导航:首页 > 废水知识 > 废水处理微生物一般细胞分子式

废水处理微生物一般细胞分子式

发布时间:2025-10-01 19:07:47

废水厌氧生物处理的原理

1. 在厌氧处理过程中,废水中的有机物被大量微生物共同作用,最终转化为甲烷、二氧化碳、水、硫化氢和氨等。这一过程中,不同微生物的代谢过程相互影响,相互制约,形成了复杂的生态系统。
2. 高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。
3. 水解阶段是指复杂的非溶解性聚合物被转化为简单的溶解性单体或二聚体的过程。高分子有机物因相对分子量巨大,不能透过细胞膜,因此不可能被细菌直接利用。它们在第一阶段被细菌胞外酶分解为小分子。例如,纤维素被纤维素酶水解为纤维二糖与葡萄糖,淀粉被淀粉酶分解为麦芽糖和葡萄糖,蛋白质被蛋白质酶水解为短肽与氨基酸等。这些小分子的水解产物能够溶解于水并透过细胞膜为细菌所利用。水解过程通常较缓慢,因此被认为是含高分子有机物或悬浮物废液厌氧降解的限速阶段。多种因素如温度、有机物的组成、水解产物的浓度等可能影响水解的速度与水解的程度。水解速度的可由以下动力学方程加以描述:ρ=ρo/(1+Kh.T)ρ ——可降解的非溶解性底物浓度(g/L);ρo———非溶解性底物的初始浓度(g/L);Kh——水解常数(d^-1);T——停留时间(d)。
4. 发酵(或酸化)阶段是指有机物化合物既作为电子受体也是电子迟差供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。在这一阶段,上述小分子的化合物发酵细菌(即酸仿此化菌)的细胞内转化为更为简单的化合物并分泌到细胞外。发酵细菌绝大多数是严格厌氧菌,但通常有约1%的兼性厌氧菌存在于厌氧环境中,这些兼性厌氧菌能够起到保护像甲烷菌这样的严格厌氧菌免受氧的损害与抑制。这一阶段的主要产物有挥发性脂肪酸、醇类、乳酸、二氧化碳、氢气、氨、硫化氢等,产物的组成取决于厌氧降解的条件、底物种类和参与酸化的微生物种群。与此同时,酸化菌也利用部分物质合成新的细胞物质,因此,未酸化废水厌氧处理时产生更多的剩余污泥。在厌氧降解过程中,酸化细菌对酸的耐受力必须加以考虑。酸化过程pH下降到4时能可以进行。但是产甲烷过程pH值的范围在6.5~7.5之间,因此pH值的下降将会减少甲烷的生成和氢的消耗,并进一步引起酸化末端产物组成的改变。
5. 产乙酸阶段是指在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。其某些反应式如下:CH3CHOHCOO-+2H2O —> CH3COO-+HCO3-+H++2H2 ΔG’0=-4.2KJ/MOL;CH3CH2OH+H2O-> CH3COO-+H++2H2O ΔG’0=9.6KJ/MOL;CH3CH2CH2COO-+2H2O-> 2CH3COO-+H++2H2 ΔG’0=48.1KJ/MOL;CH3CH2COO-+3H2O-> CH3COO-+HCO3-+H++3H2 ΔG’0=76.1KJ/MOL;4CH3OH+2CO2-> 3CH3COO-+2H2O ΔG’0=-2.9KJ/MOL;2HCO3-+4H2+H+->CH3COO-+4H2O ΔG’0=-70.3KJ/MOL。
6. 甲烷阶段是指乙酸、氢气、碳酸、甲酸和备旦迅甲醇被转化为甲烷、二氧化碳和新的细胞物质。甲烷细菌将乙酸、乙酸盐、二氧化碳和氢气等转化为甲烷的过程有两种生理上不同的产甲烷菌完成,一组把氢和二氧化碳转化成甲烷,另一组从乙酸或乙酸盐脱羧产生甲烷,前者约占总量的1/3,后者约占2/3。最主要的产甲烷过程反应有:CH3COO-+H2O->CH4+HCO3- ΔG’0=-31.0KJ/MOL;HCO3-+H++4H2->CH4+3H2O ΔG’0=-135.6KJ/MOL;4CH3OH->3CH4+CO2+2H2O ΔG’0=-312KJ/MOL;4HCOO-+2H+->CH4+CO2+2HCO3- ΔG’0=-32.9KJ/MOL。
7. 在甲烷的形成过程中,主要的中间产物是甲基辅酶M(CH3-S-CH2-SO3-)。需要指出的是:一些书把厌氧消化过程分为三个阶段,把第一、第二阶段合为一个阶段,称为水解酸化阶段。在这里我们则认为分为四个阶段能更清楚反应厌氧消化过程。
8. 上述四个阶段的反应速度依废水的性质而异,在含纤维素、半纤维素、果胶和脂类等污染物为主的废水中,水解易成为速度限制步骤;简单的糖类、淀粉、氨基酸和一般蛋白质均能被微生物迅速分解,对含这类有机物的废水,产甲烷易成为限速阶段。
9. 虽然厌氧消化过程可分为以上四个过程,但是在厌氧反应器中,四个阶段是同时进行的,并保持某种程度的动态平衡。该平衡一旦被pH值、温度、有机负荷等外加因素所破坏,则首先将使产甲烷阶段受到抑制,其结果会导致低级脂肪酸的积存和厌氧进程的异常变化,甚至导致整个消化过程停滞。

Ⅱ 废水生物处理方法有哪些

主要借助微生物的分解作用把污水中有机物转化为简单的无机物,使污水得到净化.
1.按对版氧气需求情况可分为厌权氧生物处理和好氧生物处理两大类.厌氧生物处理系利用厌氧微生物把有机物转化为有机酸,甲烷菌再把有机酸分解为甲烷、二氧化碳和氢等,如厌氧塘、化粪池、污泥的厌气消化和厌氧生物反应器等.好氧生物处理系采用机械曝气或自然曝气(如藻类光合作用产氧等)为污水中好氧微生物提供活动能源,促进好氧微生物的分解活动,使污水得到净化,如活性污泥、生物滤池、生物转盘、污水灌溉、氧化塘的功能.
2,.按微生物的悬浮状态分为活性污泥法和生物膜法.活性污泥法微生物悬浮在污水中,如氧化沟,a2o,传统活性污泥法,sbr等等.生物膜法微生物附着在载体上,如生物转盘法,生物流化床等等.

Ⅲ 乳制品企业废水处理工艺,方案,需氧,微生物培养,达标情况.

利用微生物的代谢作用除去废水中有机污染物的一种方法,亦称废水生物化学处理法,简称废水生化法,分需氧生物处理法和厌氧生物处理法两种。

需氧生物处理法 利用需氧微生物在有氧条件下将废水中复杂的有机物分解的方法。

生活污水中的典型有机物是碳水化合物、合成洗涤剂、脂肪、蛋白质及其分解产物如尿素、甘氨酸、脂肪酸等。这些有机物可按生物体系中所含元素量的多寡顺序表示为COHNS。在废水需氧生物处理中全部反应可用以下两式表示:

微生物细胞+COHNS+O2—→较多的细胞+CO2+H2O+NH3

生物体系中这些反应有赖于生物体系中的酶来加速。酶按其催化反应分为:氧化还原酶:在细胞内催化有机物的氧化还原反应,促进电子转移,使其与氧化合或脱氢。可分为氧化酶和还原酶。氧化酶可活化分子氧,作为受氢体而形成水或过氧化氢。还原酶包括各种脱氢酶,可活化基质上的氢,并由辅酶将氢传给被还原的物质,使基质氧化,受氢体还原。水解酶:对有机物的加水分解反应起催化作用。水解反应是在细胞外产生的最基本的反应,能将复杂的高分子有机物分解为小分子,使之易于透过细胞壁。如将蛋白质分解为氨基酸,将脂肪分解为脂肪酸和甘油,将复杂的多糖分解为单糖等。此外还有脱氨基、脱羧基、磷酸化和脱磷酸等酶。

许多酶只有在一些称为辅酶和活化剂的特殊物质存在时才能进行催化反应,钾、钙、镁、锌、钴、锰、氯化物、磷酸盐离子在许多种酶的催化反应中是不可缺少的辅酶或活化剂。

在需氧生物处理过程中,污水中的有机物在微生物酶的催化作用下被氧化降解,分三个阶段:第一阶段,大的有机物分子降解为构成单元——单糖、氨基酸或甘油和脂肪酸。在第二阶段中,第一阶段的产物部分地被氧化为下列物质中的一种或几种:二氧化碳、水、乙酰基辅酶A、α-酮戊二酸(或称α-氧化戊二酸)和草醋酸(又称草酰乙酸)。第三阶段(即三羧酸循环,是有机物氧化的最终阶段)是乙酰基辅酶A、α-酮戊二酸和草醋酸被氧化为二氧化碳和水。有机物在氧化降解的各个阶段,都释放出一定的能量。

在有机物降解的同时,还发生微生物原生质的合成反应。在第一阶段中由被作用物分解成的构成单元可以合成碳水化合物、蛋白质和脂肪,再进一步合成细胞原生质。合成能量是微生物在有机物的氧化过程中获得的。

厌氧生物处理法 主要用于处理污水中的沉淀污泥,因而又称污泥消化,也用于处理高浓度的有机废水。这种方法是在厌氧细菌或兼性细菌的作用下将污泥中的有机物分解,最后产生甲烷和二氧化碳等气体,这些气体是有经济价值的能源。中国大量建设的沼气池就是具体应用这种方法的典型实例。消化后的污泥比原生污泥容易脱水,所含致病菌大大减少,臭味显著减弱,肥分变成速效的,体积缩小,易于处置。

城市污水沉淀污泥和高浓度有机废水的完全厌氧消化过程可分为三个阶段(见图)。在第一阶段,污泥中的固态有机化合物借助于从厌氧菌分泌出的细胞外水解酶得到溶解,并通过细胞壁进入细胞中进行代谢的生化反应。在水解酶的催化下,将复杂的多糖类水解为单糖类,将蛋白质水解为缩氨酸和氨基酸,并将脂肪水解为甘油和脂肪酸。第二阶段是在产酸菌的作用下将第一阶段的产物进一步降解为比较简单的挥发性有机酸等,如乙酸、丙酸、丁酸等挥发性有机酸,以及醇类、醛类等;同时生成二氧化碳和新的微生物细胞。

第一、二阶段又称为液化过程。第三阶段是在甲烷菌的作用下将第二阶段产生的挥发酸转化成甲烷和二氧化碳,因此又称为气化过程,其反应可用下式表示:

一些有机酸或醇的气化过程举例如下:

乙酸:CH3COOH—→CO2+CH4

丙酸:4CH3CH2COOH+2H2O—→5CO2+7CH4

甲醇:4CH3OH—→CO2+3CH4+2H2O

乙醇:2CH3CH2OH+CO2—→2CH3COOH+CH4

为了使厌氧消化过程正常进行,必须将温度、pH、氧化还原电势等保持在一定的范围内,以维持甲烷菌的正常活动,保证及时地和完全地将第二阶段产生的挥发酸转化成甲烷。

生物化学反应的速率直接受温度的影响。进行厌氧消化的微生物有两类:中温消化菌和高温消化菌。前者的适应温度范围为17℃~43℃,最佳温度为32℃~35℃;后者则在50℃~55℃具有最佳反应速率。

近年来,厌氧消化处理法发展到应用于处理高浓度有机废水,如屠宰场废水、肉类加工废水、制糖工业废水、酒精工业废水、罐头工业废水、亚硫酸盐制浆废水等,比采用需氧生物处理法节省费用。

利用生物法处理废水的具体方法有活性污泥法、生物膜法、氧化塘法、土地处理系统和污泥消化等。

Ⅳ 废水厌氧生物处理原理

废水厌氧生物处理原理涉及复杂的生态系统,其中微生物共同作用,将废水中的有机物转化为多种产物,如甲烷、二氧化碳、水、硫化氢和氨。


高分子有机物的厌氧降解分为四个阶段:水解、发酵(或酸化)、产乙酸、产甲烷。


水解阶段,复杂的聚合物被分解为小分子,这些小分子能溶解于水并供细菌利用,水解速度受多种因素影响。


发酵阶段,溶解性有机物转化为以挥发性脂肪酸为主的产物,酸化菌利用部分物质合成新的细胞物质,产生剩余污泥。


产乙酸阶段,乙酸、氢气、碳酸等进一步转化为甲烷、二氧化碳和新的细胞物质。


产甲烷阶段,乙酸、氢气、碳酸等转化为甲烷,主要通过两组生理上不同的产甲烷菌完成。


四个阶段反应速度依据废水性质不同,水解阶段在含纤维素、半纤维素、果胶和脂类等污染物为主的废水中易成为速度限制步骤,而简单的糖类、淀粉、氨基酸和一般蛋白质的分解则可能使产甲烷阶段成为限速步骤。


在厌氧反应器中,四个阶段同时进行,保持动态平衡。平衡被破坏,如pH值、温度、有机负荷等外加因素影响,将首先抑制产甲烷阶段,导致低级脂肪酸积存,厌氧进程异常变化,甚至导致消化过程停滞。


(4)废水处理微生物一般细胞分子式扩展阅读

废水厌氧生物处理是指在无分子氧的条件下通过厌氧微生物(包括兼氧微生物)的作用,将废水中各种复杂有机物分解转化成甲烷和二氧化碳等物质的过程。

阅读全文

与废水处理微生物一般细胞分子式相关的资料

热点内容
如何判断空气滤芯从哪边进气 浏览:287
四川净水器设备哪里有 浏览:545
废水排放标准叫什么 浏览:793
纯水系统里加碱起什么作用 浏览:99
为什么纯水机的滤芯次序不一样 浏览:366
沁园过滤器qqt3怎么样 浏览:126
上部过滤制作 浏览:425
景观边界半透膜 浏览:895
沁园净水器滤瓶尺寸是多少 浏览:674
长春生活污水处理设备多少钱一次 浏览:860
核级混床阳离子交换树脂 浏览:666
滤芯螺丝滑丝怎么拧紧 浏览:627
树脂眼镜被热水烫后的修补方法6 浏览:79
净水机多少个压力才停机 浏览:1000
新捷达汽油滤芯怎么拆视频 浏览:884
污水提升泵运营管理 浏览:662
南阳景区污水处理电话多少 浏览:477
空气净化器什么牌子好点知乎 浏览:375
废水处理微生物一般细胞分子式 浏览:897
凌渡换空气滤芯怎么换 浏览:194