交换法等。化学处理法处理效果好、费用高,多用作生化处理后的出水,作进一步的处理,提高出水水质。
一级处理后的废水BOD去除率只有20%,仍不宜排放,还须进行二级处理。二级处理的主要任务是大幅度去除污水中呈胶体和溶解状态的有机物,BOD去除率为80%~90%。
一般经过二级处理的污水就可以达到排放标准,常用活性污泥法和生物膜处理法。三级处理的目的是进一步去除某种特殊的污染物质,如除氟、除磷等,属于深度处理,常用化学法。
⑥ 染料废水处理方法的研究进展
纺织染料工业近年来快速发展,目前我国各种染料产量已达90万T,染料废水已成为环境重点污染源之一。染料行业品种繁多,工艺复杂。其废水中含有大量的有机物和盐份,具有CODCR高,色泽深,酸碱性强等特点,一直是废水处理中的难题。本文主要介绍了染纤困料废水处理技术中的物理法、化学法、电化学法、生化法,以及这些技术的特点原理及其近年来研究进展和应用。
1物理法
1.1吸附法
吸附法是利用多孔性固体(如活性炭、吸附树脂等)与染料废水接触,利用吸附剂表面活性,将染料废水中的有机物和金属离子吸附并浓集于其表面,达到净化水的目的。
活性炭具有较强的吸附能力,对阳离子染料,直接染料,酸性染料、活性染料等水溶性染料具有较好的吸附功能,但活性炭价格昂贵,不易再生。由壳聚糖与活性炭及纤维素混合制成的染料吸附剂对活性染料和酸慧竖李性染料有优异的吸附能力,其吸附容量分别为264和421MG/G(椰子活性炭吸附容量少于80MG/G)。该吸附剂在水中具有优良的分散性,可采用简单而廉价的接触过滤法处理。
大孔吸附树脂是内部呈交联网络结构的高分子珠状体,具有优良的孔结构和很高的比表面积。吸附树脂可用于去除难以生物处理的芳香族磺酸盐,萘酚类物质。它易再生,且物理化学稳定性好,树脂吸附法已成为处理染料废水的有效方法之一。
1.2膜分离
膜分离技术应用于染料废水处理方面主要是超滤和反渗透。据报道,用管式和中空纤维式聚砜超滤膜处理还原染料废水脱色率在95%~98%之间,CODCR去除率60%~90%,染料回收率大于95%。近年来,用壳聚糖超滤膜和多孔炭膜的新型膜材料来处理印染废水,取得较好的效果。夏之宁等研究了染料废水在超声作用下,通过醋酸纤维素膜的透水率与透盐率,发现超声波在膜分离中有明显的加速传质和去“浓差极化”作用,有超声波作用时其渗透率是无超声波时的1.5倍,对透盐率影响更大,其截留率分别为94%和67%。
2化学法
2.1化学混凝法
化学混凝法主要有沉淀法和气浮法,此法经济有效,但产生化学的污泥需进一步处理。常用的有无机铁复合盐类。近年来国内外采用高分子混凝剂日益增多。天然高分子絮凝剂主要有淀粉及淀粉衍生物、甲壳质衍生物和木质素衍生物3大类。曾淑兰等用NAOH作催化剂将玉米淀粉和醚化剂M反应制得的阳离子淀粉CST,用量为7~15MG/L时,对酸性染料、活性染料的脱色率达90%以上。吴冰艳等用接枝聚合制得的木质素季胺盐絮凝剂处理J酸染料废水,絮凝剂中的季胺离子与废水中的磺酸基团生成不溶于水的物质,投量20MG/L,色度去除率达90%。
方忻兰利用海虾、蟹壳为原料制得的壳聚糖用来处理印染废水,CODCR去除率达85%以上。天然高分子絮凝剂电荷密度小,分子量低,易发生生物降解而失去絮凝活性。人工合成的有机高分子絮凝剂分子量大,分子链中所带的官能团多,絮凝性能好,用量少,PH范围广。代表性的人工有机高分子絮凝剂有PAN-DCD(二氰二胺改性聚丙烯腈聚电解质)、WX系列高分子脱色絮凝剂、PDADMA-A(二甲基二烯丙基氯化铵聚合物)M。 2.2化学氧化法
化学氧化是利用臭氧、氯、及其含氧化物将染料的发色基团破坏而脱色。臭氧氧化法对多数染料能获得良好的脱色效果。但对硫化、还原等不溶于水的染料效果较差。FENTON试剂氧化法,其脱色的实质是H2O2与FE2+反应所产生的羟基自由基使染料有机物断链。FENTON试剂除氧化作用外,还兼有混凝作用。研究表明,用此法处理2-萘磺酸钠生产废水,先用FECL3混凝沉淀后,然后在PH1.5~2.5条件下以H2O22G/GCODCR,FE2+4G/L水,氧化60MIN可去除CODCR99.6%、色度95.3%[19]。
2.3湿式空气氧化法
湿式空气氧化法(WAO)是在高温(125~320℃)、高压(0.5~20MPA)条件下通入空气,使废水中的有机物直接氧化[20]。超临前迟界水氧化(SCWO)是指当温度、压力高于水的临界温度(374℃)和临界压力(22.05MPA)条件下的水中有机物的氧化。它实质上是湿式氧化法的强化和改进。超临界态水的物理化学性质发生较大的变化,水汽相界面消失,形成均相氧化体系,有机物的氧化反应速度极快。MODEL等[21]对有机碳含量27.33G/L的有机废水,在550℃,60S内,有机氯和有机碳的去除率分别为99.99%和99.97%。超临界水氧化法与传统的方法相比,效率高,反应速度快,适用范围广,可用于各种难降解有机物;在有机物的含量低于2%时;可通过自身热交换,无须外界供热,反应器结构简单,处理量大。
2.4光催化氧化法
光催化氧化法常用H2O2或光敏化半导体(如TIO2、CDS、FE2O3、WO3作催化剂),在紫外线高能辐射下,电子从价带跃迁进入导带,在价带产生空穴,从而引发氧化反应。此法对染料废水的脱色效率高,缺点是投资和能耗高。张桂兰等用新型的旋转式光催化反应器,在优化条件下采用悬浮态TIO2时,偶氮染料脱色率达98%。程沧沧等[23,24]分别采用固定床型光反应器和斜板式光反应器对有机染料直接耐翠蓝GL进行了光催化降解研究,经60MIN光照,其降解率分别为83%和81.4%。
3生化法
生化法具有运行成本低,对环境污染少的特点。但染料废水水质波动大,种类多,毒性高,对温度和PH条件要求较苛刻的微生物很难适应。
好氧处理法运行简单,对CODCR、BOD5的去除率较高,对色度的去除率却不太理想。而厌氧处理法对染料废水的色度去除率较高。厌氧处理法污泥生成量少,产生的气体是甲烷,可利用作为能源。但单独使用,效果不理想。黄天寅等在处理酞菁蓝废水过程中,采用气提、吹脱和气浮等物化手段去除原水中大部分NH3-N和CU2+,提高其生化性。
经厌氧处理后,各项指标均可达到污水综合排放标准的一级标准,CODCR去除率90.0%,BOD5去除率88.9%,NH3-N去除率99.1%,CU2+去除率99.7%。由于近年来染料向抗分解,抗生物降解的方向发展,单独一种工艺很难取得满意的效果。现在处理工艺正朝向厌氧—好氧联合处理工艺发展。闫庆松等[26]对染料废水采用了厌氧—好氧工艺。厌氧段采用UASB工艺,中温消化,停留时间48H,CODCR去除率可达55%,出水BOD5/CODCR值由0.1提高到0.42,系统内形成颗粒污泥,其沉降性能良好。好氧段采用接触氧化法,经驯化后,污泥对废水的降解能力逐步提高。 高效菌群(HIGHSOLUTIONBACTERIA)是利用复合的微生物群来处理染料废水的方法,菌种现已发展到100多种,如反硝化产碱菌、脱氮硫杆菌、氧化硫硫杆菌等。它可以针对不同的废水配成不同的菌群去分解不同的污染物,具有较高的针对性。高效微生物群将有机物分解成SO2、H2O以及许多对水质没有影响的有机小分子。运用H.S.B技术处理无锡某染料厂生产的分散染料、酸性染料(CODCR浓度达2000~2500MG/L)的废水,出水CODCR小于100MG/L,平均去除率为92.68%。苯胺去除率94%,酚为93%,氨氮为92%,色度均在50倍以下[27]。为了增加优势菌种在生物处理装置中的浓度,提高对染料废水的处理效率,通常将游离的细菌通过化学或物理的手段加以固定,使其保持生物活性和提高使用率。研究表明,高效脱色菌群固定在活性污泥上,脱色酶活力提高70%。
4电化学法
电化学法治理废水,实质是间接或直接利用电解作用,把染料废水中的有毒物质转化为无毒物质。近年来由于电力工业的发展,电力供应充足并使处理成本大幅降低,电化学法已逐渐成为一种非常有竞争力的废水处理方法。染料废水的电化学净化根据电极反应发生的方式不同,可分为内电解法、电凝聚电气浮、电催化氧化等。
应用最广泛的内电解法是铁屑炭法。靳建永用铁屑内电解法对5大类11种染料废水进行脱色处理。研究表明,对中等色度和浓度的废水,脱色率在96%以上;加入助剂可使废水CODCR去除率在70%以上。内电解法的优点是利用废物在不消耗能源的前提下去除多种污染成分和色度,缺点是反应速度慢、反应柱易堵塞、对高浓度废水处理效果差。
在外电压作用下,利用可溶性阳极(铁或铝)产生大量阳离子,对胶体废水进行凝聚,同时在阴极上析出大量氢气微气泡,与絮粒粘附一起上浮。这种方法称为电凝聚电气浮。与化学凝聚法相比,其材料损耗少一半左右,污泥量较少,且无笨重的加药措施。其缺点是电能消耗和材料消耗过大。
电催化氧化是通过阳极反应直接降解有机物,或通过阳极反应产生的羟基自由基、臭氧等氧化剂降解有机物。电催化氧化法的优点是有机物氧化完全,无二次污染。但该法真正应用于废水工业化处理则取决于具有高析氧电位的廉价高效催化电极。同时电极与电解槽的结构对降低能耗也起重要的作用。贾金平等研究了活性炭纤维电极与铁的复合电极降解多种模拟印染废水,有较好的效果。
5结语
染料生产工艺复杂,废水量大且难以处理,污染治理的费用很高。硫化碱还原时排出的含硫废水除使用昂贵的湿式氧化法处理外,其他方法难以达到排放标准。近年来采用加氢还原法,彻底消除了硫化物的污染。汞催化磺化法生产氨基蒽醌改为硝化还原法,彻底消除汞污染。各种新技术的研究和应用大大提高了染料废水处理的效率,降低了处理成本。但治标更要治本,研究发展经济合理的清洁生产工艺与发展高效经济的废水治理工艺同等重要。从根本上降低排污,才是长久之计。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
⑦ 《污水综合排放标准》(GB8978-2002)的内容是什么
《城镇污水处理厂污染物排放标准》:
2002年以前对城市污水处理厂的管理都执行《污水综合排放标准》(GB8978-96)。由于该标准多数指标是针对工业废水的,当时城市污水处理厂的建设尚处于起步阶段,处理技术还在发展阶段,因此,对城市污水的针对性不强。相当一部分标准值偏宽,而个别指标在技术经济上达标又有一定难度。如:对城镇污水处理厂出水而言,重金属、微污染有机物、石油类、动植物油、LAS等指标标准值偏宽;而总磷偏严,常规二级处理和强化二级处理工艺难以达到0.5 mg/L和1 mg/L的现行综合标准,为此由国家环境保护总局科技标准司2001 年提出了《城镇污水处理厂污染物排放标准》,并于2002年12月27日由国家环境保护总局和国家技术监督检验总局批准发布,2003年7 月1日正式实施。
《城镇污水处理厂污染物排放标准》的适用范围明确规定为:专门针对城镇污水处理厂污水、废气、污泥污染物排放制定的国家专业污染物排放标准,适用于城镇污水处理厂污水排放、废气的排放和污泥处置的排放与控制管理。根据国家综合排放标准与国家专业排放标准不交叉执行的原则,本标准实施后,城镇污水处理厂污水、废气和污泥的排放不再执行综合排放标准。污水处理厂噪音控制仍执行国家或地方的噪音控制标准。
表1 《标准》基本控制项目最高允许排放浓度(日均值)
项目 基本控制项目 一级标准 二级标准 三级标准
A标准 B标准
1 化学需氧量(COD)(mg/L) 50/60 60/60 100/120 120
2 生化需氧量(BOD)(mg/L) 10/20 20/20 30/30 60
3 悬浮物(SS)(mg/L) 10/20 20/20 30/30 50
4 动植物油(mg/L) 1/20 3/20 5/20 20
5 石油类(mg/L) 1/10 3/10 5/10 15
6 阴离子表面活性剂(mg/L) 0.5/5 1/5 2/5 5
7 总氮(以N计)(mg/L) 15/- 20/- - -
8 氨氮(以N计) (mg/L) 5(8)/15 8(15)/15 25(30)/25 -
9 总磷(以P计)(mg/L) 1/0.5 1.5/0.5 3/1 5
10 色度/稀释倍数 30/50 30/50 40/80 50
11 pH 6~9/6~9 6~9/6~9 6~9/6~9 6~9
12 粪大肠菌群数(个/L) 103/- 104/- 104/- -
注:括号外为水温>12℃时的控制指标,括号内为水温≤12℃时的控制指标。/前后数值分别表示现标准值、原执行标准。
⑧ 废水混凝处理法的运用
硫酸铝含有不同数量的结晶水:Al2(SO4)3·18H2O?其中n=6、10、14、16、8和27,常用的是Al2(SO4)3·18H2O其分子量为666.41,比重1.61,外观为白色,光泽结晶。硫酸铝易溶于水,水溶液呈酸性室温时溶解度大致是50%?pH值在2.5以下。沸水中溶解度提高至90%以上。硫酸铝使用便利,混凝效果较好不会给处理后的水质带来不良影响。当水温低时硫酸铝水解困难形成的絮体较松散。
硫酸铝在我国使用最为普遍大都使用块状或粒状硫酸铝。根据其中不溶于水的物质的含量可分为精制和粗制两种。硫酸铝易溶于水可干式或湿式投加。湿式投加时一般采用10—20%的浓度(按商品固体重量计算)。硫酸铝使用时水的有效pH值范围较窄?约在5.5—8之间,其有效pH值随原水的硬度含量而异,对于软水pH值在5.7—6.6?中等硬度的水为6.6—7.2?硬度较高的水则为7.2—7.8。在控制硫酸铝剂量时应考虑上述特性。有时加入过量硫酸铝会使水的pH值降至铝盐混凝有效pH值以下既浪费了药剂?又使处理后的水发混。 硫酸亚铁FeS04·7H20是半透明绿色结晶体?易于溶水?在水温20℃时溶解度为21%。硫酸亚铁离解出的Fe2+只能生成简单的单核络合物。
?因此,不如三价铁盐那样有良好的混凝效果。残留于水中的Fe2+会使处理后的水带色,当水中色度较高时?Fe2+与水中有色物质反应?将生成颜色更深的不易沉淀的物质(但可用三价铁盐除色)。根据以上所述,使用硫酸亚铁时应将二价铁先氧化为三价铁?然后再起混凝作用。 当水的pH值在8.0以上时,加入的亚铁盐的Fe2+易被水中溶解氧氧化成Fe3+?当水的pH值<8.0时,则可加入石灰去除水中CO2?石灰用量可按下式估算[CaO]=0.37a+1.27CO2 (1.18) 式中 a——FeSO4的投加量(毫克/升),CO2——水中CO2的含量(毫克/升) 当水中没有足够溶解氧时?则可加氯或漂白粉予以氧化?理论上1毫克/升FeSO4需加氯0.234毫克/升。 高相对分子量聚丙烯酰胺的分子量很高,一般在(800-2000)万之间,其分子链很长,使其能在两个粒子之间架桥,加速粒子沉降,是很好的絮凝剂,可以降低液体之间的磨擦阻力,按离子特性分可分为非离子、阴离子、阳离子和两性型四种类型。
产品分类
1、按照形态:分为干粉和胶体两种,干粉为白色或灰色粉末,胶体为浅黄色,必须溶解后才能应用,因此必须具备有良好溶解性的高分子量聚丙烯酰胺。
2、按照离子度:可分为阴离子型高分子量聚丙烯酰胺、阳离子型高分子量聚丙烯酰胺、两性离子型高分子量聚丙烯酰胺和非离子型高分子量聚丙烯酰胺。粉状固含量大于92%,相对分子质量为(500-800)×104,胶体固含量为(8±0.2)%。
产品应用
阳离子型高分子量聚丙烯酰胺的应用:在石油工业中用于多种作业,如钻井和开发所用的防止泥页岩水化膨胀的黏土稳定剂。钻井和采油污水处理用的浮选絮凝剂、酸化液的稠化剂,三次采油用的堵水调剖剂,钻井和完井用的油层保护剂等。在造纸工业中可用作助留剂、施胶机和增强剂,大大改善了纸张的性能,使之具有较大的市场需求量。
阴离子型高分子量聚丙烯酰胺的应用:在工业废水(电镀厂废水,冶金废水,钢铁厂废水,洗煤废水等)中起到絮凝沉淀作用。
非离子型高分子量聚丙烯酰胺的应用:有澄清净化作用、沉降促进作用、增稠作用及其它作用、过滤促进作用。在废液处理、污泥浓缩脱水、选矿、洗煤、造纸等方面,能够充分满足各种领域的要求。同时使用非离子聚丙烯酰胺和无机絮凝剂(聚合硫酸铁,聚合氯化铝,铁盐等),可显示出更大的效果。
聚丙烯酰胺的稳定性
聚丙烯酰胺属于大分子基团,其固体的热稳定性比其他聚合物电解质要强,在充满氮气的环境中加热,温度超过210摄氏度时候,相邻的酰胺基间分解失水,但是温度不可以超过300摄氏度,而且同时会生成酰亚胺基,并且释放出氮气。
温度升至500摄氏度的时候,聚丙烯酰胺会变成黑色的粉末。如果聚丙烯酰胺进过充分的干燥,温度升到280摄氏度的时候仍能够保持很好的稳定性。但是因为分子链上又存在着大量的酰胺基以及离子基团,这就使得聚丙烯酰胺又有了很强的吸湿性;
在干燥的时候,具有强烈的水分保留性,不易干燥充分;干燥的固体粉末在长期中,因为吸收了空气中的水分,继而容易发潮。聚丙烯酰胺的水溶液放久后就容易发生老化,粘度也降低了,性能因此也变差,受到影响。 聚合氯化铝是一种无机高分子混凝剂,由于氢氧根离子的架桥作用和多价阴离子的聚合作用而生产的分子量较大、电荷较高的无机高分子水处理药剂。聚合氯化铝与传统无机混凝剂的根本区别在于传统无机混凝剂为低分子结晶盐,而聚合氯化铝的结构由形态多变的多元羧基络合物组成,絮凝沉淀速度快,适用PH值范围宽,对管道设备无腐蚀性,净水效果明显,能有效支除水中色质SS、COD、BOD及砷、汞等重金属离子,该产品广泛用于饮用水、工业用水和污水处理领域。
特点
1、拥有更广泛的pH适用范围:聚合氯化铝的pH适用范围比传统铝盐要宽得多。一般传统凝聚剂硫酸铝和氯化铁盐在pH>8.0时,会生成氢氧化铝沉淀,从而降低其处理效果,而聚合氯化铝在pH<10的范围内均会得到较好的处理效果。
2、具有强烈的凝聚除浊效能:PAC比传统硫酸铝、氯化铁具有更强的凝聚除浊效果;在相同处理条件下,PAC使用量要比传统铝盐少2/3到1倍,处理成本可节约30-40%;在相同投量条件下,使用聚合氯化铝能够获得比传统铝盐更低的残余浊度,因而可以较低剂量得到最佳处理效果。
3、对pH值的改变较小:由于硫酸铝或氯化铁、聚合硫酸铁等凝聚剂,水溶液酸度较大,因此处理后水质pH值下降明显,尤其在高浊度水质处理过程中,投量增大而导致处理水质pH降低超出正常饮用水水质pH范围(6.5-8.5),因此,需再投加碱液提高水的pH值。使用聚合氯化铝,由于酸度较小,处理后水质pH值降低不明显,因而无需投加碱液来提高水质的pH值。
4、具有较强的水质适用范围:由于聚合氯化铝产品具有较宽的碱化度调整范围(碱化度可从40%调整到90%)和较强的复配作用,对于任何给水、废水,通过调整产品的碱化度或复配各种无机或有机化合物,都可达到最佳处理效果,尤其对低碱度及高有机污染水质。
5、具有较好的低温低浊水处理效果:一般对于低温、低浊水(<5℃)以及低碱度水,传统混凝剂如硫酸铝的混凝除浊效能会明显降低并导致出水水质恶化,而使用PAC,无论对低温还是低碱度的水,都能获得较好的混凝除浊效果。
6、有良好的絮凝沉降效果:聚合氯化铝能够明显提高固液分离效率,改善沉降过滤及污泥脱水性能,从而缩短沉淀池的停留时间,增加产水量。
8、聚合氯化铝具有良好的脱色及去除腐植物质效果:不仅具有强的凝聚除浊效果,而且也具有良好的脱色及去除水中有机腐殖质的效果,同时,对有害、有毒有机物及病菌,病毒去除也有较明显提高。
作用
聚(合)氯化铝其絮凝作用表现如下:
a、水中胶体物质的强烈电中和作用。
b、水解产物对水中悬浮物的优良架桥吸附作用。
c、对溶解性物质的选择性吸附作用。
用途
⒈城市给排水净化:河流水、水库水、地下水。
⒉工业给水净化。
⒊城市污水处理。
⒋工业废水和废渣中有用物质的回收、促进洗煤废水中煤粉的沉降、淀粉制造业中淀粉的回收。
⒌各种工业废水处理:印染废水、皮革废水、含氟废水、重金属废水、含油废水、造纸废水、洗煤废水、矿山废水、酿造废水、冶金废水、肉类加工废水、污水处理。
⒍造纸施胶。
⒎糖液精制。
⒏铸造成型。
⒐布匹防皱。
⒑催化剂载体。
⒒医药精制
⒓水泥速凝。
⒔化妆品原料。