『壹』 硝酸废液怎么处理
硝酸的废液,因为它是有极强的酸性。所以不能够直接排放。通常一定需要把它用碱进行综合,以后ph达到中性以后才可以进行排放。常用的碱可以用石灰或者是纯碱就可以了。
『贰』 硝酸废液怎么处理
将硝酸废液加入纯碱-硝石灰溶液中生成中性的硝酸盐溶液,用水稀释后(pH值降至5.8.5)可以排入下水道了
『叁』 硝酸废水如何处理
水体中存在的硝酸盐氮主要来源于工业废水、农业废弃物和生活污水。硝酸盐在水中溶解度高,稳定性好,难于形成共沉淀或吸附。因此,传统的简单的水处理技术, 如石灰软化、过滤等工艺难以去除水中硝酸盐。目前,从水中去除硝酸盐的方法有化学脱氮、催化脱氮、反渗透、电渗析、离子交换、生物脱氮等。
生物脱氮法以其经济高效的脱氮速率,是目前常用去除总氮的方法,其中氮的转化包括氨化作用、硝化作用和反硝化作用。
通过对传统生物脱氮法的升级改造,以脱氮富增集成装备IDN-BMP为主体,IDN-BMP是基于原有池体功能失调及高浓度总氮处理推出的集成化脱氮菌落富增系统,引入优势脱氮菌群,结合专利强化耦合释氮技术,成倍提升反应效率,增强系统稳定性。
『肆』 含酸洗硝酸废水该如何处理
0酸洗硝来酸废水中主自要是硝酸盐氮,目前酸洗硝酸废水的方法有采用蒸馏技术、膜处理技术、吸附以及生物脱氮,其中生化法主要是指硝酸根离子通过反硝化细菌降解转化为氮气的过程。对于硝态氮的去除问题,可采用高效脱氮设备HDN-FT,因其采用专业培养的反硝化菌种,及氮气快速释放技术,严格控制反硝化阶段,使大量的NO3—N和NO2—N还原为N2释放到空气中。一般大型污水处理厂会采用这种设备进行总氮处理,能够有效提升了废液处理效率,使水厂出水水质达标。
『伍』 废水中含有硫酸,磷酸,硝酸 如何处理
从理论角度用化学处理方法
该法是利用物质之间的化学反应进行工业废水处理的方法,分为中和法,化学絮凝法和氧化还原法三种.
①中和法.主要用于含酸或含碱的废水的处理.对含酸或含碱废水,浓度在4 %以下时,如果不能进行经济有效地回收,利用,则应通过中和处理,将PH值调整到使废水呈中性状态才可排放,而对浓度高的废水,则必须考虑回收并开展综合利用.
②混凝沉淀法.在废水中投入混凝剂后,在所产生的胶团与废水中的胶体物质发生电中和,形成颗粒沉降.
混凝沉淀不仅可以除去废水中粒径细小的悬浮颗粒和胶体颗粒,而且还能除去色度,油分,微生物,氮和磷等
营养物质,重金属以及有机物等.
③化学氧化法.废水经化学氧化处理,可使废水中所含有机物质和无机还原性物质进行氧化分解,不仅达
到净化目的,还可达到去臭,去味,去色的效果.臭氧氧化法:由于臭氧及其在水中分解的中间产物
氢氧基有很强的氧化性,可分解一般氧化剂难于破坏的有机物,而且反应完全,速度快;剩余臭氧会迅速转化
为氧,出水无嗅无味,不产生污泥;原料(空气)来源广,因此臭氧氧化法在废水处理中是很有前途的.
空气氧化法:空气氧化能力比较弱,主要用于含还原性较强物质的废水处理,如炼油厂含硫废水即用空气
氧化脱硫.氯氧化法:氯氧化法主要是利用氯,次氯酸盐及二氧化氯等物质对含许多有机化合物和无机物的废水进行处理,主要用于含酸,含氰和含硫化物的废水治理.
『陆』 硝酸和铜反应过的废水怎么处理
加入铁粉处理实验后留下含有硝酸铜的废液,铁的金属活动性比铜强,能与硝酸铜溶液发生置换反应,生成硝酸亚铁和铜,故处理时可加入过量的铁粉,确定硝酸铜已经完全处理,可根据完全反应后铁粉有剩余;铁能与稀盐酸反应生成氢气,故可取底部固体物质加入盐酸,若有气泡冒出,说明硝酸铜已经完全处理。
『柒』 含硝酸废水怎样处理才能使达标废水能浇灌农田
含硝酸的污水处理起来相对其他的污水其实并不复杂,一般只要经过匀质、中和除氮几个步骤就可以了,如果用于农田灌溉,不除氮也能排放,如果用于中水回用或者循环进入饮用水还需要进一步除氮净化。
硝酸的主要化学元素就是氮、氢、氧,一般经过微生物除氮处理后,氢氧最终以水的分子形式结合,污染最终解除。
那么处理步骤到底是怎样的呢?
1·匀质、中和:首先在初级污水处理池中进行蓄水,在某一周期内污水成分稳定的情况下进行匀质,匀质后根据水的酸碱度进行投药中和,用对于含硝酸的污水,使用氢氧化钠、碳酸钙作为中和剂都比较合适。
2·格栅筛网、气浮沉淀:这是常规的物理方式解决污水的方法,使水中的颗粒状固体和不溶于水的液体分离出来,下一步对污水进一步处理。
3·最后一步就是生物除氮:生物除氮的方法有很多种,可以根据自身条件和污水处理要求选择适合自己的方法,具体的生物除氮方法可以参考:污水怎样脱氮除磷http://www.nmgjlscl.com/Item/Show.asp?m=1&d=2890。
有时候处理后的污水是用于农田灌溉的,如果是有机农作物则必须进行氮磷的彻底处理,但如果是一般农田,含氮的污水反而是一种很好的肥料。
『捌』 硫酸铁、硝酸铁能直接排掉吗若不能,如何处理才能最大化降低危害和污染因实验后不想污染环境,急求!
【】可以加入生石灰,或熟石灰,生成氢氧化铁沉淀、氢氧化铜沉淀,取上清液,沉淀pH =8~9,既可以认定上清液不含铁和铜;
【】上清液,分离;自然乾燥,得硫酸钙固体;无污染。
【】沉淀,自然乾燥,得氧化铁,以及氢氧化铜。留用。
『玖』 含硝酸盐和亚硝酸盐的废水处理方法有哪些
摘要 一、生物脱氮去除废水中的硝酸盐和亚硝酸盐
『拾』 含硝酸盐和亚硝酸盐的废水处理方法有哪些
一、反渗透
常用的反渗透膜有:醋酸纤维素膜、聚酰胺膜和复合膜。压力范围为2070~10350kPa。这些膜通常没有选择性。Guter利用醋酸纤维素膜反渗透体系除去硝酸盐,当进水硝酸盐浓度为18~25mg/L,连续运行1000h,硝酸盐去除率达65%。Clifford等研究了反渗透系统除硝酸盐,反渗透膜为聚酰胺膜和三醋酸纤维素膜。在进水中加入硫酸和六甲基磷酸钠可以防止膜结垢。结果表明:聚酰胺膜比三醋酸纤维素膜更有效。与离子交换和电渗析相比,反渗透系统成本较高。Rautenbach等利用复合膜反渗透系统进行了中试研究,操作压力为14Pa,处理能力为2m3/h。
二、催化脱氮
Horold等开发了一种从饮用水中去除亚硝酸盐和硝酸盐的方法。结果表明:在氢气存在下,Pd-Al合金可有效地使亚硝酸盐还原成氮气(98%)和氨。Pb(5%)-Cu(1.25%)-Al2O3催化剂在50分钟内可使初始浓度100mg/L的硝酸盐完全去除。催化剂对硝酸盐的去除能力达3.13mgNO3-/min•g催化剂。约为微生物脱氮活性的30倍。该方法可在温度为10ºC, pH值6~8条件下进行,过程易于自动控制,适用于小型水处理系统。该工艺目前尚处于研究阶段,许多因素,如动力学参数,催化剂的长期稳定性等需要进一步研究。
三、化学脱氮
在碱性pH条件下,通过化学方法可以将水中的硝酸盐还原成氨,反应方程式可表示为:
NO3- + 8Fe(OH)2+ 6H2O → NH3 +8 F(OH)3 + OH-
该反应在催化剂Cu的作用下进行,Fe/NO3-的比值为15:1, 该工艺会产生大量的铁污泥,并且形成的氨需要用气提法除去。Sorg研究过用亚铁化合物去除硝酸盐,结果表明,由于成本太高,此工艺难于实际应用。Murphy等人利用粉末铝去除硝酸盐,反应主要产物为氨,占60~95%,可以通过气提法除去。反应的最佳pH为10.25,反应方程式为:
3NO3- + 2Al + 3H2O → 3NO2- + 2Al(OH)3
NO2- + 2Al + 5H2O → 3NH3 + 2Al(OH)3 + OH-
2NO2- + 2Al + 4H2O → N2 + 2Al(OH)3 + 2OH-
在利用石灰作软化剂的水处理厂可有效地使用该工艺,因为利用石灰通常可使pH值升高到9.1或以上。因而,调节pH值所需的费用较低,铝同水的反应可表示为:
Al + 6H2O → 2Al(OH)3 + 3H2
当pH值为9.1~9.3时,由于上述反应导致的铝的损失量小于2%。实验结果表明,还原1g硝酸盐需要1.16g 铝。
四、电渗析
Miquel等开发了利用电渗析技术选择性除去硝酸盐的方法。该方法可使硝酸盐浓度从50mg/L降低到25mg/L以下,它不需要添加任何化学试剂。Rautenbach等研究了电渗析法除去硝酸盐,并与反渗透法进行了比较。他们认为将硝酸盐从100mg/L降低到50mg/L,两种方法的成本大致相当。
五、离子交换法
离子交换法去除硝酸盐的原理是:溶液中的NO3-通过与离子交换树脂上的Cl-或HCO3-发生交换而去除。树脂交换饱和后用NaCl或NaHCO3溶液再生。一般地,阴离子交换树脂对几种阴离子的选择性顺序为:
HCO3- < Cl- < NO3- <SO42-
因此,用常规的离子交换树脂处理含硫酸盐水中的硝酸盐是困难的。因为树脂几乎交换了水中的所有的硫酸盐后,才与水中的硝酸盐交换。也就是说,硫酸盐的存在会降低树脂对硝酸盐的去除能力。采用对硝酸盐有优先选择性的树脂可以较好地解决这个问题。这种树脂优先交换硝酸盐,对硝酸盐的交换容量不受水中硫酸盐的影响。
在树脂官能团NR3+中的N原子周围增加碳源子数目可以提高树脂对硝酸盐的选择性,这种类型的树脂对硝酸盐的选择性顺序依次为:
HCO3-<Cl-<SO42-<NO3-
当树脂上NR3+中的氮原子周围的甲基变为乙基时,树脂对硝酸盐与硫酸盐的选择性系数KSN从100增加到1000。
六、生物脱氮
生物脱氮,又称生物反硝化,是指在缺氧条件下,微生物利用NO3-作为电子受体,进行无氧呼吸,氧化有机物,将硝酸盐还原为氮气的过程。可表示为:
NO3- → NO2- → NO → N2O → N2
自然界中存在许多微生物,如假单胞菌属、微球菌属、反硝化菌属、无色杆菌属、气杆菌属、产碱杆菌属、螺旋菌属、变形杆菌属、硫杆菌属等,能够在厌氧条件下生长,并还原NO3-成N2。在这个过程中NO3-或NO2-代替氧作为末端电子受体,并且产生ATP。当电子从供体转移到受体时,微生物获得能量,用于合成新的细胞物质和维持现有细胞的生命活动。
根据微生物生长的碳源不同,生物反硝化可分为异养反硝化和自养反硝化。