❶ 1立方厘米的水大概有多少个水分子能数几年
1立方厘米的水大概有1立方厘米的水有3.3456x10^22个水分子,能数17700年。
解:
1摩尔水是18克,1摩尔是6.022x10^23个分子,1立方厘米的水有3.3456x10^22个水分子。
60亿=6x10^9
3.3456x10^22÷(10x6x10^9x3600x24x365)
=3.3456x10^22÷1.89x10^18
=17700年
21个水分子组成的分子团,与宏观的一滴水的光谱基本吻合。也就是说,最少需要21个水分子才可以组成一滴水。
我们不妨从一个水分子的视角,来思考这个问题:假设在一滴水中随机挑选一个水分子,我们叫它W。尽管0.05毫升的一滴水中大约有1021个水分子,但真正围绕在W周围的水分子并不多。
我们把W转移出来,在其周围不断增加水分子,直到W觉得,周围的水分子似乎跟之前一样多了。此时W相信,自己处在一滴水中。于是W和增加的水分子这个整体,就可以被定义为最小的一滴水。这一过程被称为W的溶剂化。
换算:
1立方厘米=0.001 立方分米
1立方米=1000立方分米=1000000立方厘米
1立方厘米=1毫升(mL)
❷ 物理化学习题求离子积,麻烦仔细的解题步骤哦谢谢
电导率是物质传送电流的能力,是电阻率的倒数。在液体中常以电阻的倒数——电导来衡量其导电能力的大小。水的电导是衡量水质的一个很重要的指标。它能反映出水中存在的电解质的程度。根据水溶液中电解质的浓度不同,则溶液导电的程度也不同。通过测定溶液的导电度来分析电解质在溶解中的溶解度。这就是电导仪的基本分析方法。
溶液的电导率与离子的种类有关。同样浓度电解质,它们的电导率也不一样。通常是强酸的电导率最大,强碱和它与强酸生成的盐类次之,而弱酸和弱碱的电导率最小。因此,通过对水的电导的测定,对水质的概况就有了初步的了解。电导率 电阻率的倒数即称之为电导率L。在液体中常以电阻的倒数——电导来衡量其导电能力的大小。电导L的计算式如下式所示: L=l/R=S/l电导的单位用姆欧又称西门子。用S表示,由于S单位太大。常采用毫西门子,微西门子单位1S=103mS=106μS。
当量电导 液体的电导仅说明溶液的导电性能与几何尺寸间的关系,未体现出溶液浓度与电性能的关系。为了能区分各种介质组成溶液的导电性能,必须在电导率的要领 引入浓度的关系,这就提出了当量电导的概念。所谓的当量电导就是指把1g当量电解质的溶液全部置于相距为1cm的两板间的溶液的电导,符号“λ”。由于在电导率的基础上引入了浓度的概念。因此各种水溶液的导电来表示和比较了。在水质监测中,一般通过对溶液电导的测量可掌握水中所溶解的总无机盐类的浓度指标。温度对电导的影响 溶液的电阻是随温度升高而减小,即溶液的浓度一定时,它的电导率随着温度的升高而增加,其增加的幅度约为2%℃-1。另外同一类的电解质,当浓度不同时,它的温度系数也不一样。在低浓度时,电导率的温度之间的关系用下式表示: L1=L0[1+α(t-t0)+β(t-t0)2]由于第二项β(t-t0)2之值较小,可忽略不计。在低温时的电导率与温度的关系可用以下近似值L1=L0[1+α(t-t0)]表示,因此实际测量时必须加入温度补偿。
电导的温度系数 对于大多数离子,电导率的温度系数大约为+1.4%℃-1~3%℃-1对于H+和OH-离子,电导率温度系数分别为1.5%℃-1和 1.8%℃-1,这个数值相对于电导率测量的准确度要求,一般为1%或优于1%,是不容忽视的。纯水的电导率 即使在纯水中也存在着H+和OH-两种离子,经常说,纯水是电的不良导体,但是严格地说水仍是一种很弱的电解质,它存在如下的电离平衡:H2O←→H++OH或2H2O←→H3+O+OH-
其平衡常数:KW=[H+].[OH-]/H2O=10-14
式中KW称为水的离子积[H+]2=[OH-]2=10-14∴[H+]2=[OH-]2=10-7lH2O,0=λOH-,0=349.82+198.6=548.42S/cm.mol2已知水的密度d25℃/H2O=0.9970781cm3 故原有假设为1的水分离子浓度只能达到0.99707。实际上是仅0.99707份额的水离解成0.99707.10-7的[H+]和[OH-],那么离解后的[H+]和[OH-]电导率的总和KH2O用下式求出:KH2O=CM/1000λH2O
=(0.99707.10-7/1000).548.42=0.05468μS.cm-1≈0.054μS.cm-1∴ρH2O=1/KH2O=1/0.05468×10-9=18.29(MΩ.cm)≈18.3(MΩ.cm) 由水的离子积为10-14可推算出理论上的高纯水的极限电导为0.0547μS.cm-1,电阻为18.3MΩ.cm(25℃)。 水的电导率的温度系数在不同电导率范围有不同的温度系数。对于常用的1μS.cm-1的蒸馏水而言大约为+2.5%-1。
❸ 无限稀释溶液摩尔电导率与电导率换算关系
无限稀释溶来液摩尔电导率为73.4*10-4,摩源尔电导率把含有1mol电解质的溶液置于相距为单位距离的电导池的两个平行电极之间,这时所具有的电导。
引入摩尔电导率的概念是很有用的,因为一般电解质的电导率在不太浓的情况下都随着浓度的增高而变大,因为导电粒子数增加了。
为了便于对不同类型的电解质进行导电能力的比较,人们常选用摩尔电导率,因为这时不但电解质有相同的量(都含有1mol的电解质),而且电极间距离也都是单位距离。当然,在比较时所选取的电解质基本粒子的荷电荷量应相同。
当浓度降低时,粒子之间相互作用减弱,正、负离子迁移速率加快,溶液的摩尔电导率必定升高。但不同的电解质,摩尔电导率随浓度降低而升高的程度也大不相同。
若在同一浓度区间内比较各种摩尔电导率值的变化,例如就NaCl,H2SO4,CuSO4互相比较,就会发现,当浓度降低时,各个摩尔电导率值的变化程度不同。
CuSO4变化最大,H2SO4次之,而NaCl变化最小,这是因为2-2价型盐类离子之间的吸引力较大,当浓度改变时,对静电引力的影响较大,所以摩尔电导率值的变化也较大。
❹ 在水处理时为什么要测电导率,测电导的目的何在
纯净的水是不能导电的,也基本不存在百分之分纯净的水,水之所以可以导电是因为其中含有某些盐等电解质,电解质又分为强电解质和弱电解质。弱电解质的电离与平衡常数、浓度、电离度均有关系;同样的,对于强电解质,根据科尔劳施(F.Kohlrausch)总结的经验式可看出溶液电导率也与浓度相关。所以,通过测量电导率的大小,可以间接计算出溶液中所含电解质的浓度,了解水中电解质的含量。
纯水不导电,就得加点什么东西,而Nacl家家必备,实在是居家旅行,做做实验,必备材料。。。
这是一个双保险,虽然我们化验了锅炉给水的硬度,但是其它杂质仍旧对蒸汽品质产生影响,为了控制其它元素的含量,可通过测电导率来确定影响给水的品质。
书上不是有公式吗?C=K(硫酸钡)/1000λο,λο为硫酸钡的极限摩尔电导率
你是做那个品牌洗衣机的啊,应该是不错了,好像不是国产的智能洗衣机吧。
那我告诉你吧,它是用来代替浊度传感器的,通过判断水体中的离子浓度大概的判断下水中溶有废弃物的多少,只是个大概,电导率低到一定程度说明水比较干净了,可以认为洗干净了,不用再次漂洗了。因为浊度传感器很昂贵,所以用小量程的电导记来粗略测量,不过能想到这些已经很不错了。希望你能够了解你产品的人性化。
不仅是自来水。污水、废水、纯水等等。。
只要是水溶液,都可以通过检测其电导率值来确定是否纯净。电导率可以反应被测溶液中杂质含量。电导率值越高,说明导电性越好,杂质越多,水质越不好。。
电导率说白了就是水里面含有多少离子。
电厂的水质很特殊,必须要用电导非常少的水,如果电导率大了可能会有安全隐患
只是去推动叶片,没有必要测电导率呀!测量一下流量就可以了!
电阻率跟电导率是一个数
电阻率是电导率的倒数
怎么会两个值都要测呢?
一 土壤样品的采集与处理 1 风干和去杂 从田间采回的土样,要及时风干。其方法是将土壤样品放在阴凉干燥通风、又无特殊的气体(如氯气、氨气、二氧化硫等)、无灰尘污染的室内,把样品弄碎后平铺在干净的牛皮纸上,摊成薄薄的一层,并且经常翻动,加速干燥。切忌阳光直接曝晒或烘烤。在土样稍干后,要将大土块捏碎(尤其是粘性土壤),以免结成硬块后难以磨细。样品风干后,应拣出枯枝落叶、植物根、残茬、虫体以及土壤中的铁锰结核、石灰结核或石子等,若石子过多,将其拣出并称重,记下所占的百分数。 2 磨细、过筛和保存 取风干土样100—200g,放在牛皮纸上,用木块碾碎,使其全部通过60号筛(孔径0.25mm),留在筛上的土块再倒在牛皮纸上重新碾磨。如此反复多次,直到全部通过为止。不得抛弃或遗漏,但石砾切勿压碎。筛子上的石砾应拣出称重并保存,以备石砾称重计算之用。同时将过筛的土样称重,以计算石砾重量百分数,然后将过筛后的土壤样品充分混合均匀后盛于广口瓶中。 样品装入广口瓶后,应贴上标签,并注明其样号、土类名称、采样地点、采样深度、采样日期、筛孔径、采集人等。一般样品在广口瓶内可保存半年至一年。瓶内的样品应保存在样品架上,尽量避免日光、高温、潮湿或酸碱气体等的影响,否则影响分析结果的准确性。 二 土壤全氮量的测定(重铬酸钾—硫酸消化法) 方法原理 土壤与浓硫酸及还原性催化剂共同加热,使有机氮转化成氨,并与硫酸结合成硫酸铵;无机的铵态氮转化成硫酸铵;极微量的硝态氮在加热过程中逸出损失;有机质氧化成CO2。样品消化后,再用浓碱蒸馏,使硫酸铵转化成氨逸出,并被硼酸所吸收,最后用标准酸滴定。主要反应可用下列方程式表示: NH2?CH2CO?NH-CH2COOH+H2SO4=2NH2-CH2COOH+SO2+〔O〕 NH2-CH2COOH+3H2SO4=NH3+2CO2↑+3SO2↑+4H2O 2NH2-CH2COOH+2K2Cr2O7+9H2SO4=(NH4)2SO4+2K2SO4+2Cr2(SO4)3+4CO2↑+10H2O (NH4)2SO4+2NaOH=Na2SO4+2H2O+2NH3↑ NH3+H3BO3=H3BO3?NH3 H3BO3?NH3+HCl=H3BO3+NH4Cl 操作步骤 1.在分析天平上称取通过60号筛(孔径为0.25mm)的风干土壤样品0.5—1g(精确到0.001g),然后放入150ml开氏瓶中。 2.加浓硫酸(H2SO4)5ml,并在瓶口加一只弯颈小漏斗,然后放在调温电炉上高温消煮15分钟左右,使硫酸大量冒烟,当看不到黑色碳粒存在时即可(如果有机质含量超过5%时,应加1—2g焦硫酸钾,以提高温度加强硫酸的氧化能力)。 3.待冷却后,加5ml饱和重铬酸钾溶液,在电炉上微沸5分钟,这时切勿使硫酸发烟。 4.消化结束后,在开氏瓶中加蒸馏水或不含氮的自来水70ml,摇匀后接在蒸馏装置上,再用筒形漏斗通过Y形管缓缓加入40%氢氧化钠(NaOH)25ml。 5.将一三角瓶接在冷凝管的下端,并使冷凝管浸在三角瓶的液面下,三角瓶内盛有25ml 2%硼酸吸收液和定氮混合指示剂1滴。 6.将螺丝夹打开(蒸汽发生器内的水要预先加热至沸),通入蒸汽,并打开电炉和通自来水冷凝。 7.蒸馏20分钟后,检查蒸馏是否完全。检查方法:取出三角瓶,在冷凝管下端取1滴蒸出液于白色瓷板上,加纳氏试剂1滴,如无黄色出现,即表示蒸馏完全,否则应继续蒸馏,直到蒸馏完全为止(或用红色石蕊试纸检验)。 8.蒸馏完全后,降低三角瓶的位置,使冷凝管的下端离开液面,用少量蒸馏水冲洗冷凝的管的下端(洗入三角瓶中),然后用0.02mol/L盐酸(HCl)标准液滴定,溶液由蓝色变为酒红色时即为终点。记下消耗标准盐酸的毫升数。 测定时同时要做空白试验,除不加试样外,其它操作相同。 结果计算 N%=[ (V-V0)×N×0.014]/样品重×100 式中: V—滴定时消耗标准盐酸的毫升数; V0—滴定空白时消耗标准盐酸的毫升数; N—标准盐酸的摩尔浓度; 0.014—氮原子的毫摩尔质量g/mmol; 100—换算成百分数。 注意事项 1.在使用蒸馏装置前,要先空蒸5分钟左右,把蒸汽发生器及蒸馏系统中可能存在的含氮杂质去除干净,并用纳氏试剂检查。 2.样品经浓硫酸消煮后须充分冷却,然后再加饱和重铬酸钾溶液,否则作用非常激烈,易使样品溅出。加入重铬酸钾后,如果溶液出现绿色,或消化1—2分钟后即变绿色,这说明重铬酸钾量不足,在这种情况下,可补加1g固体重铬酸钾(K2Cr2O7),然后继续消化。 3.若蒸馏产生倒吸现象,可再补加硼酸吸收液,仍可继续蒸馏。 4.在蒸馏过程中必须冷凝充分,否则会使吸收液发热,使氨因受热而挥发,影响测定结果。 5.蒸馏时不要使开氏瓶内温度太低,使蒸气充足,否则易出现倒吸现象。另外,在实验结束时要先取下三角瓶,然后停止加热,或降低三角瓶使冷凝管下端离开液面。 仪器、试剂 1.主要仪器: 开氏瓶(150ml)、弯颈小漏斗、分析天平、电炉、普通定氮蒸馏装置。 2.试剂: (1) 浓硫酸(化学纯,比重1.84)。 (2)饱和重铬酸钾溶液。称取200g(化学纯)重铬酸钾溶于1000ml热蒸馏水中。 (3)40%氢氧化钠(NaOH)溶液。称取工业用氢氧化钠(NaOH)400g,加水溶解不断搅拌,再稀释定容至1000ml贮于塑料瓶中。 (4)2%硼酸溶液。称取20g硼酸加入热蒸馏水(60℃)溶解,冷却后稀释定容至1000ml,最后用稀盐酸(HCl)或稀氢氧化钠(NaOH)调节pH至4.5(定氮混合指示剂显葡萄酒红色)。 (5)定氮混合指示剂。称取0.1g甲基红和0.5g溴甲酚绿指示剂放入玛瑙研钵中,加入100ml95%酒精研磨溶解,此液应用稀盐酸(HCl)或氢氧化钠(NaOH)调节pH至4.5。 (6)0.02mol/L盐酸标准溶液。取浓盐酸(HCl)(比重1.19)1.67ml,用蒸馏水稀释定容至1000ml,然后用标准碱液或硼砂标定。 (7)钠氏试剂(定性检查用)。称氢氧化钾(KOH)134g溶于460ml蒸馏水中;称取碘化钾(KI)20g溶于50ml蒸馏水中,加碘化汞(HgI)使溶液至饱和状态(大约32g左右)。然后将以上两种溶液混合即成。
❺ 加入纯水,溶液摩尔电导率如何变化
变大,稀释后离子不受反离子影响。