⑴ 什么是高氨氮废水
废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等.
高氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,一般上ph在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,ph在酸性的条件
下废水中的氨氮主要由于无机氨所导致.
对于高氨氮的废水氨氮脱出形式,主要有两种,一种是以氨水的形式回收氨氮,主要是蒸馏和吹脱两种.这时候氨氮以氨水的形式脱出.
在这个过程中,废水需要加热,需要吹风,但是最主要的前提条件是氨氮需要加入液碱或者石灰水,蒸馏法需要加入液碱,吹脱法多用石灰水.在大多数的氨氮的废水中,有氨水和无机氨共同存在,主要是ph大于中性的条件下,这样就需要加入酸,控制ph在偏酸性条件,使氨水形成的氨氮向无机氨形成的氨氮的形式转换,最后,利用多效蒸发等手段将固体结晶出来.
对于氨氮主要以氨水的形成存在的废水,用蒸馏的形式是可以很好的回收氨水的.此时不需要加入液碱等,或者加入的很少的液碱,就可以回收氨水,去除氨氮等.对于以无机氨形成的氨氮废水,此时就要考虑,是否把氨氮以氨水的形式脱出,还是以结晶的形式脱出.主要是看废水的氨氮的多少和氨氮的去除费用等等的问题了
⑵ 氨氮高了怎么处理,氨氮是怎么形成的
氨氮是指水中以游离氨NH3离子和铵离子NH4形式存在的氮。水中的氨氮指以氨或铵离子形式存在的化合氨。水中氨氮的来源主要为生活污水中含氮有机物在微生物作用下的分解产物。农作物生长过程中以及氮肥的使用也会产生氨氮,并随着污水排入城市的污水处理厂或直接排入水体中。
生物硝化反硝化法(A/0法)具有去除氨氮效果稳定,不产生二次污染的特点。生物法运行中受到温度、碳氮比、pH值的影响。生物脱氮法在去除氨氮的同时也可以使废水中COD和 BOD得到降解。处理过程中碳氮比和pH值对脱氮的效率和操作成本至关重要,需要控制碳氮比>2. 86, 硝化pH值为89,反硝化pH值为7.5-8. 5 ,有于提高A/O法的效率。但是生物法存在抗冲击能力弱、低温时效率低、占地面积大等缺点。
HNF-MP高效硝化反应器,在传统生物法的基础上,改进了反应器的结构,将微生物量提升到原有的2倍以上,大大增强系统的抗冲击能力;对进水管路做保温措施,控制在25℃-30℃,避免低温效率低的问题;多级分离富集技术,可在传统技术的基础上节约30%—50%的占地。
⑶ 污水中氨氮是怎样产生的
在很多工业废水中的氨氮是本来就有的。市政生活废水中则主要是由蛋白质降解过程中的氨基转化而来。
⑷ 水体氨氮超标的原因
1、 有机物导致的氨氮超标;
在运营过程中CN比小于3的搞氨氮废水中,脱氮工艺要求CN比在4~6,投加碳源来提高反硝化的完全性,
2、 内回流导致的氨氮超标;两方面原因:内回流泵有电气故障(现场跳停仍有信号)、机械故障(叶轮脱落等)和人为原因(内回流未试正反转,现场为正或者反状态)。
3、 PH过低导致的氨氮超标;· 内回流太大或者内回流曝气开太大,导致大量氧气流入A池,破坏缺氧或者厌氧环境,反硝化细菌有氧代谢,部分有机物被有氧代谢掉,严重影响反硝化完整, · 进水的CN比不足,原因也是反硝化不完整,产生的碱度少,PH值下降。· 进水碱度降低导致PH下降。(可控制)
4、 DO(溶解氧)导致的氨氮超标;污水是一个高硬度水质,特别容易结块,运行过程中曝气头会出现各种问题,例如堵塞、损坏等,导致DO一直提不上来氨氮升高。
5、 泥龄导致的氨氮超标;
积压的污泥过多,死泥太多,导致氨氮升高。
污泥回流不均衡,两侧系统回流相差过大,导致污泥回流水的一侧氨氮升高。
6、 氨氮冲击导致的氨氮超标;
工业废水和生活污水同一个管网,导致氨氮突然升高。
硝化系统,建立完善的硝化系统,综合HNF工艺,基于旋流脱氮填料、低温脱氮菌种及高密度分离器,实现全方位脱氮。
⑸ 生活污水中的氨氮主要来源于尿素的水解
人和高等动物所排泄的尿中含有尿素,尿素在尿素酶的作用下迅速水解生 成碳酸铵。因此生活污水中的氨氮主要来源于尿素的分解。
⑹ 水中氨氮超标是如何引起
氨水的浓度超标。
氨气(Ammonia),是氮氢化合物,化学式为NH3,相对分子质量是17,是无色有刺激气味的气体。密度 0.771千克/立方米。易被液化成无色的液体。
氮原子的最外层有五个电子,因为它既不容易失去电子,也不容易得到电子,所以氮气的化学性质稳定,当氮气与氢气在高温、高压、催化剂的条件下化合(因为氮气性质稳定,不容易和其它物质发生化学反应,需要在高温、高压和催化剂的条件下),氮原子会和三个氢原子化合成氨气分子,它们是通过共价键化合的,一共有三个电子对,电子对偏向氮原子,所以氮元素呈-3价,氢元素呈+1价。氨气分子里的氮原子还有一对是孤对电子。氨分子的空间结构是三角锥型,极性分子。氮原子位于锥体的顶点上,三个氢原子位于锥体的底部。
氨气:NH3+H2O⇌NH4OH
氢氧化铵是一种弱碱,只能电离成少量的铵根离子和氢氧根离子,并且它不稳定,一受热就会分解为氨气和水。所以氨气是一种弱碱性气体。
作为弱碱性气体,氨气还可以和酸反应生成铵盐,如氨气和盐酸、浓硫酸、硝酸反应,分别生成氯化铵、硫酸铵和硝酸铵,和乙酸反应生成乙酸铵。氨气和碳反应,则生成氰化氢。
氨气有还原性,能在纯净的氧气中燃烧,生成氮气和水蒸气,还能和氧化铜反应,使氧化铜失去了氧,变成单质的铜,氨气得到了氧,变成氮气和水蒸气。
希望我能帮助你解疑释惑。
⑺ 生活污水中的氨氮是从哪里来的
随着人民生活水平的不断提高,私家车也越来越多,大量的自用轿车和各种型号的货车等交通工具也向环境空气排放一定量含氨的汽车尾气。这些气体中的氨溶于水中,形成氨氮,污染了水体。生活污水主要是城市生活中使用的各种洗涤剂和污水、垃圾、粪便等,多为无毒的无机盐类,生活污水 中含氮、磷、硫多,致病细菌多.
⑻ 氨氮超标主要原因有哪些因素
氨氮超标:就是(甘度)环保常说的:工业废水或者生活污水含氮有机物分解等产生的。
氨氮超标因素:
1、废水氨氮超标的原因有各种各样原因,主要生化系统中没有硝化菌的存在,例如停留时间不足、碱度不足、曝气量不足、操作失误等。
2、硝化菌是降解氨氮的关键菌群,硝化菌的有效繁殖,决定氨氮降解的效果。
3、硝化菌存在不足,可能是负荷不足。
4、停留时间充足,曝气量不足,也是不能降解氨氮,因为1个单位的氨氮需要4.5个单位的氧气,耗氧量非常大。
5、生化池硝化菌,停留时间、曝气充足,碱度不足等等,导致硝化菌无法去除氨氮。
6、甘度硝化细菌驯化好的活性菌种,直接使用。
⑼ 氨氮是怎么形成的
在天然水体中,N元素以游离态氮、有机氮、硝酸态氮、亚硝酸态氮、总氨态氮等几种形式存在,一般来说,硝酸态氮、亚硝酸态氮、氨(铵)态氮是一切藻类都能直接吸收利用的氮源。通常情况下,藻类首先吸收NH₄⁺,而NO₃--N 吸收能力相对较差,同时水体中的固氮菌也能吸收转化水中的氮。
氨氮的来源:
一是水源;
二是来自各种肥水产品;
三是饲料中的可溶蛋白融入水中;
四是养殖生物的粪便。
还有就是无机氮被浮游植物吸收转化为有机氮,并通过浮游植物的摄食,各级浮游动物之间及鱼虾类的捕食在食物链中传递,在这过程中有小部分氮由于溶出、死亡代谢排出等离开食物链重新回到水体中。
水体中死藻、残饵粪便等有机物不断积累,造成水体富营养化,这就为亚硝酸盐和氨氮的产生提供了足够的氮源。
(9)废水中氨氮是如何形成的扩展阅读
氨氮的危害性:
离子氨态氮(NH4⁺-N)因为带电荷,通常不能渗过生物体表,一般对生物无害,而且能够被藻类直接吸收利用。但非离子氨态氮(NH₃)能透过细胞膜,具有脂溶性,渗入量取决于水体与生物体内的PH差异。如果从水体渗入组织液内,生物就要中毒。
在PH 、溶氧、硬度等水质条件不同时,非离子氨态氮的毒性也不相同。PH越高,毒性越大。溶氧越低,毒性也越大。实际生产过程中,对溶氧和PH有针对性的控制,可以降低非离子氨态氮的毒性。
非离子铵态氮(NH₃-N)的毒性表现在对水生生物生长的抑制,它能降低甲壳类排氮的能力、损害鳃组织、导致体内中毒,体内脏器渗血、出血以至引起死亡。在鱼虾养殖中尤为明显,在氨氮偏高的池子里鱼虾摄食能力体质明显变弱,且脱壳后更不易硬壳。
⑽ 污水中氨氮是怎样产生的
氨氮是指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮。 动物性有机物的含氮量一般较植物性有机物为高。
同时,人畜粪便中含氮有机物很不稳定,容易分解成氨。因此,水中氨氮含量增高时指以氨或铵离子形式存在的化合氮。
氨氮是水体中的营养素,可导致水富营养化现象产生,是水体中的主要耗氧污染物,对鱼类及某些水生生物有毒害。
(10)废水中氨氮是如何形成的扩展阅读
自然地表水体和地下水体中主要以硝酸盐氮(NO3)为主,以游离氨(NH3)和铵离子(NH4+)形式存在的氮受污染水体的氨氮叫水合氨,也称非离子氨。
非离子氨是引起水生生物毒害的主要因子,而铵离子相对基本无毒。国家标准Ⅲ类地面水,非离子氨氮的浓度≤1毫克/升。
氨氮对人体健康的影响
水中的氨氮可以在一定条件下转化成亚硝酸盐,如果长期饮用,水中的亚硝酸盐将和蛋白质结合形成亚硝胺,这是一种强致癌物质,对人体健康极为不利。
氨氮对生态环境的影响
氨氮对水生物起危害作用的主要是游离氨,其毒性比铵盐大几十倍,并随碱性的增强而增大。氨氮毒性与池水的pH值及水温有密切关系,一般情况,pH值及水温愈高,毒性愈强,对鱼的危害类似于亚硝酸盐。
氨氮对水生物的危害有急性和慢性之分。慢性氨氮中毒危害为:摄食降低,生长减慢,组织损伤,降低氧在组织间的输送。鱼类对水中氨氮比较敏感,当氨氮含量高时会导致鱼类死亡。急性氨氮中毒危害为:水生物表现亢奋、在水中丧失平衡、抽搐,严重者甚至死亡。